
Sun Chili!Soft ASP 3.6.2
Product Documentation

Sun Chili!Soft ASP 3.6.2 Product Documentation 2

Legal Notice

Copyright 2002 Chili!Soft, Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto,
California 94303, U.S.A. All rights reserved. Sun Microsystems, Inc. has intellectual
property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may
include one or more additional patents or pending patent applications in the U.S. or other
countries. This product documentation and the technology it describes are distributed
under licenses restricting their use, copying, distribution, and decompilation. No part of
this product documentation may be reproduced in any form by any means without prior
written authorization of Sun and its licensors, if any. Third-party software, including font
technology, is copyrighted and licensed from Sun suppliers. Parts of the product may be
derived from Berkeley BSD systems, licensed from the University of California. UNIX is a
registered trademark in the U.S. and other countries, exclusively licensed through
X/Open Company, Ltd. Sun, Sun Microsystems, the Sun Logo, Java, Solaris, and
Chili!Soft ASP are trademarks or registered trademarks of Chili!Soft, Inc. or Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used
under license and are trademarks of SPARC International, Inc. in the U.S. and other
countries. Federal Acquisitions: Commercial Software – Government Users Subject to
Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Sun Chili!Soft ASP 3.6.2 Product Documentation 3

Contents
Introduction: About This Documentation 4

Introduction: About This Documentation 4
Chapter 1: About Sun Chili!Soft ASP 9

New in This Release 9
What is ASP 11
What is Sun Chili!Soft ASP? 13

Chapter 2: Installing and Configuring Sun Chili!Soft ASP 15
Installing and Uninstalling Sun Chili!Soft ASP 15
Enabling Publishing 67
Defining ASP Applications on the Server 68
Enabling Database Connections on the Server 69

Chapter 3: Managing Sun Chili!Soft ASP 71
Using the Administration Console 71
Managing the ASP Server 83
Managing the Web Server 111
Enabling FrontPage Publishing 115
Configuring a Database 119
Configuring ActiveX Data Objects (ADO) Connections 151
Running Sun Chili!Soft ASP in a Shared Web Hosting Environment 156
Optimizing Server Performance 159
Advanced Administration Options 167

Chapter 4: Building a Sun Chili!Soft ASP Application 182
Creating the Basic ASP Application 183
Using Sun Chili!Soft ASP Built-in Objects 193
Using Sun Chili!Soft ASP Installed Components 197
Using Java Objects and Classes 197
Connecting to a Database 198
Developing International Applications 212
Publishing a Sun Chili!Soft ASP Application 214

Chapter 5: Developer’s Reference 215
ADO Component Reference 215
ASP Built-in Objects Reference 385
ASP Component Reference 422
Chili!Beans Component Reference 450
Component Programmer’s Reference 457
JScript Language Reference 499
SpicePack Component Reference 707
VBScript Language Reference 722

Appendices 913
Index 971

Sun Chili!Soft ASP 3.6.2 Product Documentation 4

Introduction: About This Documentation

Welcome to Sun Chili!Soft ASP 3.6.2, a Web server plug-in that enables Web servers running on
different platforms to process Active Server Pages (ASP) code.

This documentation provides information about the installation, configuration, and use of Sun
Chili!Soft ASP 3.6.2. It also provides basic information about building applications, and
reference information.

There are two versions of this documentation: one in HTML format that includes dynamic index
and search functionality, and one in Adobe PDF format. To view and print the PDF version,
Adobe Acrobat Reader must be installed. To obtain a free copy of Acrobat Reader, go to:

http://www.adobe.com/products/acrobat/readstep2.html

In addition to the documentation, the following resources will also help you learn more about Sun
Chili!Soft ASP:

� Diagnostic applications verify that your ASP environment is working correctly.

� Sample ASP applications demonstrate the basics of building Sun Chili!Soft ASP
applications.

� The 10-step Tour provides a basic introduction to Sun Chili!Soft ASP technology.

This section describes these resources, and how to access them.

In this section:

What's in This Documentation

Accessing Documentation, Samples, and Diagnostics

We would like to have your comments about this documentation regarding what you found
useful, and what could be improved. Please send your comments to us using the feedback form at:

http://www.chilisoft.com/feedback/documentation.asp

 What's in This Documentation
This documentation includes information about installing, configuring, and running Sun
Chili!Soft ASP. It also introduces the basics of building Sun Chili!Soft ASP applications, and
provides reference information about using scripting languages, connecting to databases, and
developing and using components.

The documentation is structured so you can easily find the information you need. The following
table describes the contents of each chapter, and the Sun Chili!Soft ASP users who will benefit
most from reading them.

Sun Chili!Soft ASP 3.6.2 Product Documentation 5

Chapter Name Who Should Read It Description

Introduction: About This
Documentation

Everyone Provides an overview of the Sun Chili!Soft
ASP product documentation and other Sun
Chili!Soft ASP resources.

Chapter 1: About Sun
Chili!Soft ASP

Everyone should read
"New in This Release."
Users new to ASP
technology or Sun
Chili!Soft ASP should
read the entire chapter.

Describes what is included with this release
of Sun Chili!Soft ASP. It also provides an
introduction to ASP technology, and
describes the Sun Chili!Soft
implementation of ASP.

Chapter 2: Installing and
Configuring Sun
Chili!Soft ASP

System administrators Explains how to install Sun Chili!Soft ASP
on your server, and describes changes the
setup program makes to your Web server
configuration files. It also provides
instructions for performing basic server
configuration tasks, and for enabling users
to publish ASP applications to the Web
server.

Chapter 3: Managing Sun
Chili!Soft ASP

System administrators Provides information about administering
Sun Chili!Soft ASP, including information
about changing ASP Server configuration
settings, configuring security, optimizing
server performance, and troubleshooting
server problems.

Chapter 4: Building a Sun
Chili!Soft ASP
Application

Web developers new to
ASP technology and Sun
Chili!Soft ASP, and
system administrators
who want a basic
introduction to ASP,
should read the
introductory information
about creating a basic
ASP application and
connecting to a database.
Experienced ASP
developers might want to
read the information
about using objects and
components. Everyone
should read the section
about publishing an ASP
application.

Introduces the basics of developing ASP
applications: creating an ASP page, adding
scripts and server-side includes, and
defining the application on the server. It
also discusses extending ASP applications
by using objects and components, and
connecting to databases. This chapter
concludes with information about
publishing a Sun Chili!Soft ASP
application.

Sun Chili!Soft ASP 3.6.2 Product Documentation 6

Chapter 5: Developer's
Reference

Web developers Provides reference information about using
built-in ASP components, additional off-
the-shelf ASP components, and custom
components. It also provides a scripting
reference for VBScript and JScript, and
reference information about using Active
Data Objects (ADO), Chili!Beans, and
SpicePack components.

Appendix A: Sun
Chili!Soft ASP Error
Messages

System administrators
and Web developers

Explains error messages you might
encounter when using Sun Chili!Soft ASP.

Appendix B:
Troubleshooting

System administrators
and Web developers

Provides troubleshooting tips for problems
you might encounter when running Sun
Chili!Soft ASP.

Appendix C: Glossary System administrators
and Web developers

Contains a glossary of terms you might
encounter when administering Sun
Chili!Soft ASP and developing ASP
applications.

 Accessing Documentation, Samples, and Diagnostics
The Sun Chili!Soft ASP Start Page provides links to the product documentation, ASP sample
applications, diagnostic applications, and the 10-step Tour. You can access the Start Page from:

http://[HOSTNAME]/caspsamp

where [HOSTNAME] is the hostname of your Web server.

To use ASP functionality in the sample applications, diagnostics, and 10-step Tour, Allow
session state must be set to yes on the Server Settings page in the Sun Chili!Soft ASP
Administration Console. For more information about this setting, see "Enabling Session State" in
"Chapter 3: Managing Sun Chili!Soft ASP." For Windows systems, see "Editing the Windows
Registry" in "Chapter 3: Managing Sun Chili!Soft ASP."

Product Documentation
On UNIX and Linux systems, product documentation can always be accessed from the Sun
Chili!Soft ASP Administration Console. During installation, you have the option to access the
documentation from your Web server. If you choose this option and your Web server is running,
you can access the HTML version of the documentation at:

http://[HOSTNAME]/caspdoc/

where [HOSTNAME] is the hostname of your Web server.

Sun Chili!Soft ASP 3.6.2 Product Documentation 7

From the first page of the HTML documentation, you can click a link to open the version in
Adobe PDF format. To access the PDF version directly, use the following URL:

http://[HOSTNAME]/caspdoc/pdf/chilisoft_asp_docs.pdf

where [HOSTNAME] is the hostname of your Web server.

You can also access both versions of the documentation from the Sun Chili!Soft Web site at:

http://www.chilisoft.com/caspdoc/

Note
In addition to the complete product documentation, there are two other Sun Chili!Soft
ASP documentation resources: the QuickStart Guide and the README file.

The QuickStart Guide provides installation instructions and information about getting
started with Sun Chili!Soft ASP (the same information that is provided in "Chapter 2:
Installing and Configuring Sun Chili!Soft ASP"). Following installation, the QuickStart
Guide can be found in the following directory:

/[C-ASP_INSTALL_DIR]/

where [C-ASP_INSTALL_DIR] is the path name of the Sun Chili!Soft ASP installation
directory (/opt/casp by default).

The README file can be accessed as described in "Viewing the Product README
File" in "Chapter 3: Managing Sun Chili!Soft ASP."

Sample ASP Applications
The Sun Chili!Soft ASP setup program gives you the option to enable sample ASP applications
on the computer running Sun Chili!Soft ASP. If you choose this option and your Web server is
running, you can access the samples from the Sun Chili!Soft ASP Start Page at:

http://[HOSTNAME]/caspsamp/

where [HOSTNAME] is the hostname of your Web server.

- or -

You can access the samples from the Sun Chili!Soft Web site at:

http://www.chilisoft.com/caspsamp/

You can view a list of sample ASP applications on the ASP Applications page of the Sun
Chili!Soft Administration Console, as described in "Adding an ASP Application" in "Chapter 3:
Managing Sun Chili!Soft ASP." The sample applications are located in your file system at:

/caspsamp="[C-ASP_INSTALL_DIR]/caspsamp"

where /caspsamp is the directory alias (virtual directory) for the caspsamp sample application
and [C-ASP_INSTALL_DIR] is the path name of the Sun Chili!Soft ASP installation
directory.

In the caspsamp directory, the following subdirectories contain samples:

Sun Chili!Soft ASP 3.6.2 Product Documentation 8

/casp401k="[C-ASP_INSTALL_DIR]/caspsamp/401K/content"

/caspagent="[C-ASP_INSTALL_DIR]/caspsamp/friendship/agent/content"

/caspclient="[C-ASP_INSTALL_DIR]/caspsamp/friendship/client/content"

10-step Tour
If you are new to ASP technology, we recommend that you take our 10-step Tour. After installing
Sun Chili!Soft ASP and with your Web server running, you can access the tour from the Sun
Chili!Soft ASP Start Page at:

http://[HOSTNAME]/caspsamp/

where [HOSTNAME] is the hostname of your Web server.

Diagnostic Applications
The following diagnostic applications are installed with Sun Chili!Soft ASP, and enable you to
verify that various features of your ASP environment are working correctly:

� HELLO – This application tests the functionality of ASP and VBScript by using a simple
"Hello World" script.

� SERVER – This application tests the ASP Server-to-Web server connection by retrieving
the standard Web server variables.

� JSCRIPT – This application tests the functionality of JScript.

� COMPONENTS – This application tests the functionality of additional components
installed with Sun Chili!Soft ASP.

� ADO – This application accesses ActiveX Data Objects (ADO) from VBScript. It
connects to a sample database by using ODBC (Open Database Connectivity) to test the
functionality of ADO and the dBASE ODBC driver.

� JSADO – This application performs the same test as the ADO diagnostic, except it
accesses ADO from JScript rather than VBScript.

� SQLEXECUTE – This application uses ADO to execute an SQL statement and display
the results. To use this application, you must first create a system DSN for your database
on the ASP Server, as described in "Adding a DSN" in "Chapter 3: Managing Sun
Chili!Soft ASP."

When your Web server is running, you can access the diagnostic applications from the Sun
Chili!Soft ASP Start Page at:

http://[HOSTNAME]/caspsamp/

where [HOSTNAME] is the hostname of your Web server.

Sun Chili!Soft ASP 3.6.2 Product Documentation 9

Chapter 1: About Sun Chili!Soft ASP

Sun Chili!Soft ASP enables you to run ASP applications on a variety of Web servers running
under Sun Solaris, Sun Cobalt, Linux, IBM AIX, Hewlett-Packard HP-UX, and Microsoft
Windows NT and Windows 2000 operating systems.

This chapter describes what’s new in this release of Sun Chili!Soft ASP. It also provides an
overview of Active Server Pages (ASP) technology, and describes the Sun implementation of
ASP.

Who should read this chapter: Everyone should read the first topic, "New in This Release."
Users new to ASP or Sun Chili!Soft ASP should read the entire chapter.

In this chapter:

� New in This Release

� Supported Platforms and Web Servers

� What is ASP?

� What is Sun Chili!Soft ASP?

 New in This Release
Sun Chili!Soft ASP 3.6.2 includes the following new features:

UNIX and Linux
� iPlanet Web Server 6.0 support and detection: Sun Chili!Soft ASP for Solaris, HP-UX,

AIX, and Linux now provides support for iPlanet Web Server 6.0. Sun Chili!Soft ASP
3.6.2 is available free for iPlanet Web Server 6.0. When iPlanet Web Server 6.0 is
detected, you automatically receive a full, unlimited license.

� Apache Web Server 1.3.22 and Zeus Web Server 4.0 support: Sun Chili!Soft ASP for
Solaris and Linux now provides support for Apache 1.3.22 and Zeus 4.0.

� DataDirect Connect ODBC 4.0 (Wire Protocol drivers) installation: Sun Chili!Soft
ASP 3.6.2 for UNIX and Linux installs ODBC drivers for many different databases, and
includes the DataDirect Connect ODBC 4.0 drivers (DataDirect is a former business unit
of MERANT). For information about the ODBC drivers included in Sun Chili!Soft ASP
3.6.2, see the installation requirements section for your specific platform in "Installing and
Uninstalling Sun Chili!Soft ASP" in "Chapter 2: Installing and Configuring Sun Chili!Soft
ASP." For information about configuring the drivers for the data source being used, see
"Configuring a Database" in "Chapter 3: Managing Sun Chili!Soft ASP."

� Installation changes: Sun Chili!Soft ASP 3.6.2 for UNIX and Linux now has just one
installation process, which combines the ease and flexibility of the Bundle and Custom
installation options provided in previous versions. Sun Chili!Soft ASP 3.6.2 includes a

Sun Chili!Soft ASP 3.6.2 Product Documentation 10

ready-to-run Apache 1.3.19 Web server, Sun Chili!Beans support, and Sun SpicePack
components. For installation information, see "Installing and Uninstalling Sun Chili!Soft
ASP" in "Chapter 2: Installing and Configuring Sun Chili!Soft ASP."

� Sun SpicePack installation: Sun SpicePack components (Chili!Mail, Chili!POP3, and
Chili!Upload) are now included and installed with Sun Chili!Soft ASP 3.6.2 for UNIX
and Linux. You do not need to purchase the SpicePack separately. For SpicePack
information, see "SpicePack Component Reference" in "Chapter 5: Developer’s
Reference."

� Product Updates: Sun Chili!Soft ASP 3.6.2 now includes a mechanism that notifies you
of product updates, and enables you to quickly and easily obtain them. For update
information, see "Checking for Product Updates" in "Chapter 3: Managing Sun Chili!Soft
ASP."

� Microsoft FrontPage 2002 Server Extensions support: Sun Chili!Soft ASP 3.6.2
supports, but does not install FrontPage 2002 Server Extensions. For FrontPage publishing
information, see "Enabling FrontPage Publishing" in "Chapter 3: Managing Sun Chili!Soft
ASP."

Microsoft Windows NT and Windows 2000
� iPlanet Web Server 6.0 detection: Sun Chili!Soft ASP 3.6.2 is available free for iPlanet

Web Server 6.0. When iPlanet Web Server 6.0 is detected, you automatically receive a
full, unlimited license.

� iPlanet Web Server 6.0 and Apache Web Server 1.3.22 support: Sun Chili!Soft ASP
for Windows now provides support for iPlanet 6.0 and Apache 1.3.22.

For detailed installation and application notes, see "Installing and Uninstalling Sun Chili!Soft
ASP" in "Chapter 2: Installing and Configuring Sun Chili!Soft ASP." Important information is
also provided in the README file that was installed with your software. You can access the
README as described in "Viewing the Product README File" in "Chapter 3: Managing Sun
Chili!Soft ASP."

 Supported Platforms and Web Servers
Sun Chili!Soft ASP 3.6.2 supports the following operating systems and Web servers:

Version Operating System Web Servers
Sun Chili!Soft ASP
3.6.2 for Solaris

Sun Solaris 2.6, 7, and 8 Apache 1.3.19 DSO

Apache 1.3.22 DSO

iPlanet Web Server, Enterprise Edition
6.0 SP1

Zeus Web Server 4.0

Sun Chili!Soft ASP
3.6.2 for HP-UX

HP-UX 11.0 iPlanet Web Server, Enterprise Edition
6.0 SP1

Sun Chili!Soft ASP 3.6.2 Product Documentation 11

HP Apache-based Web Server 1.3.19.23

Apache 1.3.19 DSO

Sun Chili!Soft ASP
3.6.2 for Linux

Red Hat Linux 7.2

SuSE 7.3 Professional

Mandrake Linux 8.1

Debian 2.2r5

Apache 1.3.19 DSO

Apache 1.3.22 DSO

iPlanet Web Server, Enterprise Edition
6.0 SP1

Zeus Web Server 4.0

Sun Chili!Soft ASP
3.6.2 for Windows

Microsoft Windows NT Server
4.0 SP6

Microsoft Windows 2000 Server
SP1

iPlanet Web Server, Enterprise Edition
6.0 SP1

Apache 1.3.22

Note

Sun Chili!Soft ASP 3.6.2 may install to other versions of the supported Web servers listed above. However,
versions not listed have not been certified to run with Sun Chili!Soft ASP 3.6.2, and their use is not supported
by Sun Chili!Soft Customer Support.

For information about supported database types, see the installation requirements section for your specific
platform in "Installing and Uninstalling Sun Chili!Soft ASP" in "Chapter 2: Installing and Configuring Sun
Chili!Soft ASP."

What is ASP?

ASP is a server-side scripting technology developed by Microsoft. It is an open, compile-free
application environment in which you can combine HTML, scripts, and reusable components to
build dynamic and powerful Web applications.

An ASP application consists of ASP pages published on a Web site. ASP pages can contain
HTML code, client-side scripts, and server-side scripts. When a user requests an ASP page, the
Web server calls the ASP Server, which processes the requested file from top to bottom,
executing any server-side scripts. It then formats a standard Web page and sends the results to the
user’s browser.

Because scripts can run on the server rather than on the client, the Web server can do much of the
work involved in generating the HTML pages sent to browsers. Server-side scripts cannot be
readily copied because only the result of the script is returned to the browser. Users cannot view
the script commands that created the page they are viewing.

ASP was designed as a faster and easier alternative to Common Gateway Interface (CGI)
scripting using Perl or C scripts. ASP provides an easy-to-learn scripting interface (including
native support for both VBScript and JScript), along with a number of predefined objects that
simplify many development tasks, such as maintaining user state and defining global variables
within an application. You can also use Active-X Data Objects (ADO) components to perform

Sun Chili!Soft ASP 3.6.2 Product Documentation 12

additional functions, including accessing ODBC-compliant databases and outputting data to text
files.

You can extend ASP scripts by using Java components and extensible markup language (XML) .

ASP runs as a service of the Web server, and is optimized for multiple threads and multiple users.
This means that ASP is fast and easy to implement. ASP enables you to separate the design of
your Web page from the details of programming access to databases and applications, so
programmers and Web designers can focus exclusively on what they do best.

Following are a few examples of what you can do with ASP applications. You can:

� Put your employee handbook online, and build an application that allows employees to
update their information.

� Connect customer orders from an online storefront to an existing inventory database and
order-processing system.

� Give visitors a personalized view of information on your Web site, flagging items that are
new since their last visit.

See also:

� ASP for the HTML Author in this chapter

� ASP for the Experienced Web Scripter in this chapter

� ASP for the Web Developer and Programmer in this chapter

� Chapter 4: Building a Sun Chili!Soft ASP Application

 ASP for the HTML Author
For the HTML author, ASP is an easy way to begin creating Web applications. To process user
input on the Web server with Common Gateway Interface (CGI) applications, you must learn a
programming language such as Perl or C. With ASP, however, you can collect HTML form
information and pass it to a database by using simple server-side scripts written in VBScript or
Jscript that are embedded directly in your HTML documents. You can use server-side ASP
scripts to store HTML form information in a database, personalize Web sites according to visitor
preferences, or use different HTML features based on the browser.

See also:

� What is ASP? in this chapter

� Chapter 4: Building a Sun Chili!Soft ASP Application

 ASP for the Experienced Web Scripter
ASP is language-neutral, so if you are skilled at a scripting language such as VBScript or JScript,
you already know how to use ASP. (Sun Chili!Soft ASP comes with VBScript and JScript
scripting engines.) You can use server-side ASP scripts to store HTML form information in a

Sun Chili!Soft ASP 3.6.2 Product Documentation 13

database, personalize Web sites according to visitor preferences, or use different HTML features
based on the browser.

See also:

� What is ASP? in this chapter

� Chapter 4: Building a Sun Chili!Soft ASP Application

 ASP for the Web Developer and Programmer
If you develop Web applications by using a programming language such as Visual Basic, C++, or
Java, you will appreciate the flexibility of ASP. Besides using scripts to create an engaging
HTML interface for your application, you can also use Java components to encapsulate your
application's business logic into reusable modules that can be called from a script, from another
component, or from another program.

See also:

� What is ASP? in this chapter

� Chapter 4: Building a Sun Chili!Soft ASP Application

What is Sun Chili!Soft ASP?

Sun Chili!Soft ASP 3.6.2 is a platform-independent implementation of Microsoft Active Server
Pages (ASP) technology. It is the functional and syntactic equivalent of the ASP technology
included with Microsoft Internet Information Server (IIS). Unlike the Microsoft implementation,
however, Sun Chili!Soft ASP enables you to build ASP applications that run on many different
systems, in addition to Windows and IIS. You can build powerful ASP applications that run on
popular Web servers under Sun Solaris, Sun Cobalt, Linux, IBM AIX, Hewlett-Packard HP-UX,
and Windows NT and Windows 2000. Sun Chili!Beans support even enables you to use your
Java objects with ASP applications.

See also:

� What is ASP? in this chapter

� Sun Chili!Soft ASP Features in this chapter

� Chapter 4: Building a Sun Chili!Soft ASP Application

 Sun Chili!Soft ASP Features
Sun Chili!Soft ASP is designed for the easy setup, administration, and deployment of Active
Server Pages on Solaris, Linux, AIX, HP-UX, and Windows NT and Windows 2000. Sun
Chili!Soft ASP includes the following key features:

Sun Chili!Soft ASP 3.6.2 Product Documentation 14

� One-hundred percent pure Active Server Pages support: Sun Chili!Soft ASP supports
the most common and frequently used ASP standards, such as ASP 2.0, VBScript 3.2, and
JScript 3.2. You can easily deploy new or existing ASP applications with few or no
changes to code.

� Authentic Microsoft scripting engines: Sun Chili!Soft ASP includes authentic Microsoft
VBScript and JScript scripting engines, guaranteeing complete code compatibility and
preventing extended debugging cycles for ASP applications.

� Database connectivity tools suite: Sun Chili!Soft ASP includes support for ADO 2.0 and
provides ODBC drivers for all major databases (UNIX and Linux versions). ODBC
drivers are provided by DataDirect Technologies (a former business unit of MERANT),
the leading provider of enterprise database connectivity. With Sun Chili!Soft ASP, you
have everything you need to integrate data with your ASP application. Drivers do not need
to be purchased separately.

� Chili!Beans COM-to-Java bridge: Because COM (Component Object Model) objects
have limited portability, the use of Java components is strongly recommended. Sun
Chili!Beans provides full access to Java’s object-oriented environment directly from ASP
scripting, and acts as a dynamic COM wrapper that exposes the public methods and
properties of the wrapped Java class. This functionality allows you to integrate these
components into your ASP Web applications. Chili!Beans is the fastest, most efficient
method of developing ASP applications that are both portable and extendable.

� Powerful and scalable ASP processing: Sun Chili!Soft ASP includes a browser-based
Administration Console for easy management and configuration of the ASP Server
engine. It also provides server monitoring and diagnostic tools for real-time tracking and
monitoring of server performance and availability, and ASP error logging for quick
detection and diagnosis of server errors.

� Web application developer tool integration: Sun Chili!Soft ASP works directly with
leading Web application development tool vendors such as Macromedia, Adobe, and
Microsoft to ensure that your applications work seamlessly with Sun Chili!Soft ASP.

� World-class support: Sun Chili!Soft ASP is backed by Sun’s global support network and
its world-class support.

See also:

� What is ASP? in this chapter

� What is Sun Chili!Soft ASP? in this chapter

� Chapter 4: Building a Sun Chili!Soft ASP Application

� Supported Platforms and Web Servers in "Chapter 1: About Sun Chili!Soft ASP"

Sun Chili!Soft ASP 3.6.2 Product Documentation 15

Chapter 2: Installing and Configuring Sun
Chili!Soft ASP

This chapter describes the basic steps involved with installing Sun Chili!Soft ASP on your server,
and with enabling users to publish ASP applications. This chapter also tells you how to configure
the server for hosting ASP applications and for connecting ASP applications to databases.
"Chapter 3: Managing Sun Chili!Soft ASP" provides detailed information about such topics as
changing server configuration settings, configuring different types of databases, and optimizing
server performance.

Who should read this chapter: System administrators responsible for installing, configuring,
and running Sun Chili!Soft ASP.

In this chapter:

� Installing and Uninstalling Sun Chili!Soft ASP

� Enabling Publishing

� Defining ASP Applications on the Server

� Enabling Database Connections on the Server

Installing and Uninstalling Sun Chili!Soft ASP

This section includes the following topics about installing and uninstalling Sun Chili!Soft ASP:

� Installing Sun Chili!Soft ASP for Sun Solaris

� Installing Sun Chili!Soft ASP for HP-UX

� Installing Sun Chili!Soft ASP for Linux

� Installing Sun Chili!Soft ASP for Windows

� Configuring the Web Server after Installation

� Changes to Web Server Configuration Files

� Changing Installation Options after Installation

� Uninstalling Sun Chili!Soft ASP

Installing Sun Chili!Soft ASP for Solaris

This section describes the requirements and procedures for installing Sun Chili!Soft ASP 3.6.2
for Sun Solaris. For the most up-to-date information about this product, see the README file
included with your software. You can access the README file from the Sun Chili!Soft ASP

Sun Chili!Soft ASP 3.6.2 Product Documentation 16

Administration Console, as described in "Viewing the Product README File" in "Chapter 3:
Managing Sun Chili!Soft ASP."

In this section:

� Installation Requirements: Sun Chili!Soft ASP for Solaris

� Running the Setup Program: Sun Chili!Soft ASP for Solaris

� Important Notes about Solaris Installations

� Upgrading Sun Chili!Soft ASP for Solaris

 Installation Requirements: Sun Chili!Soft ASP for Solaris
This section lists the hardware and software requirements for installing and running Sun
Chili!Soft ASP 3.6.2 for Solaris. It also lists the additional software (such as databases and tools)
that Sun Chili!Soft ASP supports.

Hardware and Software Requirements

Hardware
Your hardware configuration must meet the following minimum requirements:

� 256 MB RAM

� SPARC processor

� 140 MB free hard disk space

Operating System
Sun Chili!Soft ASP for Solaris runs on the following operating systems:

� Sun Solaris 2.6, 7, and 8

Web Server
You must be running one of the following Web servers:

� Apache 1.3.19 DSO

� Apache 1.3.22 DSO

� iPlanet Web Server, Enterprise Edition 6.0 SP1

� Zeus Web Server 4.0

Note
Sun Chili!Soft ASP 3.6.2 may install to other versions of the supported Web servers
listed above (Apache 1.3.12, for example). However, versions not listed have not been
certified to run with Sun Chili!Soft ASP 3.6.2, and their use is not supported by Sun
Chili!Soft Customer Support.

Supported Software

Sun Chili!Soft ASP 3.6.2 Product Documentation 17

This section lists additional software that is supported and/or installed by Sun Chili!Soft ASP.

Database
Sun Chili!Soft ASP for Solaris includes ODBC drivers for the following databases:

DataDirect Connect ODBC 4.0 (Wire Protocol drivers)

� DB2 Universal Database (UDB) v7.1

� dBASE 5

� Informix Dynamic Server 9.x

� Informix Dynamic Server 2000 (9.20)

� Microsoft SQL Server 7.0 SP1

� Microsoft SQL Server 2000 SP1

� Oracle 8i (8.1.6)

� Oracle 8i (8.1.7)

� Oracle 9i

� Sybase Adaptive Server Enterprise 11.9.2

� Sybase Adaptive Server Enterprise 12.5

� Text Files

DataDirect SequeLink 4.5.1a

� Microsoft SQL Server 6.5 (via SequeLink)

� Microsoft Access 2000, 97, and 95 (via SequeLink)

Open Source

� MySQL 3.22.30 and 3.23.49

� PostgreSQL 6.5.2 and 7.1.3

ODBC drivers are installed automatically by the Sun Chili!Soft ASP setup program. Following
installation, you must configure the drivers for the data source being used. For more information,
see "Configuring a Database" in "Chapter 3: Managing Sun Chili!Soft ASP."

Note
To provide remote database connectivity with Microsoft Access and Microsoft SQL
Server 6.5 databases, Sun Chili!Soft ASP ships with the client portion of the DataDirect
SequeLink 4.51a software. On the Windows machine that contains your database, you
also must download and install the server portion of this software from Sun Chili!Soft.
For more information, see "Configuring SequeLink" in "Chapter 3: Managing Sun
Chili!Soft ASP."

Sun Chili!Soft ASP 3.6.2 may work with other versions of the databases listed above.
However, versions not listed have not been tested to run with Sun Chili!Soft ASP 3.6.2,
and their use is not supported by Sun Chili!Soft Customer Support.

Sun Chili!Soft ASP 3.6.2 Product Documentation 18

Java Runtime Environment
Sun Chili!Soft ASP 3.6.2 includes the Java Runtime Environment (JRE) 1.3.1 for Sun
Chili!Beans. While JREs 1.2.x and 1.3.x are supported, and the Java 2 Runtime Environment can
also be used, the use of JRE 1.3.1 is strongly recommended. Chili!Beans enables you to use Java
class files as components called from VBScript or JScript. To use Chili!Beans, a Java runtime
environment must be installed on the machine, and Chili!Beans must be enabled from the
Administration Console. For more information, see "Chili!Beans Component Reference" in
"Chapter 5: Developer’s Reference."

Microsoft FrontPage Server Extensions
Sun Chili!Soft ASP enables you to run ASP pages generated by Microsoft FrontPage. Microsoft
FrontPage Server Extensions provide services to the Web server that work in conjunction with
Sun Chili!Soft ASP to provide FrontPage functionality to computers not running Microsoft
Windows NT or Windows 2000 and Internet Information Services (IIS).

FrontPage Server Extensions are no longer installed with Sun Chili!Soft ASP; you must obtain
them from Microsoft. See "Enabling FrontPage Publishing" in "Chapter 3: Managing Sun
Chili!Soft ASP."

Note
Specific questions about the installation, configuration, and use of FrontPage and
FrontPage Server Extensions should be directed to Microsoft or its representatives.

See also:

Installing Sun Chili!Soft ASP for Solaris in this chapter

 Running the Setup Program: Sun Chili!Soft ASP for Solaris
The Sun Chili!Soft ASP setup program takes you through the steps required to install Sun
Chili!Soft ASP 3.6.2 on Sun Solaris. The setup program installs the following components on the
target server:

� Sun Chili!Soft ASP Server

� Sun Chili!Soft ASP Administration Console

� Sun Chili!Beans support (the use of Chili!Beans is optional). Sun Chili!Soft ASP 3.6.2
includes Java Runtime Environment (JRE) 1.3.1. The use of this specific JRE version is
not required, but is strongly recommended.

� Sun SpicePack components

� Apache Web Server 1.3.19 DSO (preconfigured or "bundled" with Sun Chili!Soft ASP
3.6.2).

The setup program gives you the option to either specify the configuration options or accept the
default configuration settings. The configuration settings you specify during installation can have

Sun Chili!Soft ASP 3.6.2 Product Documentation 19

serious consequences for your server environment. Before you begin, make sure you meet the
following requirements:

� You are logged in as root.

� You have 60 MB of hard disk space available to extract the installation files.

� Your hardware and software meet the requirements listed in "Installation Requirements:
Sun Chili!Soft ASP for Solaris" in this chapter.

� You know your product serial number. If you do not know your product serial number and
you go ahead with the installation, you will receive an evaluation license.

� You know which language you want Sun Chili!Soft ASP to support (English - US, Japanese
Shift-JIS, and so on) . If desired, you can change the language after installation, as described
in "Configuring International Support" in "Chapter 3: Managing Sun Chili!Soft ASP."

� To use Chili!Beans, a Java runtime environment (JRE) must be installed on the machine,
and Chili!Beans must be enabled from the Administration Console. During installation,
Sun Chili!Soft ASP will install JRE 1.3.1 unless you choose to install another supported
version (1.2.x or 1.3.x). Note that while you have the option to install a different JRE, and
the Java 2 Runtime Environment can also be used, the use of JRE 1.3.1 is strongly
recommended. Chili!Beans enables you to access Java objects and classes from an ASP
script. For more information, see "Chili!Beans Component Reference" in "Chapter 5:
Developer's Reference."

� If you are upgrading from a previous version of Sun Chili!Soft ASP, you must install Sun
Chili!Soft ASP 3.6.2 in the same directory as your previous installation. Also, be sure to
review the information in "Upgrading Sun Chili!Soft ASP for Solaris" in this chapter.

� If you choose to customize settings for the Sun Chili!Soft ASP Administration Console,
you must specify a username and password for accessing the console. Be sure to specify a
password that you can remember, or else plan to store the password in a secure location. If
you forget your password, you can run the admtool utility and set a new one, as described
in "Configuring Usernames and Passwords" in "Chapter 3: Managing Sun Chili!Soft
ASP." If you do not choose the customize settings option, the username is set as "admin"
and the password as "root." To protect the security of your server, you should run the
admtool and change these as soon as possible following installation.

� If you are installing Sun Chili!Soft ASP to a Zeus Web server, you must take additional
steps prior to installation. See "Installing Sun Chili!Soft ASP to a Zeus Web Server"
immediately below. If you are not installing to a Zeus Web server, proceed with the
installation as described in "To run the setup program" in this section.

Installing Sun Chili!Soft ASP to a Zeus Web Server
Before you can install Sun Chili!Soft ASP to a Zeus Web server, you must first enable NSAPI
(Netscape’s Web server API) for a Zeus Virtual Server, and then copy the NSAPI configuration
files to the proper location. For detailed information beyond what is provided here, see your Zeus
product documentation.

Sun Chili!Soft ASP 3.6.2 Product Documentation 20

Note
When configuring the Zeus Web server to run with Sun Chili!Soft ASP 3.6.2, do not
specify the Web server hostname as the fully qualified domain name (or "server
address"). If you do, the Test DSN feature of the Administration Console will not work.
Instead, use the hostname only. For example, do not use: hostname.domain.com. Instead,
use: hostname.

To enable NSAPI for a Zeus Virtual Server

1. Go to the Configuration Summary page for the Zeus Virtual Server.

2. Go to the Enabling NSAPI Functionality page by clicking the NSAPI link.

3. Click the Enabled button, write down the value of [path_prefix] for future reference,
and then click the Apply changes button.

4. Commit the changes by clicking the yellow sun graphic in the top right section of the page,
and then click the Commit button.

NSAPI has been enabled for a Zeus Virtual Server. You must now copy the NSAPI
configuration files, as described in the following procedure.

To copy the NSAPI configuration files

Zeus provides copies of the NSAPI configuration files, which are typically located in the
following directory:

[zeushome]/webadmin-4.0r1/docroot/nsapi-skel/

where [zeushome] is the root of your Zeus installation (that is, /usr/local/zeus).

Once the files have been located, use the following commands:

#> mkdir –p [path_prefix]/https-[virtual_server_name]/config

#> cd [path_prefix]/https-[virtual_server_name]/config

#> cp –r [zeushome]/webadmin-4.0r1/docroot/nsapi-skel/* .

where [path_prefix] is the value you wrote down in step 3 of the previous procedure (the
default will be [zeushome]/ns-config), and [virtual_server_name] is the name of
the Zeus Virtual Server. Zeus is now configured correctly for the installation of Sun Chili!Soft
ASP.

To run the setup program and install Sun Chili!Soft ASP, use the following procedure.

To run the setup program

1. If you are installing Sun Chili!Soft ASP 3.6.2 from the CD-ROM, go to step 2. If you are
downloading Sun Chili!Soft ASP 3.6.2 from the Web, download the casp-3.6.2-solaris.tar file
to a temporary directory, and then extract the installation files by using the following
command:

#> tar -xvf casp-3.6.2-solaris.tar

Sun Chili!Soft ASP 3.6.2 Product Documentation 21

This step creates the following files in the temporary directory, which you can delete after
completing the installation:

A QuickStart Guide with installation instructions
A README file containing important product information
The install.sh installation script
A package/EULA file containing the End-User License Agreement
A package/directory containing files required to install Sun Chili!Soft ASP

2. Run the install.sh script by using the following command. For downloaded versions, this
script is located in the temporary directory you created in the previous step. For CD-ROM
versions, this script is located on your installation CD-ROM.

#> ./install.sh

3. Review the End-User License Agreement (EULA) that displays. Enter yes if you agree with
its conditions. You must type the entire word, "yes."

– or –

Enter no if you do not agree. If you enter no, the Sun Chili!Soft ASP setup program quits the
installation.

4. On the next screen, press Enter to accept the default Sun Chili!Soft ASP installation
directory (/opt/casp).

– or –

Enter the absolute path name of a different installation directory. Make note of this location,
so you can easily find the Sun Chili!Soft ASP files at a later time.

Note: To upgrade from the previous version, you must specify the installation directory of
your existing installation.

5. If the setup program detects a previous installation of Sun Chili!Soft ASP in the specified
directory, you will be prompted to uninstall the previous version (if a previous installation is
not detected, go to step 6):

Enter n (no) to change the installation directory or cancel the installation.

– or –

Enter y (yes) to uninstall the previous installation. You will then be prompted to proceed. At
this confirmation prompt, enter n to cancel the installation, or y to uninstall the previous
version. If you enter y, the previous version will be uninstalled by the installer. Once that
process is finished, press Enter to continue.

Note: At the end of the Sun Chili!Soft ASP installation process you will be prompted to
import your settings.

6. On the next screen, enter y (yes) if you know the product serial number.

– or –

If you do not know the serial number, enter n. An evaluation license will be installed (go to
step 8).

Sun Chili!Soft ASP 3.6.2 Product Documentation 22

Note: iPlanet 6.0 users are already licensed to use this product and do not need to enter a
serial number. If you are using iPlanet 6.0, enter n and you will receive a full, unlimited
license (go to step 8).

7. When prompted, enter the product serial number.

8. Sun Chili!Soft ASP 3.6.2 includes a ready-to-run Apache 1.3.19 Web server configured with
support for Microsoft FrontPage 2002 Server Extensions (the extensions themselves are not
installed) and EAPI (Extended API). If you have not yet configured a Web server, you have
the option to install this preconfigured Apache Web server.

Enter y (yes) to install the preconfigured ("bundled") Apache 1.3.19 Web server, and proceed
to the next step.

– or –

Enter n (no) if you do not want to install the preconfigured Apache Web server, and proceed
to step 10.

Note: Installing the preconfigured Apache Web server will not affect any other installed Web
server. However, make sure you do not install the preconfigured Apache Web server to the
same port as that of an existing Web server.

9. The Apache Web server has many settings that you can select and configure. Specify the
desired configuration option for the preconfigured Apache 1.3.19 Web server:

Enter 1 (Default configuration) to direct Sun Chili!Soft ASP to automatically configure all
settings for you.

– or –

Enter 2 (Specify only the Web server listen port) to specify only the port number that the
Apache Web server will listen on, and then specify the port.

– or –

Enter 3 (Customize the configuration) to specify the configuration of many different
settings, and then respond to the prompts.

Note: All Apache configuration settings can be changed manually after installation by editing
the Apache configuration file.

10. On the next screen, press Enter to accept the default language (English – US).

– or –

Enter the number of a language shown in the list.

11. On the next screen, enable or disable Chili!Beans support as desired:

Select Use the bundled 1.3.1 JRE to enable Chili!Beans support and install JRE 1.3.1 (this
is the recommended JRE), and then respond to the prompts.

– or –

Sun Chili!Soft ASP 3.6.2 Product Documentation 23

Select Specify the path to an existing JRE to specify the path to an existing JRE (JRE
versions 1.2.x and 1.3.x are supported), or type none to return to the previous screen, and
then respond to the prompts.

– or –

Select Disable Java support to disable Chili!Beans support, and then respond to the
prompts.

– or –

Select Keep your current settings.

12. The next screen provides options for choosing the Web server to configure with Sun
Chili!Soft ASP. If you want the setup program to search your system and generate a list of
installed Web servers from which to choose, enter the number of the desired search option (1,
2, or 3). If you select one of these search options, skip to step 15.

– or –

If you want to skip this search and provide information about the Web server, enter 4 (Don't
search). The installer will not search for the Web server, and instead takes you to step 13.

Note: If you chose to install the preconfigured ("bundled") Apache 1.3.19 Web server in step
8, go to step 15.

13. On the next screen, enter the number of the type of Web server to configure: 1 for Apache, 2
for iPlanet, or 3 for Zeus, and go to step 14.

– or –

To cancel the user-specified Web server configuration, enter 4. If you choose this option, the
setup program returns you to the previous screen. From this screen you can choose another
option, as described in step 15.

14. At the prompts, enter the path of your Web server. If you do not know the correct path, type
none to cancel (this takes you to step 15). If you selected Apache in step 13, you will be
prompted for the Web server binary. After all information has been added correctly, the
installer takes you to step 15. There you will be able to select the Web server that was just
added.

15. On the next screen, enter the number of the Web server you want the setup program to
configure to run with Sun Chili!Soft ASP, and go to step 16 (if you selected option 1, 2, or 3
in step 12).

– or –

To provide information about the Web server to configure, enter the number for the option
Specify the Web server. If you choose this option, follow the instructions in step 13.

– or –

To perform another search for installed Web servers, enter the number for the option
Attempt to auto-detect more Web servers. If you choose this option, follow the instructions
in step 12.

Sun Chili!Soft ASP 3.6.2 Product Documentation 24

– or –

If you do not want to configure a Web server during installation, enter the number for the
option Do not configure a Web server, and then go to step 18. If you choose this option, the
first time you open the Sun Chili!Soft ASP Administration Console you will be prompted to
configure the ASP Server and a Web server.

16. On the next screen, verify the information that the setup program displays about your Web
server. If the information is incorrect, the Sun Chili!Soft ASP installation could fail. If the
installation does fail, you can run the installation script again. If you do this, it is
recommended that you first run the uninstall script, as described in "Uninstalling Sun
Chili!Soft ASP for UNIX and Linux" in this chapter. If the information on the screen is
correct, enter y (yes), and go to step 17.

– or –

If the information is incorrect, enter n (no). The setup program returns you to the previous
screen (step 15).

17. On the next screen, choose a configuration option for the ASP Server:

 Enter 1 to choose a default configuration, and go to step 18.

– or –

Enter 2 to choose a custom configuration, and enter the following information at the prompts:

Enable samples on this Web server? Enter y (yes) if you want the setup program to
install and configure the Sun Chili!Soft ASP samples on your Web server, or enter n
(no).

Enable documentation on this Web server? Enter y (yes) if you want the setup
program to enable the Sun Chili!Soft ASP documentation on your Web server, or enter n
(no). If you enter n, the documentation will be available from the Administration
Console, but not from the Sun Chili!Soft ASP Start Page.

Start the ASP Server on system boot? Enter y (yes) if you want the setup program to
start Sun Chili!Soft ASP automatically each time you start the computer, or enter n (no).

Would you like this [Web server] restarted? Enter y (yes) if you want the setup
program to automatically restart the Web server after completing Sun Chili!Soft ASP
installation, or enter n (no).

– or –

Enter 3 to choose another Web server to configure for Sun Chili!Soft ASP, and follow the
instructions in step 12.

18. On the next screen, select a configuration option for the Administration Console. When you
choose Default configuration, the setup program configures the console using default
settings. With this option, the username is specified as "admin" and the password as "root."
To protect the security of your server, it is strongly recommended that you change these
settings as soon as possible. For information about doing this, see "Configuring Usernames
and Passwords" in "Chapter 3: Managing Sun Chili!Soft ASP."

Sun Chili!Soft ASP 3.6.2 Product Documentation 25

If you choose Custom configuration, enter the following information at the prompts:

Administration Console port number: Enter the number of the port on which the Web
server should listen for requests for the Administration Console, or press Enter to accept
the default.

Automatically start the Administration Console on system startup: Enter y (yes) if
you want the Sun Chili!Soft ASP Administration Console to start automatically each
time you start the computer, or enter n (no).

Type the username…: Enter the administrator username.

New password: Enter the administrator password, which is required to access the
Administration Console. Make note of this password, because you cannot access the
Administration Console without providing it.

Confirm password: Reenter the password.

19. The next screen provides summary information about your Administration Console
configuration. Make note of this information or else print this screen for future reference.
When finished, press Enter to complete the installation.

20. If you are upgrading from the previous version for Solaris and the setup program was able to
export the settings from your previous installation, you will be prompted to import these
settings into your new installation. Enter y (yes) to import your settings.

– or –

Enter n (no) if you do not want to import your settings.

The setup program then completes the installation and writes a summary file to:

[C-ASP_INSTALL_DIR]/logs/install_summary

where [C-ASP_INSTALL_DIR] is the directory in which you installed Sun Chili!Soft ASP
(/opt/casp by default). Be sure to print the information contained in the install_summary file for
future reference.

Before running your installation of Sun Chili!Soft ASP 3.6.2, see "Important Notes about Solaris
Installations" in this chapter. If you are upgrading from a previous version of Sun Chili!Soft ASP
for Sun Solaris, see "Upgrading Sun Chili!Soft ASP for Solaris" in this chapter.

For information about changes the setup program makes to your Web server configuration files,
see "Changes to Web Server Configuration Files" in this chapter. For information about how to
change some of the options that were configured during installation, see "Changing Installation
Options after Installation" in this chapter.

See also:

Uninstalling Sun Chili!Soft ASP for UNIX and Linux in this chapter

Sun Chili!Soft ASP 3.6.2 Product Documentation 26

 Important Notes about Solaris Installations
Before running your installation of Sun Chili!Soft ASP 3.6.2 for Sun Solaris, review the
following information:

� If you chose the default configuration for the Administration Console, the username is
configured as "admin" and the password as "root." To protect the security of your server,
it is strongly recommended that you change the username and password as soon as
possible. For more information, see "Configuring Usernames and Passwords" in "Chapter
3: Managing Sun Chili!Soft ASP."

� You use the Administration Console to start and stop the Sun Chili!Soft ASP Server and
to change configuration settings. You can access the Administration Console by typing the
following URL in your Web browser address bar:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the valid DNS name or IP address of the Apache Web server
running the Sun Chili!Soft ASP Administration Console and [PORT] is the port on which
the Administration Console is configured to run (5100 by default). The URL for accessing
the Administration Console is provided in the following file:

[C-ASP_INSTALL_DIR]/logs/install_summary

where [C-ASP_INSTALL_DIR] is the directory in which you installed Sun Chili!Soft
ASP (/opt/casp by default).

� If you chose not to configure a Web server to run with Sun Chili!Soft ASP during
installation, the first time you open the Administration Console you will be prompted to
install a Web server.

� The Sun Chili!Soft ASP setup program makes certain changes to the configuration files
for the associated Web server. For more information, see "Changes to Web Server
Configuration Files" in this chapter.

� Following installation, you can change some of the options that were configured during
installation, such as the Web server with which Sun Chili!Soft ASP is configured to run,
and the status of Java support (enabled or disabled). For more information, see "Changing
Installation Options after Installation" in this chapter.

� To use Chili!Beans, a Java runtime environment (JRE) must be installed on the machine,
and Chili!Beans must be enabled from the Administration Console (JRE 1.3.1 is included
with Sun Chili!Soft ASP 3.6.2 and is the recommended version). If you did not install a
JRE during the installation of Sun Chili!Soft ASP, you can do so by following the
instructions in "Enabling Java Support" in this chapter.

� When finished installing Sun Chili!Soft ASP 3.6.2, use the diagnostic applications to
verify that your installation is functioning correctly. You can access the diagnostics from
the following URL:

http://[HOSTNAME]/caspsamp/diagnostics.htm

where [HOSTNAME] is the hostname of the Web server configured to run with Sun
Chili!Soft ASP.

Sun Chili!Soft ASP 3.6.2 Product Documentation 27

� Important summary information about the installation is located in the following file:

[C-ASP_INSTALL_DIR]/logs/install_summary

where [C-ASP_INSTALL_DIR] is the directory in which you installed Sun Chili!Soft
ASP (/opt/casp by default).

Be sure to print this information for future reference.

� Certain Sun Chili!Soft ASP 3.6.2 settings have important implications for the security of
the Sun Chili!Soft ASP Server. See "Securing the Server" in "Chapter 3: Managing Sun
Chili!Soft ASP" to ensure that the settings are appropriately configured for your specific
environment.

See also:

Uninstalling Sun Chili!Soft ASP for UNIX and Linux in this chapter

 Upgrading Sun Chili!Soft ASP for Solaris
Sun Chili!Soft ASP 3.6.2 automatically upgrades many of your settings from an existing
installation of Sun Chili!Soft ASP for Solaris.

To perform an upgrade from Sun Chili!Soft ASP 3.6.0-P2 or 3.6.1 to Sun Chili!Soft ASP 3.6.2,
follow the instructions in "Running the Setup Program: Sun Chili!Soft ASP for Solaris" in this
chapter. In addition, review the following information and take any necessary steps:

� The Sun Chili!Soft ASP 3.6.2 setup program preserves the settings from your Sun
Chili!Soft ASP 3.6.0-P2 or 3.6.1 installation, and then imports these settings into your
new Sun Chili!Soft ASP 3.6.2 installation. The settings imported from your existing
installation will override the settings that you configure during installation, with the
exception of Chili!Beans support. During installation, you must configure Chili!Beans
support and select the option for the bundled JRE 1.3.1 (or specify a path to a different
JRE). While JREs 1.2.x and 1.3.x are supported, and the Java 2 Runtime Environment can
also be used, the use of JRE 1.3.1 is strongly recommended. Java support must be
configured, even if it was enabled in the installation you are upgrading.

Note
SpicePack settings and Sybase DSNs are not migrated when upgrading to Sun Chili!Soft
ASP 3.6.2.

� If necessary, upgrade your Web server to meet the requirements listed in "Installation
Requirements: Sun Chili!Soft ASP for Solaris" in this chapter.

� Back up your existing installation prior to beginning the upgrade.

� The new installation will completely overwrite your existing installation. If there are any
files you want to preserve in your current Sun Chili!Soft ASP installation directory, copy
them to another location. Otherwise, they will be lost.

Sun Chili!Soft ASP 3.6.2 Product Documentation 28

� Do not upgrade a mission-critical production server. Performing the upgrade and taking
the additional configuration steps required might keep your server offline for an
unacceptably long period of time. If possible, you should mirror the production server to a
nonproduction server, perform the upgrade, and then test and debug the upgraded server
before deploying it in your production environment.

When the setup program has completed the installation, do the following:

� Verify that any system DSNs defined for your previous installation are functioning
correctly. For more information, see "Testing a DSN" in "Chapter 3: Managing Sun
Chili!Soft ASP." If they are not functioning, you can create or edit the system DSNs as
needed, as described in "Configuring Data Source Names (DSNs)" in "Chapter 3:
Managing Sun Chili!Soft ASP." You can find the configuration information for the system
DSNs that were defined for your previous installation in the following file:

[C-ASP_INSTALL_DIR]/casp/INSTALL/settings.import

where [C-ASP_INSTALL_DIR] is the path name of the Sun Chili!Soft ASP 3.6.2
installation directory.

Installing Sun Chili!Soft ASP for HP-UX

This section describes the requirements and procedures for installing Sun Chili!Soft ASP 3.6.2
for HP-UX. For the most up-to-date information about this product, see the README file
included with your software. You can access the README file from the Sun Chili!Soft ASP
Administration Console, as described in "Viewing the Product README File" in "Chapter 3:
Managing Sun Chili!Soft ASP."

In this section:

� Installation Requirements: Sun Chili!Soft ASP for HP-UX

� Running the Setup Program: Sun Chili!Soft ASP for HP-UX

� Important Notes about HP-UX Installations

� Upgrading Sun Chili!Soft ASP for HP-UX

 Installation Requirements: Sun Chili!Soft ASP for HP-UX
This section lists the hardware and software requirements for installing and running Sun
Chili!Soft ASP 3.6.2 for HP-UX. It also lists additional software (such as databases and tools)
that Sun Chili!Soft ASP supports.

Hardware and Software Requirements

Hardware
Your hardware configuration must meet the following minimum requirements:

� 256 MB RAM

Sun Chili!Soft ASP 3.6.2 Product Documentation 29

� Pentium-class processor (x86)

� 140 MB free hard disk space

Operating System
Sun Chili!Soft ASP for HP-UX runs on the following operating system:

� HP-UX 11.0

Certain runtime library patches for the HP-UX operating system must be installed. For best
performance, it is strongly recommended that you install the latest Quality Pack bundles
(formerly known as General Release bundles). Quality Pack bundles are tested sets of HP-UX
core patches that keep your operating system up to date.

You can obtain the Quality Pack bundles from HP at:

http://www.software.hp.com/SUPPORT_PLUS/

After you have installed the latest Quality Pack bundles, make sure that the patches listed below
are installed on your machine. If any of the following required patches are not installed, you must
manually download and install them.

The individual patches can be obtained from HP at:

http://us-support.external.hp.com/common/bin/doc.pl/

The required patches for HP-UX 11.0 are as follows:

Note
This list does not include dependency patches. On the Web page from which you
download the patch, be sure to click the "dependency" link and install the dependency
patches.

� PHCO_23963 (s700_800 11.00 libc cumulative header file patch)

� PHCO_25707 (s700_800 11.00 libc cumulative patch)

� PHCO_24963 (s700_800 11.00 pthread(3t) cumulative man page patch)

� PHCO_26000 (s700_800 11.00 libpthreads cumulative patch)

� PHSS_24627 (s700_800 11.X HP aC++ -AA runtime libraries (aCC A.03.33))

� PHSS_22478 (s700_800 ld(1) and linker tools cumulative patch)

� PHKL_26059 (s700_800 11.00 syscall, signal, umask cumulative patch)

� PHKL_18543 - (PM/VM/UFS/async/scsi/io/DMAPI/JFS/perf patch)

Kernel Configuration
On the HP-UX 11.00 machine the default kernel configurable parameter is set too low and
therefore is not sufficient to reliably run Sun Chili!Soft ASP. To increase the performance of this
product, you should modify the maxdsiz configurable parameter. By default, this value is set to
64 MB. Depending upon your stress requirements, this value should be increased to at least 256

Sun Chili!Soft ASP 3.6.2 Product Documentation 30

MB. Refer to your operating system documentation for information about how to increase this
value.

Web Server
You must be running one of the following Web servers:

� HP Apache-based Web Server 1.3.19.23 DSO

� Apache 1.3.19 DSO

� iPlanet Web Server, Enterprise Edition 6.0 SP1

Note
If you want to install Sun Chili!Soft ASP 3.6.2 to the HP Apache-based Web server, you
may first need to install that Web server. For more information and the download, go to:

http://www.software.hp.com/cgi-
bin/swdepot_parser.cgi/cgi/displayProductInfo.pl?productNumber=B9415AAPA1319

Sun Chili!Soft ASP 3.6.2 may install to other versions of the supported Web servers
listed above (Apache 1.3.12, for instance). However, versions not listed have not been
certified to run with Sun Chili!Soft ASP 3.6.2, and their use is not supported by Sun
Chili!Soft Customer Support.

Supported Software
This section lists additional software that is supported and/or installed by Sun Chili!Soft ASP.

Database
Sun Chili!Soft ASP for HP-UX includes ODBC drivers for the following databases:

DataDirect Connect ODBC 4.0 (Wire Protocol drivers)

� DB2 Universal Database (UDB) v7.1

� dBASE 5

� Informix Dynamic Server 9.x

� Informix Dynamic Server 2000 (9.20)

� Microsoft SQL Server 7.0 SP1

� Microsoft SQL Server 2000 SP1

� Oracle 8i (8.1.6)

� Oracle 8i (8.1.7)

� Oracle 9i

� Sybase Adaptive Server Enterprise 11.9.2

� Sybase Adaptive Server Enterprise 12.5

� Text Files

Sun Chili!Soft ASP 3.6.2 Product Documentation 31

DataDirect SequeLink 4.5.1a

� Microsoft SQL Server 6.5 (via SequeLink)

� Microsoft Access 2000, 97, and 95 (via SequeLink)

ODBC drivers are installed automatically by the Sun Chili!Soft ASP setup program. Following
installation, you must configure the drivers for the data source being used. For more information,
see "Configuring a Database" in "Chapter 3: Managing Sun Chili!Soft ASP."

Note
To provide remote database connectivity with Microsoft Access and Microsoft SQL
Server 6.5 databases, Sun Chili!Soft ASP ships with the client portion of the DataDirect
SequeLink 4.51a software. On the Windows machine that contains your database, you
also must download and install the server portion of this software from Sun Chili!Soft.
For more information, see "Configuring SequeLink" in "Chapter 3: Managing Sun
Chili!Soft ASP."

Sun Chili!Soft ASP 3.6.2 may work with other versions of the databases listed above.
However, versions not listed have not been tested to run with Sun Chili!Soft ASP 3.6.2,
and their use is not supported by Sun Chili!Soft Customer Support.

Java Runtime Environment
Sun Chili!Soft ASP 3.6.2 includes the Java Runtime Environment (JRE) 1.3.1 for Sun
Chili!Beans. While JREs 1.2.x and 1.3.x are supported, and the Java 2 Runtime Environment can
also be used, the use of JRE 1.3.1 is strongly recommended. Chili!Beans enables you to use Java
class files as components called from VBScript or JScript. To use Chili!Beans, a Java runtime
environment must be installed on the machine, and Chili!Beans must be enabled from the
Administration Console. For more information, see "Chili!Beans Component Reference" in
"Chapter 5: Developer’s Reference."

Before installing Chili!Soft ASP 3.6.2, you must have the Java Runtime Environment (JRE)
patches for HP-UX 11.00 installed, which you can obtain at:

http://www.unix.hp.com/java/infolibrary/patches.html

Microsoft FrontPage 2000 Server Extensions
Sun Chili!Soft ASP enables you to run ASP pages generated by Microsoft FrontPage. Microsoft
FrontPage Server Extensions provide services to the Web server that work in conjunction with
Sun Chili!Soft ASP to provide FrontPage functionality to computers not running Microsoft
Windows NT or Windows 2000 and Internet Information Services (IIS).

FrontPage Server Extensions are no longer installed with Sun Chili!Soft ASP; you must obtain
them from Microsoft. See "Enabling FrontPage Publishing" in "Chapter 3: Managing Sun
Chili!Soft ASP."

Note
Specific questions about the installation, configuration, and use of FrontPage and
FrontPage Server Extensions should be directed to Microsoft or its representatives.

Sun Chili!Soft ASP 3.6.2 Product Documentation 32

 Running the Setup Program: Sun Chili!Soft ASP for HP-UX
The Sun Chili!Soft ASP setup program takes you through the steps required to install Sun
Chili!Soft ASP 3.6.2 on HP-UX. The setup program installs the following components on the
target server:

� Sun Chili!Soft ASP Server

� Sun Chili!Soft ASP Administration Console

� Sun Chili!Beans support (the use of Chili!Beans is optional). Sun Chili!Soft ASP 3.6.2
includes Java Runtime Environment (JRE) 1.3.1. The use of this specific JRE version is
not required, but is strongly recommended.

� Sun SpicePack components

� Apache Web Server 1.3.19 DSO (preconfigured or "bundled" with Sun Chili!Soft ASP
3.6.2).

During installation you can either specify the configuration options, or accept the default
configuration settings. The configuration settings you specify during installation can have serious
consequences for your server environment. Before you begin, make sure you meet the following
requirements:

� You are logged in as root.

� You have 60 MB of hard disk space available to extract the installation files.

� Your hardware and software meet the requirements listed in "Installation Requirements:
Sun Chili!Soft ASP for HP-UX" in this chapter.

� You know your product serial number. If you do not know your product serial number and
you go ahead with the installation, you will receive an evaluation license.

� You know which language you want Sun Chili!Soft ASP to support (English - US, Japanese
Shift-JIS, and so on) . If desired, you can change the language after installation, as described
in "Configuring International Support" in "Chapter 3: Managing Sun Chili!Soft ASP."

� To use Chili!Beans, a Java runtime environment (JRE) must be installed on the machine,
and Chili!Beans must be enabled from the Administration Console. During installation,
Sun Chili!Soft ASP will install JRE 1.3.1 unless you choose to install another supported
version (1.2.x or 1.3.x). Note that while you have the option to install a different JRE, and
the Java 2 Runtime Environment can also be used, the use of JRE 1.3.1 is strongly
recommended. Chili!Beans enables you to access Java objects and classes from an ASP
script. For more information, see "Chili!Beans Component Reference" in "Chapter 5:
Developer's Reference."

� If you are upgrading from a previous version of Sun Chili!Soft ASP, you must install Sun
Chili!Soft ASP 3.6.2 in the same directory as your previous installation. Also, be sure to
review the information in "Upgrading Sun Chili!Soft ASP for HP-UX" in this chapter.

� If you choose to customize settings for the Sun Chili!Soft ASP Administration Console,
you must specify a username and password for accessing the console. Be sure to specify a

Sun Chili!Soft ASP 3.6.2 Product Documentation 33

password that you can remember, or else plan to store the password in a secure location. If
you forget your password, you can run the admtool utility and set a new one, as described
in "Configuring Usernames and Passwords" in "Chapter 3: Managing Sun Chili!Soft
ASP." If you do not choose the customize settings option, the username is set as "admin"
and the password as "root." To protect the security of your server, you should run the
admtool and change these as soon as possible following installation.

To run the setup program and install Sun Chili!Soft ASP, use the following procedure.

To run the setup program

1. If you are installing Sun Chili!Soft ASP 3.6.2 from the CD-ROM, go to step 2. If you are
downloading Sun Chili!Soft ASP 3.6.2 from the Web, download the casp-3.6.2-HPUX.tar file
to a temporary directory, and then extract the installation files by using the following
command:

#> tar -xvf casp-3.6.2-HPUX.tar

This step creates the following files in the temporary directory, which you can delete after
completing the installation:

A QuickStart Guide with installation instructions
A README file containing important product information
The install.sh installation script
A package/EULA file containing the End-User License Agreement
A package directory containing files required to install Sun Chili!Soft ASP

2. Run the install.sh script by using the following command. For downloaded versions, this
script is located in the temporary directory you created in the previous step. For CD-ROM
versions, this script is located on your installation CD-ROM.

#> ./install.sh

3. Review the End-User License Agreement (EULA) that displays. Enter yes if you agree with
its conditions. You must type the entire word, "yes."

– or –

Enter no if you do not agree. If you enter no, the Sun Chili!Soft ASP setup program quits the
installation.

4. On the next screen, press Enter to accept the default Sun Chili!Soft ASP installation
directory (/opt/casp).

– or –

Enter the absolute path name of a different installation directory. Make note of this location,
so you can easily find the Sun Chili!Soft ASP files at a later time.

Note: To upgrade from the previous version, you must specify the installation directory of
your existing installation.

Sun Chili!Soft ASP 3.6.2 Product Documentation 34

5. If the setup program detects a previous installation of Sun Chili!Soft ASP in the specified
directory, you will be prompted to uninstall the previous version (if a previous installation is
not detected, go to step 6):

Enter n (no) to change the installation directory or cancel the installation.

– or –

Enter y (yes) to uninstall the previous installation. You will then be prompted to proceed. At
this confirmation prompt, enter n to cancel the installation, or y to uninstall the previous
version. If you enter y, the previous version will be uninstalled by the installer. Once that
process is finished, press Enter to continue.

Note: At the end of the Sun Chili!Soft ASP installation process you will be prompted to
import your settings.

6. On the next screen, enter y (yes) if you know the product serial number.

– or –

If you do not know the serial number, enter n. An evaluation license will be installed (go to
step 8).

Note: iPlanet 6.0 users are already licensed to use this product and do not need to enter a
serial number. If you are using iPlanet 6.0, enter n and you will receive a full, unlimited
license (go to step 8).

7. When prompted, enter the product serial number.

8. Sun Chili!Soft ASP 3.6.2 includes a ready-to-run Apache 1.3.19 Web server configured with
support for Microsoft FrontPage 2002 Server Extensions (the extensions themselves are not
installed) and EAPI (Extended API). If you have not yet configured a Web server, you have
the option to install this preconfigured Apache Web server.

Enter y (yes) to install the preconfigured ("bundled") Apache 1.3.19 Web server, and proceed
to the next step.

– or –

Enter n (no) if you do not want to install the preconfigured Apache Web server, and proceed
to step 10.

Note: Installing the preconfigured Apache Web server will not affect any other installed Web
server. However, make sure you do not install the preconfigured Apache Web server to the
same port as that of an existing Web server.

9. The Apache Web server has many settings that you can select and configure. Specify the
desired configuration option for the preconfigured Apache 1.3.19 Web server:

Enter 1 (Default configuration) to direct Sun Chili!Soft ASP to automatically configure all
settings for you.

– or –

Enter 2 (Specify only the Web server listen port) to specify only the port number that the
Apache Web server will listen on, and then specify the port.

Sun Chili!Soft ASP 3.6.2 Product Documentation 35

– or –

Enter 3 (Customize the configuration) to specify the configuration of many different
settings, and then respond to the prompts.

Note: All Apache configuration settings can be changed manually after installation by editing
the Apache configuration file.

10. On the next screen, press Enter to accept the default language (English – US).

– or –

Enter the number of a language shown in the list.

11. On the next screen, enable or disable Chili!Beans support as desired:

Select Use the bundled 1.3.1 JRE to enable Chili!Beans support and install JRE 1.3.1 (this
is the recommended JRE), and then respond to the prompts.

– or –

Select Specify the path to an existing JRE to specify the path to an existing JRE (JRE
versions 1.2.x and 1.3.x are supported), or type none to return to the previous screen, and
then respond to the prompts.

– or –

Select Disable Java support to disable Chili!Beans support, and then respond to the
prompts.

– or –

Select Keep your current settings.

12. The next screen provides options for choosing the Web server to configure with Sun
Chili!Soft ASP. If you want the setup program to search your system and generate a list of
installed Web servers from which to choose, enter the number of the desired search option (1,
2, or 3). If you select one of these search options, skip to step 15.

– or –

If you want to skip this search and provide information about the Web server, enter 4 (Don't
search). The installer will not search for the Web server, and instead takes you to step 13.

Note: If you chose to install the preconfigured ("bundled") Apache 1.3.19 Web server in step
8, go to step 15.

13. On the next screen, enter the number of the type of Web server to configure: 1 for Apache, 2
for iPlanet, or 3 for Zeus, and go to step 14.

Note: Zeus Web servers are not supported by Sun Chili!Soft ASP for HP-UX. You may be
able to install Sun Chili!Soft ASP to a Zeus Web server, but that installation will not be
supported by Sun Chili!Soft Customer Support.

– or –

Sun Chili!Soft ASP 3.6.2 Product Documentation 36

To cancel the user-specified Web server configuration, enter 4. If you choose this option, the
setup program returns you to the previous screen. From this screen you can choose another
option, as described in step 15.

14. At the prompts, enter the path of your Web server. If you do not know the correct path, type
none to cancel (this takes you to step 15). If you selected Apache in step 13, you will be
prompted for the Web server binary. After all information has been added correctly, the
installer takes you to step 15. There you will be able to select the Web server that was just
added.

15. On the next screen, enter the number of the Web server you want the setup program to
configure to run with Sun Chili!Soft ASP, and go to step 16 (if you selected option 1, 2, or 3
in step 12).

– or –

To provide information about the Web server to configure, enter the number for the option
Specify the Web server. If you choose this option, follow the instructions in step 13.

– or –

To perform another search for installed Web servers, enter the number for the option
Attempt to auto-detect more Web servers. If you choose this option, follow the instructions
in step 12.

– or –

If you do not want to configure a Web server during installation, enter the number for the
option Do not configure a Web server, and then go to step 18. If you choose this option, the
first time you open the Sun Chili!Soft ASP Administration Console you will be prompted to
configure the ASP Server and a Web server.

16. On the next screen, verify the information that the setup program displays about your Web
server. If the information is incorrect, the Sun Chili!Soft ASP installation could fail. If the
installation does fail, you can run the installation script again. If you do this, it is
recommended that you first run the uninstall script, as described in "Uninstalling Sun
Chili!Soft ASP for UNIX and Linux" in this chapter. If the information on the screen is
correct, enter y (yes), and go to step 17.

– or –

If the information is incorrect, enter n (no). The setup program returns you to the previous
screen (step 15).

17. On the next screen, choose a configuration option for the ASP Server:

 Enter 1 to choose a default configuration, and go to step 18.

– or –

Enter 2 to choose a custom configuration, and enter the following information at the prompts:

Enable samples on this Web server? Enter y (yes) if you want the setup program to
install and configure the Sun Chili!Soft ASP samples on your Web server, or enter n
(no).

Sun Chili!Soft ASP 3.6.2 Product Documentation 37

Enable documentation on this Web server? Enter y (yes) if you want the setup
program to enable the Sun Chili!Soft ASP documentation on your Web server, or enter n
(no). If you enter n, the documentation will be available from the Administration
Console, but not from the Sun Chili!Soft ASP Start Page.

Start the ASP Server on system boot? Enter y (yes) if you want the setup program to
start Sun Chili!Soft ASP automatically each time you start the computer, or enter n (no).

Would you like this [Web server] restarted? Enter y (yes) if you want the setup
program to automatically restart the Web server after completing Sun Chili!Soft ASP
installation, or enter n (no).

– or –

Enter 3 to choose another Web server to configure for Sun Chili!Soft ASP, and follow the
instructions in step 12.

18. On the next screen, select a configuration option for the Administration Console. When you
choose Default configuration, the setup program configures the console using default
settings. With this option, the username is specified as "admin" and the password as "root."
To protect the security of your server, it is strongly recommended that you change these
settings as soon as possible. For information about doing this, see "Configuring Usernames
and Passwords" in "Chapter 3: Managing Sun Chili!Soft ASP."

If you choose Custom configuration, enter the following information at the prompts:

Administration Console port number: Enter the number of the port on which the Web
server should listen for requests for the Administration Console, or press Enter to accept
the default.

Automatically start the Administration Console on system startup: Enter y (yes) if
you want the Sun Chili!Soft ASP Administration Console to start automatically each
time you start the computer, or n (no).

Type the username…: Enter the administrator username.

New password: Enter the administrator password, which is required to access the
Administration Console. Make note of this password, because you cannot access the
Administration Console without providing it.

Confirm password: Reenter the password.

19. The next screen provides summary information about your Administration Console
configuration. Make note of this information or else print this screen for future reference.
When finished, press Enter to complete the installation.

20. If you are upgrading from the previous version for HP-UX and the setup program was able to
export the settings from your previous installation, you will be prompted to import these
settings into your new installation. Enter y (yes) to import your settings.

– or –

Enter n (no) if you do not want to import your settings.

The setup program then completes the installation and writes a summary file to:

Sun Chili!Soft ASP 3.6.2 Product Documentation 38

[C-ASP_INSTALL_DIR]/logs/install_summary

where [C-ASP_INSTALL_DIR] is the directory in which you installed Sun Chili!Soft ASP
(/opt/casp by default). Be sure to print the information contained in the install_summary file for
future reference.

Before running your installation of Sun Chili!Soft ASP 3.6.2, see "Important Notes about HP-UX
Installations" in this chapter. If you are upgrading from a previous version of Sun Chili!Soft ASP,
see "Upgrading Sun Chili!Soft ASP for HP-UX" in this chapter.

For information about changes the setup program makes to your Web server configuration files,
see "Changes to Web Server Configuration Files" in this chapter. For information about how to
change some of the options that were configured during installation, see "Changing Installation
Options after Installation" in this chapter.

See also:

Uninstalling Sun Chili!Soft ASP for UNIX and Linux in this chapter

 Important Notes about HP-UX Installations
Before running your installation of Sun Chili!Soft ASP 3.6.2 for HP-UX, review the following
information:

� If you chose the default configuration for the Administration Console, the username is
configured as "admin" and the password as "root." To protect the security of your server,
it is strongly recommended that you change the username and password as soon as
possible. For more information, see "Configuring Usernames and Passwords" in "Chapter
3: Managing Sun Chili!Soft ASP."

� You use the Administration Console to start and stop the Sun Chili!Soft ASP Server and
to change configuration settings. You can access the Administration Console by typing the
following URL in your Web browser address bar:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the valid DNS name or IP address of the Apache Web server
running the Sun Chili!Soft ASP Administration Console, and [PORT] is the port on which
the Administration Console is configured to run (5100 by default). The URL for accessing
the Administration Console is provided in the following file:

[C-ASP_INSTALL_DIR]/logs/install_summary

where [C-ASP_INSTALL_DIR] is the directory in which you installed Sun Chili!Soft
ASP (/opt/casp by default).

� If you chose not to configure a Web server to run with Sun Chili!Soft ASP during
installation, the first time you open the Administration Console you will be prompted to
install a Web server.

� The Sun Chili!Soft ASP setup program makes certain changes to the configuration files
for the associated Web server. For more information, see "Changes to Web Server
Configuration Files" in this chapter.

Sun Chili!Soft ASP 3.6.2 Product Documentation 39

� Following installation, you can change some of the options that were configured during
installation, such as the Web server with which Sun Chili!Soft ASP is configured to run,
and the status of Java support (enabled or disabled). For more information, see "Changing
Installation Options after Installation" in this chapter.

� To use Chili!Beans, a Java runtime environment (JRE) must be installed on the machine,
and Chili!Beans must be enabled from the Administration Console (JRE 1.3.1 is included
with Sun Chili!Soft ASP 3.6.2 and is the recommended version). If you did not install a
JRE during the installation of Sun Chili!Soft ASP, you can do so by following the
instructions in "Enabling Java Support" in this chapter.

� When finished installing Sun Chili!Soft ASP 3.6.2, use the diagnostic applications to
verify that your installation is functioning correctly. You can access the diagnostics from
the following URL:

http://[HOSTNAME]/caspsamp/diagnostics.htm

where [HOSTNAME] is the hostname of the Web server configured to run with Sun
Chili!Soft ASP.

� Important summary information about the installation is located in the following file:

[C-ASP_INSTALL_DIR]/logs/install_summary

where [C-ASP_INSTALL_DIR] is the directory in which you installed Sun Chili!Soft
ASP (/opt/casp by default).

Be sure to print this information for future reference.

� Certain Sun Chili!Soft ASP 3.6.2 settings have important implications for the security of
the Sun Chili!Soft ASP Server. See "Securing the Server" in "Chapter 3: Managing Sun
Chili!Soft ASP" to ensure that the settings are appropriately configured for your specific
environment.

See also:

Uninstalling Sun Chili!Soft ASP for UNIX and Linux in this chapter

 Upgrading Sun Chili!Soft ASP for HP-UX
Sun Chili!Soft ASP 3.6.2 automatically upgrades many of your settings from an existing 3.6
installation of Sun Chili!Soft ASP for HP-UX.

To perform an upgrade from Sun Chili!Soft ASP 3.6 to Sun Chili!Soft ASP 3.6.2, follow the
instructions in "Running the Setup Program: Sun Chili!Soft ASP for HP-UX" in this chapter.
Also, review the following information and take any necessary steps:

� The Sun Chili!Soft ASP 3.6.2 setup program preserves the settings from your Sun
Chili!Soft ASP 3.6 installation, and then imports these settings into your new Sun
Chili!Soft ASP 3.6.2 installation. The settings imported from your existing installation
will override the settings that you configure during installation, with the exception of
Chili!Beans support. During installation, you must configure Chili!Beans support and

Sun Chili!Soft ASP 3.6.2 Product Documentation 40

select the option for the bundled JRE 1.3.1 (or specify a path to a different JRE). While
JREs 1.2.x and 1.3.x are supported, and the Java 2 Runtime Environment can also be used,
the use of JRE 1.3.1 is strongly recommended. Java support must be configured, even if it
was enabled in the installation you are upgrading.

Note
SpicePack settings and Sybase DSNs are not migrated when upgrading to Sun Chili!Soft
ASP 3.6.2.

� If necessary, upgrade your Web server to meet the requirements listed in "Installation
Requirements: Sun Chili!Soft ASP for HP-UX" in this chapter.

� Back up your existing installation prior to beginning the upgrade.

� The new installation will completely overwrite your existing installation. If there are any
files you want to preserve in your current Sun Chili!Soft ASP installation directory, copy
them to another location. Otherwise, they will be lost.

� Do not upgrade a mission-critical production server. Performing the upgrade and taking
the additional configuration steps required might keep your server offline for an
unacceptably long period of time. If possible, you should mirror the production server to a
nonproduction server, perform the upgrade, and then test and debug the upgraded server
before deploying it in your production environment.

When the setup program has completed the installation, do the following:

� Verify that any system DSNs defined for your previous installation are functioning
correctly. For more information, see "Testing a DSN" in "Chapter 3: Managing Sun
Chili!Soft ASP." If they are not functioning, you can create or edit the system DSNs as
needed, as described in "Configuring Data Source Names (DSNs)" in "Chapter 3:
Managing Sun Chili!Soft ASP." You can find the configuration information for the system
DSNs that were defined for your previous installation in the following file:

[C-ASP_INSTALL_DIR]/casp/INSTALL/settings.import

where [C-ASP_INSTALL_DIR] is the path name of the Sun Chili!Soft ASP 3.6.2
installation directory.

Installing Sun Chili!Soft ASP for Linux

This section describes the requirements and procedures for installing Sun Chili!Soft ASP 3.6.2
for Linux. For the most up-to-date information about this product, see the README file included
with your software. You can access the README file from the Sun Chili!Soft ASP
Administration Console, as described in "Viewing the Product README File" in "Chapter 3:
Managing Sun Chili!Soft ASP."

In this section:

� Installation Requirements: Sun Chili!Soft ASP for Linux

Sun Chili!Soft ASP 3.6.2 Product Documentation 41

� Running the Setup Program: Sun Chili!Soft ASP for Linux

� Important Notes about Linux Installations

� Upgrading Sun Chili!Soft ASP for Linux

 Installation Requirements: Sun Chili!Soft ASP for Linux
This section lists the hardware and software requirements for installing and running Sun
Chili!Soft ASP 3.6.2 for Linux. It also lists the additional software (such as databases and tools)
that Sun Chili!Soft ASP supports.

Hardware and Software Requirements

Hardware
Your hardware configuration must meet the following minimum requirements:

� 256 MB RAM

� Pentium-class processor (x86)

� 140 MB free hard disk space

Operating System
Sun Chili!Soft ASP for Linux runs on the following operating systems:

� Red Hat Linux 7.2 (2.4 kernel, GLIBC 2.2.4))

� SuSE 7.3 Professional (2.4 kernel, GLIBC 2.2.4)

� Mandrake Linux 8.1 (2.4 kernel, GLIBC 2.2.4)

� Debian 2.2r5 (2.2 kernel, GLIBC 2.1.3)

Web Server
You must be running one of the following Web servers:

� Apache 1.3.19 DSO

� Apache 1.3.22 DSO

� iPlanet Web Server, Enterprise Edition 6.0 SP1

� Zeus Web Server 4.0

Note
Sun Chili!Soft ASP 3.6.2 may install to other versions of the supported Web servers
listed above (Apache 1.3.12, for example). However, versions not listed have not been
certified to run with Sun Chili!Soft ASP 3.6.2, and their use is not supported by Sun
Chili!Soft Customer Support.

Supported Software

Sun Chili!Soft ASP 3.6.2 Product Documentation 42

This section lists additional software that is supported and/or installed by Sun Chili!Soft ASP.

Database
Sun Chili!Soft ASP for Linux includes ODBC drivers for the following databases:

DataDirect Connect ODBC 4.0 (Wire Protocol drivers)

� DB2 Universal Database (UDB) v7.1

� dBASE 5

� Informix Dynamic Server 2000 (9.20)

� Microsoft SQL Server 7.0 SP1

� Microsoft SQL Server 2000 SP1

� Oracle 8i (8.1.6)

� Oracle 8i (8.1.7)

� Oracle 9i

� Sybase Adaptive Server Enterprise 11.9.2

� Sybase Adaptive Server Enterprise 12.5

� Text Files

DataDirect SequeLink 4.5.1a

� Microsoft SQL Server 6.5 (via SequeLink)

� Microsoft Access 2000, 97, and 95 (via SequeLink)

Open Source

� MySQL 3.22.30 and 3.23.49

� PostgreSQL 6.5.2 and 7.1.3

ODBC drivers are installed automatically by the Sun Chili!Soft ASP setup program. Following
installation, you must configure the drivers for the data source being used. For more information,
see "Configuring a Database" in "Chapter 3: Managing Sun Chili!Soft ASP."

Note
To provide remote database connectivity with Microsoft Access and Microsoft SQL
Server 6.5 databases, Sun Chili!Soft ASP ships with the client portion of the DataDirect
SequeLink 4.51a software. On the Windows machine that contains your database, you
also must download and install the server portion of this software from Sun Chili!Soft.
For more information, see "Configuring SequeLink" in "Chapter 3: Managing Sun
Chili!Soft ASP."

Sun Chili!Soft ASP 3.6.2 may work with other versions of the databases listed above.
However, versions not listed have not been tested to run with Sun Chili!Soft ASP 3.6.2,
and their use is not supported by Sun Chili!Soft Customer Support.

Sun Chili!Soft ASP 3.6.2 Product Documentation 43

Java Runtime Environment
Sun Chili!Soft ASP 3.6.2 includes the Java Runtime Environment (JRE) 1.3.1 for Sun
Chili!Beans. While JREs 1.2.x and 1.3.x are supported, and the Java 2 Runtime Environment can
also be used, the use of JRE 1.3.1 is strongly recommended. Chili!Beans enables you to use Java
class files as components called from VBScript or JScript. To use Chili!Beans, a Java runtime
environment must be installed on the machine, and Chili!Beans must be enabled from the
Administration Console. For more information, see "Chili!Beans Component Reference" in
"Chapter 5: Developer’s Reference."

Microsoft FrontPage Server Extensions
Sun Chili!Soft ASP enables you to run ASP pages generated by Microsoft FrontPage. Microsoft
FrontPage Server Extensions provide services to the Web server that work in conjunction with
Sun Chili!Soft ASP to provide FrontPage functionality to computers not running Microsoft
Windows NT or Windows 2000 and Internet Information Services (IIS).

FrontPage Server Extensions are no longer installed with Sun Chili!Soft ASP; you must obtain
them from Microsoft. See "Enabling FrontPage Publishing" in "Chapter 3: Managing Sun
Chili!Soft ASP."

Note
Specific questions about the installation, configuration, and use of FrontPage and
FrontPage Server Extensions should be directed to Microsoft or its representatives.

See also:

Installing Sun Chili!Soft ASP for Linux in this chapter

 Running the Setup Program: Sun Chili!Soft ASP for Linux
The Sun Chili!Soft ASP setup program takes you through the steps required to install Sun
Chili!Soft ASP 3.6.2 on Linux. The setup program installs the following components on the
target server:

� Sun Chili!Soft ASP Server

� Sun Chili!Soft ASP Administration Console

� Sun Chili!Beans support (the use of Chili!Beans is optional). Sun Chili!Soft ASP 3.6.2
includes Java Runtime Environment (JRE) 1.3.1. The use of this specific JRE version is
not required, but is strongly recommended.

� Sun SpicePack components

� Apache Web Server 1.3.19 DSO (preconfigured or "bundled" with Sun Chili!Soft ASP
3.6.2).

During installation you can either specify the configuration options, or accept the default
configuration settings. The configuration settings you specify during installation can have serious

Sun Chili!Soft ASP 3.6.2 Product Documentation 44

consequences for your server environment. Before you begin, make sure you meet the following
requirements:

� You are logged in as root.

� You have 60 MB of hard disk space available to extract the installation files.

� Your hardware and software meet the requirements listed in "Installation Requirements:
Sun Chili!Soft ASP for Linux" in this chapter.

� You know your product serial number. If you do not know your product serial number and
you go ahead with the installation, you will receive an evaluation license.

� You know which language you want Sun Chili!Soft ASP to support (English - US,
Japanese Shift-JIS, and so on) . If desired, you can change the language after installation,
as described in "Configuring International Support" in "Chapter 3: Managing Sun
Chili!Soft ASP."

� To use Chili!Beans, a Java runtime environment (JRE) must be installed on the machine,
and Chili!Beans must be enabled from the Administration Console. During installation,
Sun Chili!Soft ASP will install JRE 1.3.1 unless you choose to install another supported
version (1.2.x or 1.3.x). Note that while you have the option to install a different JRE, and
the Java 2 Runtime Environment can also be used, the use of JRE 1.3.1 is strongly
recommended. Chili!Beans enables you to access Java objects and classes from an ASP
script. For more information, see "Chili!Beans Component Reference" in "Chapter 5:
Developer's Reference."

� If you are upgrading from a previous version of Sun Chili!Soft ASP, you must install Sun
Chili!Soft ASP 3.6.2 in the same directory as your previous installation. Also, be sure to
review the information in "Upgrading Sun Chili!Soft ASP for Linux" in this chapter.

� If you choose to customize settings for the Sun Chili!Soft ASP Administration Console,
you must specify a username and password for accessing the console. Be sure to specify a
password that you can remember, or else plan to store the password in a secure location. If
you forget your password, you can run the admtool utility and set a new one, as described
in "Configuring Usernames and Passwords" in "Chapter 3: Managing Sun Chili!Soft
ASP." If you do not choose the customize settings option, the username is set as "admin"
and the password as "root." To protect the security of your server, you should run the
admtool and change these as soon as possible following installation.

� If you are installing Sun Chili!Soft ASP to a Zeus Web server, you must take additional
steps prior to installation. See "Installing Sun Chili!Soft ASP to a Zeus Web Server"
immediately below. If you are not installing to a Zeus Web server, proceed with the
installation as described in "To run the setup program" in this section.

Installing Sun Chili!Soft ASP to a Zeus Web Server
Before you can install Sun Chili!Soft ASP to a Zeus Web server, you must first enable NSAPI
(Netscape’s Web server API) for a Zeus Virtual Server, and then copy the NSAPI configuration
files to the proper location. For detailed information beyond what is provided here, see your Zeus
product documentation.

Sun Chili!Soft ASP 3.6.2 Product Documentation 45

Note
When configuring the Zeus Web server to run with Sun Chili!Soft ASP 3.6.2, do not
specify the Web server hostname as the fully qualified domain name (or "server
address"). If you do, the Test DSN feature of the Administration Console will not work.
Instead, use the hostname only. For example, do not use: hostname.domain.com. Instead,
use: hostname.

To enable NSAPI for a Zeus Virtual Server

1. Go to the Configuration Summary page for the Zeus Virtual Server.

2. Go to the Enabling NSAPI Functionality page by clicking the NSAPI link.

3. Click the Enabled button, write down the value of [path_prefix] for future reference,
and then click the Apply changes button.

4. Commit the changes by clicking the yellow sun graphic in the top right section of the page,
and then click the Commit button.

NSAPI has been enabled for a Zeus Virtual Server. You must now copy the NSAPI
configuration files, as described in the following procedure.

To copy the NSAPI configuration files

Zeus provides copies of the NSAPI configuration files, which are typically located in the
following directory:

[zeushome]/webadmin-4.0r1/docroot/nsapi-skel/

where [zeushome] is the root of your Zeus installation (that is, /usr/local/zeus).

Once the files have been located, use the following commands:

#> mkdir –p [path_prefix]/https-[virtual_server_name]/config

#> cd [path_prefix]/https-[virtual_server_name]/config

#> cp –r [zeushome]/webadmin-4.0r1/docroot/nsapi-skel/* .

where [path_prefix] is the value you wrote down in step 3 of the previous procedure (the
default will be [zeushome]/ns-config), and [virtual_server_name] is the name of
the Zeus Virtual Server. Zeus is now configured correctly for the installation of Sun Chili!Soft
ASP.

To run the setup program and install Sun Chili!Soft ASP, use the following procedure.

To run the setup program

1. If you are installing Sun Chili!Soft ASP 3.6.2 from the CD-ROM, go to step 2. If you are
downloading Sun Chili!Soft ASP 3.6.2 from the Web, download the casp-3.6.2-linux.tar file
to a temporary directory, and then extract the installation files by using the following
command:

#> tar -xvf casp-3.6.2-linux.tar

Sun Chili!Soft ASP 3.6.2 Product Documentation 46

This step creates the following files in the temporary directory, which you can delete after
completing the installation:

A QuickStart Guide with installation instructions
A README file containing important product information
The install.sh installation script
A package/EULA file containing the End-User License Agreement
A package directory containing files required to install Sun Chili!Soft ASP

2. Run the install.sh script by using the following command. For downloaded versions, this
script is located in the temporary directory you created in the previous step. For CD-ROM
versions, this script is located on your installation CD-ROM.

#> ./install.sh

3. Review the End-User License Agreement (EULA) that displays. Enter yes if you agree with
its conditions. You must type the entire word, "yes."

– or –

Enter no if you do not agree. If you enter no, the Sun Chili!Soft ASP setup program quits the
installation.

4. On the next screen, press Enter to accept the default Sun Chili!Soft ASP installation
directory (/opt/casp).

– or –

Enter the absolute path name of a different installation directory. Make note of this location,
so you can easily find the Sun Chili!Soft ASP files at a later time.

Note: To upgrade from the previous version, you must specify the installation directory of
your existing installation.

5. If the setup program detects a previous installation of Sun Chili!Soft ASP in the specified
directory, you will be prompted to uninstall the previous version (if a previous installation is
not detected, go to step 6):

Enter n (no) to change the installation directory or cancel the installation.

– or –

Enter y (yes) to uninstall the previous installation. You will then be prompted to proceed. At
this confirmation prompt, enter n to cancel the installation, or y to uninstall the previous
version. If you enter y, the previous version will be uninstalled by the installer. Once that
process is finished, press Enter to continue.

Note: At the end of the Sun Chili!Soft ASP installation process you will be prompted to
import your settings.

6. On the next screen, enter y (yes) if you know the product serial number.

– or –

If you do not know the serial number, enter n. An evaluation license will be installed (go to
step 8).

Sun Chili!Soft ASP 3.6.2 Product Documentation 47

Note: iPlanet 6.0 users are already licensed to use this product and do not need to enter a
serial number. If you are using iPlanet 6.0, enter n and you will receive a full, unlimited
license (go to step 8).

7. When prompted, enter the product serial number.

8. Sun Chili!Soft ASP 3.6.2 includes a ready-to-run Apache 1.3.19 Web server configured with
support for Microsoft FrontPage 2002 Server Extensions (the extensions themselves are not
installed) and EAPI (Extended API). If you have not yet configured a Web server, you have
the option to install this preconfigured Apache Web server.

Enter y (yes) to install the preconfigured ("bundled") Apache 1.3.19 Web server, and proceed
to the next step.

– or –

Enter n (no) if you do not want to install the preconfigured Apache Web server, and proceed
to step 10.

Note: Installing the preconfigured Apache Web server will not affect any other installed Web
server. However, make sure you do not install the preconfigured Apache Web server to the
same port as that of an existing Web server.

9. The Apache Web server has many settings that you can select and configure. Specify the
desired configuration option for the preconfigured Apache 1.3.19 Web server:

Enter 1 (Default configuration) to direct Sun Chili!Soft ASP to automatically configure all
settings for you.

– or –

Enter 2 (Specify only the Web server listen port) to specify only the port number that the
Apache Web server will listen on, and then specify the port.

– or –

Enter 3 (Customize the configuration) to specify the configuration of many different
settings, and then respond to the prompts.

Note: All Apache configuration settings can be changed manually after installation by editing
the Apache configuration file.

10. On the next screen, press Enter to accept the default language (English – US).

– or –

Enter the number of a language shown in the list.

11. On the next screen, enable or disable Chili!Beans support as desired:

Select Use the bundled 1.3.1 JRE to enable Chili!Beans support and install JRE 1.3.1 (this
is the recommended JRE), and then respond to the prompts.

– or –

Sun Chili!Soft ASP 3.6.2 Product Documentation 48

Select Specify the path to an existing JRE to specify the path to an existing JRE (JRE
versions 1.2.x and 1.3.x are supported), or type none to return to the previous screen, and
then respond to the prompts.

– or –

Select Disable Java support to disable Chili!Beans support, and then respond to the
prompts.

– or –

Select Keep your current settings.

12. The next screen provides options for choosing the Web server to configure with Sun
Chili!Soft ASP. If you want the setup program to search your system and generate a list of
installed Web servers from which to choose, enter the number of the desired search option (1,
2, or 3). If you select one of these search options, skip to step 15.

– or –

If you want to skip this search and provide information about the Web server, enter 4 (Don't
search). The installer will not search for the Web server, and instead takes you to step 13.

Note: If you chose to install the preconfigured ("bundled") Apache 1.3.19 Web server in step
8, go to step 15.

13. On the next screen, enter the number of the type of Web server to configure: 1 for Apache, 2
for iPlanet, or 3 for Zeus, and go to step 14.

– or –

To cancel the user-specified Web server configuration, enter 4. If you choose this option, the
setup program returns you to the previous screen. From this screen you can choose another
option, as described in step 15.

14. At the prompts, enter the path of your Web server. If you do not know the correct path, type
none to cancel (this takes you to step 15). If you selected Apache in step 13, you will be
prompted for the Web server binary. After all information has been added correctly, the
installer takes you to step 15. There you will be able to select the Web server that was just
added.

15. On the next screen, enter the number of the Web server you want the setup program to
configure to run with Sun Chili!Soft ASP, and go to step 16 (if you selected option 1, 2, or 3
in step 12).

– or –

To provide information about the Web server to configure, enter the number for the option
Specify the Web server. If you choose this option, follow the instructions in step 13.

– or –

To perform another search for installed Web servers, enter the number for the option
Attempt to auto-detect more Web servers. If you choose this option, follow the instructions
in step 12.

Sun Chili!Soft ASP 3.6.2 Product Documentation 49

– or –

If you do not want to configure a Web server during installation, enter the number for the
option Do not configure a Web server, and then go to step 18. If you choose this option, the
first time you open the Sun Chili!Soft ASP Administration Console you will be prompted to
configure the ASP Server and a Web server.

16. On the next screen, verify the information that the setup program displays about your Web
server. If the information is incorrect, the Sun Chili!Soft ASP installation could fail. If the
installation does fail, you can run the installation script again. If you do this, it is
recommended that you first run the uninstall script, as described in "Uninstalling Sun
Chili!Soft ASP for UNIX and Linux" in this chapter. If the information on the screen is
correct, enter y (yes), and go to step 17.

– or –

If the information is incorrect, enter n (no). The setup program returns you to the previous
screen (step 15).

17. On the next screen, choose a configuration option for the ASP Server:

 Enter 1 to choose a default configuration, and go to step 18.

– or –

Enter 2 to choose a custom configuration, and enter the following information at the prompts:

Enable samples on this Web server? Enter y (yes) if you want the setup program to
install and configure the Sun Chili!Soft ASP samples on your Web server, or enter n
(no).

Enable documentation on this Web server? Enter y (yes) if you want the setup
program to enable the Sun Chili!Soft ASP documentation on your Web server, or enter n
(no). If you enter n, the documentation will be available from the Administration
Console, but not from the Sun Chili!Soft ASP Start Page.

Start the ASP Server on system boot? Enter y (yes) if you want the setup program to
start Sun Chili!Soft ASP automatically each time you start the computer, or enter n (no).

Would you like this [Web server] restarted? Enter y (yes) if you want the setup
program to automatically restart the Web server after completing Sun Chili!Soft ASP
installation, or enter n (no).

– or –

Enter 3 to choose another Web server to configure for Sun Chili!Soft ASP, and follow the
instructions in step 12.

18. On the next screen, select a configuration option for the Administration Console. When you
choose Default configuration, the setup program configures the console using default
settings. With this option, the username is specified as "admin" and the password as "root."
To protect the security of your server, it is strongly recommended that you change these
settings as soon as possible. For information about doing this, see "Configuring Usernames
and Passwords" in "Chapter 3: Managing Sun Chili!Soft ASP."

Sun Chili!Soft ASP 3.6.2 Product Documentation 50

If you choose Custom configuration, enter the following information at the prompts:

Administration Console port number: Enter the number of the port on which the Web
server should listen for requests for the Administration Console, or press Enter to accept
the default.

Automatically start the Administration Console on system startup: Enter y (yes) if
you want the Sun Chili!Soft ASP Administration Console to start automatically each
time you start the computer, or enter n (no).

Type the username…: Enter the administrator username.

New password: Enter the administrator password, which is required to access the
Administration Console. Make note of this password, because you cannot access the
Administration Console without providing it.

Confirm password: Reenter the password.

19. The next screen provides summary information about your Administration Console
configuration. Make note of this information or else print this screen for future reference.
When finished, press Enter to complete the installation.

20. If you are upgrading from the previous version for Linux and the setup program was able to
export the settings from your previous installation, you will be prompted to import these
settings into your new installation. Enter y (yes) to import your settings.

– or –

Enter n (no) if you do not want to import your settings.

The setup program then completes the installation and writes a summary file to:

[C-ASP_INSTALL_DIR]/logs/install_summary

where [C-ASP_INSTALL_DIR] is the directory in which you installed Sun Chili!Soft ASP
(/opt/casp by default). Be sure to print the information contained in the install_summary file for
future reference.

Note
With Sun Chili!Soft ASP for Linux on Zeus, you must access your Web server by using
the "server address" specified in the Zeus Administration Console, rather than the address
specified in the install_summary file.

Before running your installation of Sun Chili!Soft ASP 3.6.2, see "Important Notes about Linux
Installations" in this chapter. If you are upgrading from a previous version of Sun Chili!Soft ASP
for Linux, see "Upgrading Sun Chili!Soft ASP for Linux" in this chapter.

For information about changes the setup program makes to your Web server configuration files,
see "Changes to Web Server Configuration Files" in this chapter. For information about how to
change some of the options that were configured during installation, see "Changing Installation
Options after Installation" in this chapter.

See also:

Sun Chili!Soft ASP 3.6.2 Product Documentation 51

Uninstalling Sun Chili!Soft ASP for UNIX and Linux in this chapter

 Important Notes about Linux Installations
Before running your installation of Sun Chili!Soft ASP 3.6.2 for Linux, review the following
information:

� If you chose the default configuration for the Administration Console, the username is
configured as "admin" and the password as "root." To protect the security of your server,
it is strongly recommended that you change the username and password as soon as
possible. For more information, see "Configuring Usernames and Passwords" in "Chapter
3: Managing Sun Chili!Soft ASP."

� You use the Administration Console to start and stop the Sun Chili!Soft ASP Server and
to change configuration settings. You can access the Administration Console by typing the
following URL in your Web browser address bar:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the valid DNS name or IP address of the Apache Web server
running the Sun Chili!Soft ASP Administration Console, and [PORT] is the port on which
the Administration Console is configured to run (5100 by default). The URL for accessing
the Administration Console is provided in the following file:

[C-ASP_INSTALL_DIR]/logs/install_summary

where [C-ASP_INSTALL_DIR] is the directory in which you installed Sun Chili!Soft
ASP (/opt/casp by default).

� If you chose not to configure a Web server to run with Sun Chili!Soft ASP during
installation, the first time you open the Administration Console you will be prompted to
install a Web server.

� The Sun Chili!Soft ASP setup program makes certain changes to the configuration files
for the associated Web server. For more information, see "Changes to Web Server
Configuration Files" in this chapter.

� Following installation, you can change some of the options that were configured during
installation, such as the Web server with which Sun Chili!Soft ASP is configured to run,
and the status of Java support (enabled or disabled). For more information, see "Changing
Installation Options after Installation" in this chapter.

� To use Chili!Beans, a Java runtime environment (JRE) must be installed on the machine,
and Chili!Beans must be enabled from the Administration Console (JRE 1.3.1 is included
with Sun Chili!Soft ASP 3.6.2 and is the recommended version). If you did not install a
JRE during the installation of Sun Chili!Soft ASP, you can do so by following the
instructions in "Enabling Java Support" in this chapter.

� When finished installing Sun Chili!Soft ASP 3.6.2, use the diagnostic applications to
verify that your installation is functioning correctly. You can access the diagnostics from
the following URL:

Sun Chili!Soft ASP 3.6.2 Product Documentation 52

http://[HOSTNAME]/caspsamp/diagnostics.htm

where [HOSTNAME] is the hostname of the Web server configured to run with Sun
Chili!Soft ASP.

� Important summary information about the installation is located in the following file:

[C-ASP_INSTALL_DIR]/logs/install_summary

where [C-ASP_INSTALL_DIR] is the directory in which you installed Sun Chili!Soft
ASP (/opt/casp by default).

Be sure to print this information for future reference.

Note
With Sun Chili!Soft ASP for Linux on Zeus, you must access your Web server by using
the "server address" specified in the Zeus Administration Console, rather than the address
specified in the install_summary file.

� Certain Sun Chili!Soft ASP 3.6.2 settings have important implications for the security of
the Sun Chili!Soft ASP Server. See "Securing the Server" in "Chapter 3: Managing Sun
Chili!Soft ASP" to ensure that the settings are appropriately configured for your specific
environment.

See also:

Uninstalling Sun Chili!Soft ASP for UNIX and Linux in this chapter

 Upgrading Sun Chili!Soft ASP for Linux
Sun Chili!Soft ASP 3.6.2 automatically upgrades many of your settings from an existing
installation of Sun Chili!Soft ASP for Linux.

To perform an upgrade from Sun Chili!Soft ASP 3.6 to Sun Chili!Soft ASP 3.6.2, follow the
instructions in "Running the Setup Program: Sun Chili!Soft ASP for Linux" in this chapter. Also,
review the following information and take any necessary steps:

� The Sun Chili!Soft ASP 3.6.2 setup program preserves the settings from your Sun
Chili!Soft ASP 3.6 installation, and then imports these settings into your new Sun
Chili!Soft ASP 3.6.2 installation. The settings imported from your existing installation
will override the settings that you configure during installation, with the exception of
Chili!Beans support. During installation, you must configure Chili!Beans support and
select the option for the bundled JRE 1.3.1 (or specify a path to a different JRE). While
JREs 1.2.x and 1.3.x are supported, and the Java 2 Runtime Environment can also be used,
the use of JRE 1.3.1 is strongly recommended. Java support must be configured, even if it
was enabled in the installation you are upgrading.

Note
SpicePack settings and Sybase DSNs are not migrated when upgrading to Sun Chili!Soft
ASP 3.6.2.

Sun Chili!Soft ASP 3.6.2 Product Documentation 53

� If necessary, upgrade your Web server to meet the requirements listed in "Installation
Requirements: Sun Chili!Soft ASP for Linux" in this chapter.

� Back up your existing installation prior to beginning the upgrade.

� The new installation will completely overwrite your existing installation. If there are any
files you want to preserve in your current Sun Chili!Soft ASP installation directory, copy
them to another location. Otherwise, they will be lost.

� Do not upgrade a mission-critical production server. Performing the upgrade and taking
the additional configuration steps required might keep your server offline for an
unacceptably long period of time. If possible, you should mirror the production server to a
nonproduction server, perform the upgrade, and then test and debug the upgraded server
before deploying it in your production environment.

When the setup program has completed the installation, do the following:

� Verify that any system DSNs defined for your previous installation are functioning
correctly. For more information, see "Testing a DSN" in "Chapter 3: Managing Sun
Chili!Soft ASP." If they are not functioning, you can create or edit the system DSNs as
needed, as described in "Configuring Data Source Names (DSNs)" in "Chapter 3:
Managing Sun Chili!Soft ASP." You can find the configuration information for the system
DSNs that were defined for your previous installation in the following file:

[C-ASP_INSTALL_DIR]/casp/INSTALL/settings.import

where [C-ASP_INSTALL_DIR] is the path name of the Sun Chili!Soft ASP 3.6.2
installation directory.

Installing Sun Chili!Soft ASP for Windows

This section describes the requirements and procedures for installing Sun Chili!Soft ASP 3.6.2
for Microsoft Windows.

In this section:

� Installation Requirements: Sun Chili!Soft ASP for Windows

� Running the Setup Program: Sun Chili!Soft ASP for Windows

� Upgrading Sun Chili!Soft ASP for Windows

 Installation Requirements: Sun Chili!Soft ASP for Windows
This section lists the hardware and software requirements for installing and running Sun
Chili!Soft ASP 3.6.2 for Windows.

Hardware and Software Requirements

Hardware
Your hardware configuration must meet the following minimum requirements:

Sun Chili!Soft ASP 3.6.2 Product Documentation 54

� 128 MB RAM (256 MB recommended)

� Pentium processor

� 100 MB free hard disk space

Operating Systems
Sun Chili!Soft ASP for Windows runs on the following operating systems:

� Microsoft Windows NT Server 4.0 SP6

� Microsoft Windows 2000 Server SP1

Web Servers
You must be running one of the following Web servers:

� Apache 1.3.22

� iPlanet Web Server, Enterprise Edition 6.0 SP1

Optional Requirements

Internet Explorer 5.0 or Internet Information Server
� Windows NT requirement: To use VBScript, JScript, the FileSystem object, and the

BrowsCap component with Sun Chili!Soft ASP, Internet Explorer 5.0 or higher or any
version of Internet Information Server (IIS) must be installed on your Web server.

� Windows 2000 requirement: To use VBScript and JScript with Sun Chili!Soft ASP,
Internet Explorer (IE) 5.0 or higher or any version of Internet Information Server (IIS)
must be installed on your Web server.

Microsoft Data Access Components (MDAC) 2.5
To install and use the Sun Chili!Soft ASP ADO samples, MDAC 2.5 (or higher) must be installed
on your computer. If you opt to install the samples during the installation of Sun Chili!Soft ASP,
and MDAC 2.5 is not yet installed, you have the option to install it.

Microsoft FrontPage Server Extensions
Sun Chili!Soft ASP enables you to run ASP pages generated by Microsoft FrontPage. Microsoft
FrontPage Server Extensions provide services to the Web server that work in conjunction with
Sun Chili!Soft ASP to provide FrontPage functionality to computers not running Microsoft
Windows NT or Windows 2000 and Internet Information Services (IIS).

FrontPage Server Extensions are not installed with Sun Chili!Soft ASP; you must obtain them
from Microsoft. Specific questions about the installation, configuration, and use of FrontPage and
FrontPage Server Extensions should be directed to Microsoft or its representatives.

Note
ODBC drivers are not installed with Sun Chili!Soft ASP for Windows. Use the Windows
ODBC Data Source Administrator (accessed from the Control Panel) to view installed
ODBC drivers, and to create and manage DSNs.

Sun Chili!Soft ASP 3.6.2 Product Documentation 55

See also:

Running the Setup Program: Sun Chili!Soft ASP for Windows in this chapter

 Running the Setup Program: Sun Chili!Soft ASP for Windows
The Sun Chili!Soft ASP setup program takes you through the steps required to install Sun
Chili!Soft ASP 3.6.2 for Windows. All configuration is performed during installation.

Before you begin, make sure you meet the following requirements:

� You are logged on to the server with administrator privileges.

� Your server configuration meets the requirements listed in "Installation Requirements:
Sun Chili!Soft ASP for Windows" in this chapter.

� All applications that use ODBC connections are closed.

� The Web server is stopped. If you are running the Web server as an executable, stop the
server by shutting it down or by closing the executable’s window. If you are running the
Web server as a service, stop the service via the Windows Control Panel.

Note
If you are upgrading from a previous version of Sun Chili!Soft ASP, you will run the
setup program as described below, but first you must take additional steps. See
"Upgrading Sun Chili!Soft ASP for Windows" in this chapter before beginning the
upgrade installation.

To run the setup program and install Sun Chili!Soft ASP, use the following procedure.

To run the setup program

1. Launch the setup program:

If you are installing Sun Chili!Soft ASP from a CD-ROM, insert the CD-ROM into the CD-
ROM drive. If the setup program does not start automatically, double-click the setup.exe file
located on the CD-ROM.

If you are downloading Sun Chili!Soft ASP from the Web, download the installation file,
casp362.exe, and then double-click the file.

2. Perform the step-by-step installation, as prompted by the setup program.

Note: During installation you will be asked for the complete pathname of the folder in which
you want to install Sun Chili!Soft ASP 3.6.2. If you are upgrading from a previous version of
Sun Chili!Soft ASP, specify the folder in which the previous version is installed. Otherwise,
you must uninstall the previous version.

Also, to install and use the Sun Chili!Soft ASP ADO samples, Microsoft Data Access
Components (MDAC) 2.5 or higher must be installed on your computer. If you opt to install
the samples during the installation of Sun Chili!Soft ASP, and MDAC 2.5 is not yet installed,
you have the option to install it. If you choose to install MDAC 2.5, the setup program walks

Sun Chili!Soft ASP 3.6.2 Product Documentation 56

you through the MDAC installation. Following installation, restart your computer and then
rerun the Sun Chili!Soft ASP 3.6.2 setup program as described in this topic.

3. After the installation of Sun Chili!Soft ASP is finished and you have restarted your computer,
restart the Web server that was configured to run with Sun Chili!Soft ASP.

Important Notes

� Sun Chili!Soft ASP runs automatically whenever an ASP page is requested by a user (as
long as the Web server is running). Sun Chili!Soft ASP runs until the Web server is
stopped. When the Web server is restarted, Sun Chili!Soft ASP will not run until an ASP
page is requested by a user.

� The Sun Chili!Soft ASP Administration Console is referenced throughout this
documentation. The Administration Console is available for the UNIX and Linux versions
of Sun Chili!Soft ASP only. With Sun Chili!Soft ASP for Windows, all configuration is
performed during installation. Some of the Sun Chili!Soft ASP configuration information
is stored in registry settings, however, and regedit32 can be used to edit those settings. For
more information, see "Editing the Windows Registry" in "Chapter 3: Managing Sun
Chili!Soft ASP."

� With Sun Chili!Soft ASP for Windows, ASP applications are defined by adding aliases or
virtual directories to the Web server. Sun Chili!Soft ASP treats each alias or virtual
directory as an ASP application. With Apache Web Server, ASP applications are defined
by adding an alias to the httpd.conf file. With iPlanet Web Server, ASP applications are
defined by adding an "additional document directory" using the server’s Administration
tool.

� ODBC drivers are not installed with Sun Chili!Soft ASP for Windows. Use the Windows
ODBC Data Source Administrator (accessed from the Control Panel) to view installed
ODBC drivers, and to create and manage DSNs.

See also:

Uninstalling Sun Chili!Soft ASP for Windows in this chapter

 Upgrading Sun Chili!Soft ASP for Windows
If you are upgrading from a previous version of Sun Chili!Soft ASP, run the setup program as
described in "Running the Setup Program" in this chapter. Before you begin, however, you must
take the following steps:

� The new installation will completely overwrite your existing installation. If there are any
items that you want to preserve in your current Sun Chili!Soft ASP installation directory,
copy them to another location. Otherwise, they will be lost.

� If you changed your Sun Chili!Soft ASP registry settings from the defaults, you will need
to reconfigure them following the upgrade (make note of your current registry settings
before you begin the installation to use as a reference). For more information about
configuring registry settings, see "Editing the Windows Registry" in "Chapter 3:
Managing Sun Chili!Soft ASP."

Sun Chili!Soft ASP 3.6.2 Product Documentation 57

� During installation you will be asked for the complete pathname of the folder in which
you want to install Sun Chili!Soft ASP 3.6.2. Specify the folder in which the previous
version is installed. Otherwise, you must uninstall the previous version.

Configuring the Web Server after Installation

This section describes how to configure a Web server to run with Sun Chili!Soft ASP 3.6.2, if
you did not do so during installation. It also describes how to configure a non-DSO Apache Web
Server after the installation of Sun Chili!Soft ASP. See "Configuring a Non-DSO Apache Web
Server."

To configure a Web server after installation

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

The Administration Console Add ASP Server page displays a list of Web servers that have
been detected on this computer.

2. Select the option button of the Web server you want to configure, and then go to step 4.

- or –

Click Search Web servers to refresh the list of detected Web servers, and then go to step 3.

- or –

Type the absolute path name of the configuration file for the Web server you want to
configure, and then go to step 4.

3. The Search Web servers page displays, along with a Web servers search popup box. When
the search is finished, the popup box displays the message Done. When you see this message,
click Add a Server on the Search Web servers page, and then follow the instructions in step
2.

4. Select or deselect the Insert Chili!Soft samples check box to enable or disable the Sun
Chili!Soft ASP sample applications, as desired, and then click OK.

The Administration Console Server Management page appears. From this page, you can
configure the ASP Server and Web server, as described in "Managing the ASP Server" and
"Managing the Web Server" in "Chapter 3: Managing Sun Chili!Soft ASP."

 Configuring a Non-DSO Apache Web Server
This topic applies if you have installed Sun Chili!Soft ASP on a computer running an Apache
Web server that does not have Dynamic Shared Object (DSO) support.

Sun Chili!Soft ASP 3.6.2 Product Documentation 58

When you install Sun Chili!Soft ASP on a computer running an Apache Web server, the setup
program automatically links Sun Chili!Soft ASP to Apache through Apache’s module facility.
The setup program uses pre-built Sun Chili!Soft ASP DSO modules to set everything up for you.
However, if you are running a non-DSO version of Apache (a version that does not have DSO
support), you must use the following procedure to link Sun Chili!Soft ASP to the Apache Web
server.

Note
The Sun Chili!Soft ASP setup program makes certain changes to the configuration files
for the associated Web server. For more information about changes for Apache, see
"Changes to Apache Web Server Configuration Files" in this chapter.

To manually link the Sun Chili!Soft ASP module to an Apache Web server that does not have
DSO support, install Sun Chili!Soft ASP and then use the following procedure. The steps in this
procedure are based on the assumption that Apache is installed and the source has been saved.

To link the Sun Chili!Soft ASP module to Apache Web Server

1. Stop the Apache Web server.

2. Copy the files "module/source/build/mod_casp2.c" and "module/source/build/dispint.h" from
the Sun Chili!Soft ASP installation directory to the "src/modules/extra" subdirectory of your
Apache Web server source tree directory.

3. From the Apache source tree directory, type the following (note that if you have a custom
configuration of Apache, your settings might vary from this example):

#> ./configure --prefix=[WEB_SERVER_ROOT_DIR] --activate-
module=src/modules/extra/mod_casp2.c

where [WEB_SERVER_ROOT_DIR] is the root directory for your installed Apache Web
server.

4. (Important: On HP-UX, do not take this step; go to step 5 instead.) When the script has
finished running, use a text editor to add "-ldl" to the EXTRA_LIBS section of src/Makefile.

5. Return to the Apache installation directory, and type the following:

#> make

6. Copy the new Web server files to the appropriate location by typing:

#> make install

7. Installation is automatic. When installation is complete, restart the Apache Web server, and
then start the Sun Chili!Soft ASP Server, as described in "Stopping and Restarting the ASP
Server" in "Chapter 3: Managing Chili!Soft ASP."

Changes to Web Server Configuration Files

Sun Chili!Soft ASP 3.6.2 Product Documentation 59

When a Web server is configured to run with Sun Chili!Soft ASP (either during installation or
after), the setup program makes certain changes to the iPlanet, Apache, or Zeus Web server
configuration files. These changes are described in the following topics:

� Changes to iPlanet Web Server Configuration Files

� Changes to Apache Web Server Configuration Files

� Changes to Zeus Web Server Configuration Files

 Changes to iPlanet Web Server Configuration Files
When Sun Chili!Soft ASP 3.6.2 is installed on a computer running iPlanet Web Server, the Sun
Chili!Soft ASP setup program makes the following changes to the Web server’s configuration
files:

� It adds lines to the beginning of the obj.conf file (for Netscape Web Server 4.1) or the
magnus.conf file (for iPlanet Web Server 6.0) as follows:

On Solaris:

In obj.conf:

Init fn="load-modules" funcs="caspreq,caspinit,casptrans"
shlib=

"[C-
ASP_INSTALL_DIR]/module/sunos5_optimized/netscape_6.x/nes_ca
sp2.sl"

Init fn="caspinit" casplib="[C-ASP_INSTALL_DIR]/asp-
[server]-[PORT]"

In magnus.conf:

Init fn="load-modules" funcs="caspreq,caspinit,casptrans"
shlib=

"[C-
ASP_INSTALL_DIR]/module/sunos5_optimized/netscape_6.x/nes_ca
sp2.so"

Init fn="caspinit" casplib="[C-ASP_INSTALL_DIR]/asp-
[server]-[PORT]"

On HP-UX:

In obj.conf:

Init fn="load-modules" funcs="caspreq,caspinit,casptrans"
shlib=

"[C-
ASP_INSTALL_DIR]/module/ux11_optimized/netscape_6.x/nes_casp
2.sl"

Sun Chili!Soft ASP 3.6.2 Product Documentation 60

Init fn="caspinit" casplib="[C-ASP_INSTALL_DIR]/asp-
[server]-[PORT]"

In magnus.conf:

Init fn="load-modules" funcs="caspreq,caspinit,casptrans"
shlib=

"[C-
ASP_INSTALL_DIR]/module/ux11_optimized/netscape_6.x/nes_casp
2.so"

Init fn="caspinit" casplib="[C-ASP_INSTALL_DIR]/asp-
[Server]-[PORT]"

On Linux:

In obj.conf:

Init fn="load-modules" funcs="caspreq,caspinit,casptrans"
shlib=

"[C-
ASP_INSTALL_DIR]/module/linux2_optimized/netscape_6.x/nes_ca
sp2.sl"

Init fn="caspinit" casplib="[C-ASP_INSTALL_DIR]/asp-
[server]-[PORT]"

In magnus.conf:

Init fn="load-modules" funcs="caspreq,caspinit,casptrans"
shlib=

"[C-
ASP_INSTALL_DIR]/module/linux2_optimized/netscape_6.x/nes_ca
sp2.so"

Init fn="caspinit" casplib="[C-ASP_INSTALL_DIR]/asp-
[server]-[PORT]"

� It adds the following lines to the default object section of obj.conf:

<Object name=default>

NameTrans fn="casptrans"

Service method=(GET|POST) type="chilisoft-internal/active-
server-page" fn="caspreq" casplib="[C-ASP_INSTALL_DIR]/asp-
[server]-[PORT]"

</Object>

� It adds the following lines to the mime.types file:

type=chilisoft-internal/active-server-page exts=asp,asa

[C-ASP_INSTALL_DIR] resembles: /opt/casp

Sun Chili!Soft ASP 3.6.2 Product Documentation 61

[SERVER] resembles: netscape

[PORT] resembles: 3000

� It comments out support for ASAP WebShow in the mime.types file because it also uses
the .asp extension:

by Chili!Soft ASP install: type=application/x-asp
exts=asp

Note
Sun Chili!Soft ASP supports only one instance of LoadObjects in the iPlanet Web
Server magnus.conf file.

 Changes to Apache Web Server Configuration Files
When Sun Chili!Soft ASP 3.6.2 is installed on a computer running Apache Web Server, the Sun
Chili!Soft ASP setup program makes the following changes to the Web server configuration file
(httpd.conf):

� It adds these lines:

AddHandler chiliasp .asp

AddHandler chiliasp .asa

CaspLib [C-ASP_INSTALL_DIR]/asp-[server]-[PORT]

� It adds these lines:

On Solaris:

LoadModule casp2_module

[C-
ASP_INSTALL_DIR]/module/sunos5_optimized/apache_[VERSION]/

[API]/mod_casp2.so

On HP-UX:

LoadModule casp2_module

[C-ASP_INSTALL_DIR]/module/ux11_optimized/apache_[VERSION]/

[API]/mod_casp2.so

On Linux:

LoadModule casp2_module

[C-
ASP_INSTALL_DIR]/module/linux2_optimized/apache_[VERSION]/

[API]/mod_casp2.so

� It adds this line:

Sun Chili!Soft ASP 3.6.2 Product Documentation 62

MaxRequestsPerChild 30000

 Changes to Zeus Web Server Configuration Files
When Sun Chili!Soft ASP 3.6.2 is installed on a computer running Zeus Web Server, the Sun
Chili!Soft ASP setup program makes the following changes to the Web server’s configuration
files:

� It adds lines to the beginning of the obj.conf file as follows:

On Solaris:

Init fn="load-modules" funcs="caspreq,caspinit,casptrans"
shlib=

"[C-
ASP_INSTALL_DIR]/module/sunos5_optimized/zeus/zeus_nsapi_cas
p2.so"

Init fn="caspinit" casplib="[C-ASP_INSTALL_DIR]/asp-
[server]-[PORT]"

On HP-UX:

Init fn="load-modules" funcs="caspreq,caspinit,casptrans"
shlib=

"[C-
ASP_INSTALL_DIR]/module/ux11_optimized/zeus/zeus_nsapi_casp2
.so"

Init fn="caspinit" casplib="[C-ASP_INSTALL_DIR]/asp-
[server]-[PORT]"

On Linux:

Init fn="load-modules" funcs="caspreq,caspinit,casptrans"
shlib=

"[C-
ASP_INSTALL_DIR]/module/linux2_optimized/zeus/zeus_nsapi_cas
p2.so"

Init fn="caspinit" casplib="[C-ASP_INSTALL_DIR]/asp-
[server]-[PORT]"

� It adds the following lines to the default object section of obj.conf:

<Object name="default">

NameTrans fn="casptrans"

Service method=(GET|POST) type="chilisoft-internal/active-
server-page" fn="caspreq" casplib="[C-ASP_INSTALL_DIR]/asp-
[server]-[PORT]"

Sun Chili!Soft ASP 3.6.2 Product Documentation 63

</Object>

� It adds the following lines to the mime.types file:

type=chilisoft-internal/active-server-page exts=asp,asa

[C-ASP_INSTALL_DIR] resembles: /opt/casp

[SERVER] resembles: Zeus

[PORT] resembles: 3000

Note
Sun Chili!Soft ASP only supports one instance of LoadObjects in the Zeus Web Server
magnus.conf file.

Changing Installation Options after Installation

During the installation of Sun Chili!Soft ASP you have many options regarding ASP Server and
Web server configuration. Some of the choices you make during installation can be changed after
installation. You can change the:

� Web server with which Sun Chili!Soft ASP is configured to run.

� Status of the "start on system boot" functionality (enabled or disabled), which determines
if Sun Chili!Soft ASP starts automatically each time the computer is started.

� Status of Java support (enabled or disabled). To use Chili!Beans, Java support must be
enabled (a Java runtime environment must be installed).

In this section:

� Changing the Web Server after Installation

� Enabling Java Support

� Starting Sun Chili!Soft ASP on System Boot

 Changing the Web Server after Installation
In certain cases you might want to change the Web server with which Sun Chili!Soft ASP is
configured to run. This association is referred to as the Web server-to-ASP Server linkage, and
was specified during the installation of Sun Chili!Soft ASP.

To change the Web server after installation

1. From the Sun Chili!Soft ASP installation directory (/opt/casp by default), type the following
command:

#> ./configure-server

2. At the prompt, select Configure the ASP Server.

Sun Chili!Soft ASP 3.6.2 Product Documentation 64

3. Select Change the Web server-to-ASP Server association.

4. At the prompt, select the Web server you want to change, or select Cancel to exit.

Note: If no Web servers are installed, you will be prompted to add a server.

5. At the prompt, enter y (yes) if the ASP Server information is correct.

- or -

If the information is incorrect, enter n (no) to return to the previous screen.

6. At the prompt, select a Web server from the list, or make another selection:

Select Specify the Web server to specify the Web server manually, and then make your
selections as prompted.

- or -

Select Attempt to auto-detect more Web servers to direct the system to search for (auto-
detect) installed Web servers from which to select, and then make your selection.

- or -

Select Do not configure a Web server to cancel the operation altogether. Choosing this
option returns you to step 2.

7. At the prompt on the Verify Web Server Information screen, enter y (yes) if the Web server
information is correct.

Note: If the information is incorrect, enter n (no) to return to the previous screen.

8. At the prompt, select the desired configuration option:

Choose 1. Default configuration to use the default configuration settings and finish the
reconfiguration of the Web server. This option is strongly recommended for all but the most
experienced users of Sun Chili!Soft ASP.

- or -

Choose 2. Custom configuration if you are an experienced user of Sun Chili!Soft ASP and
want to customize a number of settings. If you select this option, you will also receive a
prompt asking you if you want the Web server restarted. If you enter y (yes), the Web server
will be restarted and configured. If you enter n (no), you will be prompted to restart the Web
server manually.

- or -

Choose 3. Choose another Web server to install to if you do not want to reconfigure the
Sun Chili!Soft ASP Server-to-Web server association. Choosing this option returns you to
step 4.

Caution
If you select the first or second option, any current Sun Chili!Soft ASP Server-to-Web
server association will be lost, disabling the previously associated Web server from
serving up ASP content. If you do not want to reconfigure this association, choose the
third option (to choose another Web server).

Sun Chili!Soft ASP 3.6.2 Product Documentation 65

Note
If reconfiguration fails for any reason, the current association is left unchanged.

 Enabling Java Support
If your ASP applications make use of Chili!Beans, a Java runtime environment (JRE) must be
installed on the machine, and Chili!Beans must be enabled from the Sun Chili!Soft ASP
Administration Console. If you did not install a JRE during installation of Sun Chili!Soft ASP,
you can do so by using the following procedure.

To enable or disable Java support

1. From the Sun Chili!Soft ASP installation directory (/opt/casp by default), type the following
command:

#> ./configure-server

2. At the prompt, make the desired selection:

Select Configure Java support to continue.

– or –

Select Exit without performing any action to exit.

3. On the screen that pertains to configuring Chili!Bean support, enable or disable Java support
as desired:

Select Use the bundled 1.3.1 JRE to install JRE 1.3.1 (JRE 1.3.1 is bundled with this
version of Sun Chili!Soft ASP and is the recommended JRE). Then, respond to the prompts.

– or –

Select Specify the path to an existing JRE to specify a different JRE (versions 1.2.x and
1.3.x are supported) or type none to return to the previous screen. Then, respond to the
prompts.

– or –

Select Disable Java support, and then respond to the prompts.

– or –

Select Keep your current settings.

See also:

Enabling Chili!Beans in "Chapter 5: Developer’s Reference"

Chili!Beans Component Reference in "Chapter 5: Developer’s Reference"

Sun Chili!Soft ASP 3.6.2 Product Documentation 66

 Starting Sun Chili!Soft ASP on System Boot
The default installation of Sun Chili!Soft ASP is to automatically start the ASP Server on system
boot. This option was configured during installation. To enable or disable the "start on system
boot" functionality, use the following procedure.

To start Sun Chili!Soft ASP on system boot

1. From the Sun Chili!Soft ASP installation directory (/opt/casp by default), type the following
command:

#> ./configure-server

2. At the prompt, select Configure the ASP Server.

3. Select Enable or disable the ‘start on system boot functionality’, and then make your
desired selection. If this option is enabled, Sun Chili!Soft ASP starts automatically each time
the computer is started.

Uninstalling Sun Chili!Soft ASP

This section includes the following topics about uninstalling Sun Chili!Soft ASP:

� Uninstalling Sun Chili!Soft ASP for UNIX and Linux

� Uninstalling Sun Chili!Soft ASP for Windows

 Uninstalling Sun Chili!Soft ASP for UNIX and Linux
On UNIX and Linux systems, Sun Chili!Soft ASP is uninstalled by running the script named
uninstall, which is located in the Sun Chili!Soft ASP installation directory.

When you run the uninstall program, you can delete all directories and files contained in the Sun
Chili!Soft ASP installation directory. Before you run the uninstall program, make copies of any
files contained under this directory that you do not want to lose.

Note
You must be logged in as root on the computer running Sun Chili!Soft ASP.

To uninstall Sun Chili!Soft ASP for UNIX and Linux

1. From the Sun Chili!Soft ASP installation directory (/opt/casp by default), type the following
command:

#> ./uninstall

2. Choose the number of the desired uninstall method. Choose 1. Uninstall the entire product
to remove all Sun Chili!Soft ASP components and all files and directories under the
installation directory. If you choose this option, go to step 5.

– or –

Sun Chili!Soft ASP 3.6.2 Product Documentation 67

Choose 2. Perform a stage-based uninstall to select the components to uninstall. If you
choose this option, go to step 3.

– or –

Choose 3. Cancel the uninstall to stop the uninstall without removing any files.

3. If you chose option 2. Perform a stage-based uninstall, you are prompted to select the
components to uninstall. At the prompts, enter the number of the component(s) you want
removed.

4. Uninstall the Web server-Sun Chili!Soft ASP association, responding to the prompts as
desired.

5. Delete the directories and files in the Sun Chili!Soft ASP installation directory. Before
deletion you are prompted to stop the uninstall and make backup copies of any files. To
perform this action, enter y (yes). To continue the uninstall and delete the directories and
files, enter n (no).

 Uninstalling Sun Chili!Soft ASP for Windows
To uninstall Sun Chili!Soft ASP on Windows systems, use the following procedure.

Note
To perform this procedure, you must have administrator rights.

To uninstall Sun Chili!Soft ASP for Windows

1. Log on to the computer running Sun Chili!Soft ASP.

2. Stop the Web server that is configured to run with Sun Chili!Soft ASP.

3. On the Windows Start menu, point to Programs, and then point to Sun Chili!Soft ASP.

4. Click Uninstall Sun Chili!Soft ASP.

5. On the Uninstalling screen, click Next to begin uninstalling Sun Chili!Soft ASP.

6. On the Uninstall Complete screen, click Finish.

Enabling Publishing

With Sun Chili!Soft ASP, Web developers and authors can publish their work to the Web server
in the usual manner, such as by using FTP. In addition, Sun Chili!Soft ASP supports Microsoft
FrontPage Server Extensions, so that users of Microsoft FrontPage can publish Web pages and
applications to the Web server by using the FrontPage client. For more information about
installing FrontPage Server Extensions and setting up FrontPage users, see "Enabling FrontPage
Publishing" in "Chapter 3: Managing Sun Chili!Soft ASP."

Sun Chili!Soft ASP 3.6.2 Product Documentation 68

Note
FrontPage Server Extensions are not installed with Sun Chili!Soft ASP; you must obtain
them from Microsoft. Specific questions about the installation, configuration, and use of
FrontPage and FrontPage Server Extensions should be directed to Microsoft or its
representatives.

Defining ASP Applications on the Server

Sun Chili!Soft ASP includes the concept of an ASP application, which comprises a hierarchical
set of directories that contain the ASP pages and other files used by the application. The root
directory of an ASP application contains an optional global.asa file, which stores application state
information along with Application and Session information. Using the Application and Session
objects with the global.asa file is explained in "Using the global.asa File" in "Chapter 4: Building
a Sun Chili!Soft ASP Application."

For an ASP application to be processed, it must be defined on the ASP Server. There are several
ways to define an application on Sun Chili!Soft ASP:

� Add the application from the Administration Console, as described in "Adding an ASP
Application" in "Chapter 3: Managing Sun Chili!Soft ASP."

� Enable ASP processing for a Virtual Host, as described in "Enabling ASP for a Virtual
Host" and "Defining Applications in a Shared Environment" in "Chapter 3: Managing Sun
Chili!Soft ASP."

� Use the FrontPage Services file, as described in "Using the Frontpage Services File in a
Shared Environment" in "Chapter 3: Managing Sun Chili!Soft ASP."

� Add an application from within the Sun Chili!Soft ASP configuration file, or add an alias
from within the Apache Web server configuration file. This is an advanced administration
option described in "Defining Applications on UNIX" in "Chapter 3: Managing Sun
Chili!Soft ASP."

Note
On Windows NT and Windows 2000, ASP applications are defined by adding aliases or
virtual directories to the Web server. Sun Chili!Soft ASP treats each alias or virtual
directory as an ASP application. With Apache Web Server, ASP applications are defined
by adding an alias to the httpd.conf file. With iPlanet Web Server, ASP applications are
defined by adding an "additional document directory" using the Web server’s
Administration tool.

You can access sample ASP applications from the Administration Console, as described in
"Accessing Documentation, Samples, and Diagnostics" in "Introduction: About This
Documentation."

Sun Chili!Soft ASP 3.6.2 Product Documentation 69

Enabling Database Connections on the Server

With Sun Chili!Soft ASP, you can easily display and manipulate information stored in a database
from an ASP page. To enable an ASP application to retrieve data from a database, the system
administrator must first configure the Sun Chili!Soft ASP Server to connect to the database. Then
the Web developer can create and initialize a connection to the database from within the
application. This topic provides overview information about enabling a connection on the ASP
Server. For more detailed instructions, see "Configuring a Database" in "Chapter 3: Managing
Sun Chili!Soft ASP."

Sun Chili!Soft ASP provides built-in ActiveX Data Object (ADO) control that developers can use
from within an ASP application to initialize a database connection for retrieving and
manipulating data. ADO provides the interface through which ODBC drivers are called and
provides "containers" for storing information that is passed to and from the database. The most
common container is a Recordset object, which stores the results of a SELECT SQL query. The
ADO Connection object establishes connections to databases by using ODBC drivers. For more
information about ADO, see "ADO Component Reference" in "Chapter 5: Developer’s
Reference."

For UNIX and Linux versions of Sun Chili!Soft ASP, the setup program automatically installs
ODBC drivers for a number of different databases (Sun Chili!Soft ASP for Windows does not
install ODBC drivers). You can view the list of installed drivers from the Administration
Console, as described in "Viewing the List of ODBC Drivers" in "Chapter 3: Managing Sun
Chili!Soft ASP." For Windows systems, the list of installed ODBC drivers can be viewed from
the Windows Control Panel (double-click the Data Sources icon). See Microsoft documentation
for more information about using the Windows ODBC Data Source Administrator.

Sun Chili!Soft ASP includes DataDirect SequeLink 4.51a, which enables connections to remote
computers running Microsoft Access or Microsoft SQL Server 6.5. For more information, see
"Configuring SequeLink" in "Chapter 3: Managing Sun Chili!Soft ASP."

ADO and either the appropriate ODBC driver or SequeLink are required to create a connection to
a particular database. ADO uses connection information and the ODBC driver manager to create
an instance of the required ODBC driver, which in turn connects to the database.

With Sun Chili!Soft ASP, Web developers can specify the connection information for the
database by using system DSNs, file DSNs, or DSN-less connection strings. The appropriate
method to use depends on user preferences and the environment in which Sun Chili!Soft ASP is
running. For more information, see "Connecting to a Database" in "Chapter 4: Building a Sun
Chili!Soft ASP Application."

For enterprise applications, it is recommended that ASP developers use system DSNs. The
system administrator can use the Sun Chili!Soft ASP Administration Console to create system
DSNs, which can be referenced from within an ASP application for initializing the database
connection. For more information about creating a system DSN, see "Configuring Data Source
Names (DSNs)" in "Chapter 3: Managing Sun Chili!Soft ASP."

In a shared Web hosting environment, such as with an Internet Service Provider (ISP), using
system DSNs poses two problems:

Sun Chili!Soft ASP 3.6.2 Product Documentation 70

� A DSN that includes a username and password for the database makes the data source
accessible from any ASP page on the server, representing a security risk.

� Creating DSNs for each customer can be a significant administrative burden for the Web
hosting provider. Because Web developers can create them and the database username and
password information can be restricted to a specific ASP application, using file DSNs and
DSN-less connection strings are more appropriate in a Web hosting environment.

Note
It is strongly recommended that you validate your database connection parameters prior
to creating a database connection with Sun Chili!Soft ASP. An ODBC driver can bring
down your ASP Server if it is passing incorrect parameters. You should test your
database connections on a nonproduction server.

The following example illustrates the relationship between Sun Chili!Soft ASP, ADO, ODBC
drivers, and databases.

A connection string on the ASP page specifies the information required by both ADO and the
ODBC driver manager for connecting to the database. The following example uses a DSN-less
connection string:

connect_string = "Driver={ODBC_driver_name};
Database=[database_name]; UID=[username]; PWD=[password]"

The next line of code creates an instance of the ADO Connection object:

set dbConn = server.createObject ("ADODB.connection")

The following code calls the Open method of the ADO Connection object, which takes the
connection_string parameter. In this step, ADO requests that the ODBC driver manager create
an instance of the specified ODBC driver. ADO passes the remainder of the connection string to
the ODBC driver, which uses this information to connect to the database.

open dbConn connect_string

Sun Chili!Soft ASP 3.6.2 Product Documentation 71

Chapter 3: Managing Sun Chili!Soft ASP

This chapter provides detailed information about managing Sun Chili!Soft ASP, including
information about changing configuration settings, enhancing security, and optimizing server
performance. It describes how to use the Sun Chili!Soft ASP Administration Console, which
provides browser-based access to Sun Chili!Soft ASP configuration settings. For advanced users,
"Advanced Administration Options" describes how to manage Sun Chili!Soft ASP by editing
configuration files directly or by using provided scripts. However, because you can create serious
problems with your system in this manner, it is strongly recommended that you use the
Administration Console for configuration tasks whenever possible.

Note
The Sun Chili!Soft ASP Administration Console is not available with Sun Chili!Soft
ASP for Windows. On Windows systems, regedit32 can be used to edit some of the Sun
Chili!Soft ASP configuration settings. For more information, see "Editing the Windows
Registry" in this chapter.

Who should read this chapter: System administrators responsible for configuring and running
Sun Chili!Soft ASP.

In this chapter:

� Using the Administration Console

� Managing the ASP Server

� Managing the Web Server

� Enabling FrontPage Publishing

� Configuring a Database

� Configuring ActiveX Data Objects (ADO) Connections

� Running Sun Chili!Soft ASP in a Web Hosting Environment

� Optimizing Server Performance

� Advanced Administration Options

Using the Administration Console

Most configuration settings for Sun Chili!Soft ASP are accessible from the Sun Chili!Soft ASP
Administration Console. The Administration Console is a browser-based application used for
managing Sun Chili!Soft ASP.

Sun Chili!Soft ASP 3.6.2 Product Documentation 72

Note
The Administration Console is not available with the Windows version of Sun Chili!Soft
ASP. On Windows NT and Windows 2000, regedit32 can be used to edit some of the Sun
Chili!Soft ASP configuration settings. For more information, see "Editing the Windows
Registry" in this chapter.

The topics in this section explain how to access, configure, and use the Administration Console.
This section covers:

� Accessing the Administration Console

� Starting and Stopping the Administration Web Server

� Configuring Usernames and Passwords

� Accessing the Product Documentation

� Contacting Customer Support

� Installing a New Serial Number

� Checking for Product Updates

Other sections in this chapter explain how to use the Administration Console to configure and
manage Sun Chili!Soft ASP:

� Managing the ASP Server

� Managing the Web Server

� Enabling FrontPage Publishing

� Configuring a Database

� Configuring ActiveX Data Objects (ADO) Connections

� Optimizing Server Performance

 Accessing the Administration Console
The Sun Chili!Soft ASP Administration Console enables you to configure and manage a Sun
Chili!Soft ASP Server from a Web browser, either locally or remotely. The Administration
Console also enables you to start and stop the Web server that is configured to run with Sun
Chili!Soft ASP.

The Administration Console is hosted by the Administration Web site, which is installed on the
computer running the ASP Server. The Administration Web site consists of its own Apache Web
Server and its own ASP Server. By default, the Administration Web site is configured to start
when you start the computer running Sun Chili!Soft ASP.

Sun Chili!Soft ASP 3.6.2 Product Documentation 73

Note
If you did not configure a Web server to run with Sun Chili!Soft ASP during installation,
you will be prompted to configure one the first time you open the Administration
Console. On Cobalt platforms, a Web server is configured automatically during
installation.

Note
On Cobalt platforms, you can also access the Sun Chili!Soft ASP Administration Console
from the Cobalt Administration Console.

To access the Administration Console

1. In your browser address bar, type the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default; for more information, see the note
below).

For example, if your [HOSTNAME] is www.mysite.com and the Administration Console is
installed to port 5100, you would access the Administration Console at:

http:// www.mysite.com:5100/

2. When prompted, type the username and password specified during installation. If you are
running a Cobalt system, or if you chose a default configuration for the Administration
Console during installation, the setup program automatically sets the username to "admin"
and the password to "root." You should change these from the defaults as soon as possible.
You can change the username and password by following the instructions in "Configuring
Usernames and Passwords" in this chapter.

The Administration Console opens, displaying the Server Management page.

Sun Chili!Soft ASP 3.6.2 Product Documentation 74

From the Server Management page you can access the configuration settings for Sun Chili!Soft
ASP, view information about your installation, and start and stop the associated Web server.

Note
When Sun Chili!Soft ASP is installed and your Web server is running, you can also
access the Administration Console from the Sun Chili!Soft ASP Start Page at:

http://[HOSTNAME]/caspsamp/

where [HOSTNAME] is the hostname of your Web server.

To access the Sun Chili!Soft ASP Administration Console by using a URL, you must
specify its port number in the URL. The default port number is 5100. However, it might
be a different number if 5100 was already in use when you installed Sun Chili!Soft ASP,
or if you specified a different port number for the Administration Web site during
installation. If you are unsure of the correct port number, you can find this information in
the Sun Chili!Soft ASP installation summary file. This file is named install_summary on
Solaris, AIX, and UP-UX, and component_log on Linux and Cobalt RaQ3.

On UNIX and Linux platforms, you can find the installation summary file in the
following location:

/[C-ASP_INSTALL_DIR]/logs/

where [C-ASP_INSTALL_DIR] is the directory in which you installed Sun Chili!Soft
ASP.

On Cobalt platforms, you can find the installation summary file in the following location:

/home/chiliasp/logs/

The entry reads as follows:

Administration console installed:

URL: http://[WEB_SERVER_HOSTNAME]:[PORT_NUMBER]

Port: [PORT_NUMBER]

Sun Chili!Soft ASP 3.6.2 Product Documentation 75

See also:

Using the Administration Console in this chapter

 Starting and Stopping the Administration Web Server
When you install Sun Chili!Soft ASP, the setup program installs an administration Web server,
which hosts the Sun Chili!Soft ASP Administration Console. By default, the administration Web
server is configured to start when you start the computer running Sun Chili!Soft ASP. Although
you can start and stop the ASP Server by using the Administration Console (as described in
"Stopping and Restarting the ASP Server" in this chapter), to start or stop the administration Web
server, you must use the command-line utility, admtool, which is installed with Sun Chili!Soft
ASP.

To start or stop the administration Web server

1. Telnet or log in to the computer running Sun Chili!Soft ASP as root.

2. Change directories (cd) to the Sun Chili!Soft root installation directory (/opt/casp by default).

3. Start the admtool utility by running the following command:

 ./admtool

When you start the admtool utility, the following list of options displays:

1. Start admin server. Starts the administration Web server.

2. Stop admin server. Stops the administration Web server.

3. Admin server status. Indicates whether the administration Web server is running or
stopped.

4. Add a user. Adds a new administrator username and password or changes the password
for an existing username.

5. Remove a user. Removes a username.

6. List users. Shows a list of all usernames currently configured for the Administration
Console.

7. Quit. Saves any changes and exits the admtool utility.

4. To start the administration Web server, enter 1 (Start admin server)

– or –

To stop the administration Web, enter 2 (Stop admin server).

5. When prompted, press Enter to continue.

6. To save any changes and exit, enter 7 (Quit).

See also:

Accessing the Administration Console in this chapter

Sun Chili!Soft ASP 3.6.2 Product Documentation 76

Stopping and Restarting the ASP Server in this chapter

Starting and Stopping the Web Server in this chapter

 Configuring Usernames and Passwords
During installation, the Sun Chili!Soft ASP setup program creates a username and password to
restrict access to the Sun Chili!Soft ASP Administration Console. You can add, edit, and delete
usernames and passwords by using the admtool utility, which is installed with Sun Chili!Soft
ASP. You cannot configure usernames and passwords for the Administration Console from
within the Administration Console.

Important Security Note
During installation, if you are running a Cobalt system or if you chose a default
configuration for the Administration Console, the setup program sets the administrator
username to "admin" and the default password to "root." To protect the security of your
server, change the username and password from the defaults as soon as possible.

Sun Chili!Soft ASP enables you to configure usernames and passwords for one or more
Administration Console users. To configure usernames and passwords, use the following
procedure.

To configure usernames and passwords

1. Telnet or log in to the computer running Sun Chili!Soft ASP as root.

2. Change directories (cd) to the Sun Chili!Soft ASP root installation directory (/opt/casp by
default).

3. Start the admtool utility by using the following command:

./admtool

4. When you start the admtool utility, the following list of options displays. Enter the number of
the option you want (4 to add or change a username and password, 5 to remove a username,
or 6 to see the current list of usernames), and then follow the prompts.

1. Start admin server. Starts the administration Web server.

2. Stop admin server. Stops the administration Web server.

3. Admin server status. Indicates whether the administration Web server is running or
stopped.

4. Add a user. Adds a new administrator username and password or changes the password
for an existing username. To add a username and password, enter the new username and
password when prompted. To change the password for an existing username, enter the
username and the new password when prompted.

5. Remove a user. Removes a username. At the prompt, enter the username you want to
remove.

Sun Chili!Soft ASP 3.6.2 Product Documentation 77

6. List users. Displays a list of all usernames currently configured for the Administration
Console.

7. Quit. Saves any changes and exits the admtool utility.

5. When prompted, press Enter to continue.

6. To continue configuring more usernames and passwords, enter the number of the option you
want.

7. When finished, enter 7 (Quit) to save your changes and exit the admtool utility.

See also:

Accessing the Administration Console in this chapter

 Accessing the Product Documentation
The Sun Chili!Soft ASP setup program installs two versions of the product documentation: one in
HTML format that includes dynamic index and search functionality, and one in Adobe PDF
format. There are three primary ways to access the documentation:

� If you chose the option to enable documentation during installation, you can access the
HTML version of the documentation by using the following URL:

http://[HOSTNAME]/caspdoc/

where [HOSTNAME] is the hostname of your Web server.

From the first page of the HTML documentation, click a link to open the version in Adobe
PDF format. To access the Adobe PDF version directly, use the following URL:

http://[HOSTNAME]/caspsamp/pdf

where [HOSTNAME] is the hostname of your Web server.

To view and print the Adobe PDF version, you must have Adobe Acrobat Reader
installed. To obtain a free copy, go to:

http://www.adobe.com/products/acrobat/readstep2.html

� You can access both versions of the product documentation on the Sun Chili!Soft Web
site at:

http://www.chilisoft.com/caspdoc/

� You can access the documentation from the Sun Chili!Soft ASP Administration Console
using the following procedure.

To access the product documentation from the Administration Console

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

Sun Chili!Soft ASP 3.6.2 Product Documentation 78

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

The Server Management page displays.

2. In the left navigation pane, click documentation.

 Viewing the Product README File
When you install Sun Chili!Soft ASP a README file is installed on your computer. The
README provides the most current product information. You can access the README file
from the Sun Chili!Soft ASP Administration Console, as described later in this topic. You can
also find the README file in the following directory:

/[C-ASP_INSTALL_DIR]/

where [C-ASP_INSTALL_DIR] is the path name of the Sun Chili!Soft ASP installation directory
(/opt/casp by default on UNIX and Linux, and /home/chiliasp on RaQ3).

Note
A README file is not provided for Cobalt RaQ4 and Cobalt XTR.

In addition to the README file, Sun Chili!Soft provides a number of other resources to answer
your questions about configuring and using Sun Chili!Soft ASP. These resources are described in
"Introduction: About This Documentation."

To view the product README file

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

The Server Management page displays.

Sun Chili!Soft ASP 3.6.2 Product Documentation 79

2. In the left navigation pane, click customer support.

The README file displays.

 Contacting Customer Support
If you encounter a problem while using Sun Chili!Soft ASP, you can use the following procedure
to contact Sun Chili!Soft Customer Support from the Sun Chili!Soft ASP Administration Console
Customer Support page.

Note
This page is not available for Cobalt RaQ4 and Cobalt XTR. To contact Customer
Support, see step 5 below.

To contact Customer Support

Sun Chili!Soft ASP 3.6.2 Product Documentation 80

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

The Server Management page displays.

2. In the left navigation pane, click customer support.

3. On the Customer Support page, click the Submit a question tab.

The Submit a question page displays.

4. In the text boxes, type your name, e-mail address, and a description of the problem.

5. Click Submit.

If you are unable to submit your problem as described in the previous steps, contact the Sun
Chili!Soft Customer Support team using the Web form at the following address:

Sun Chili!Soft ASP 3.6.2 Product Documentation 81

http://www.chilisoft.com/support/chili.eval.asp

If you do this, be sure to include the license number that is displayed on the ASP Server
Licensing page. To view this page, click server licensing in the left navigation pane of the Sun
Chili!Soft ASP Administration Console.

 Installing a New Serial Number
When you upgrade your product license (for example, if you’re upgrading from an evaluation
version of Sun Chili!Soft ASP to a full version), you must install a new serial number that you
receive from Sun Chili!Soft. The Sun Chili!Soft ASP Administration Console ASP Server
Licensing page displays information about your current Sun Chili!Soft ASP license, and enables
you to install a new serial number.

To install a new Sun Chili!Soft ASP serial number

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

The Server Management page displays.

2. In the left navigation pane, click server licensing.

The ASP Server Licensing page displays with license information.

3. In the Product drop-down list, select Sun Chili!Soft ASP.

Sun Chili!Soft ASP 3.6.2 Product Documentation 82

4. In the Serial Number box, type the new serial number, and then click Install.

5. To put your changes into effect, restart the ASP Server by clicking Restart.

Note
Restarting the ASP Server resets all Session and Application variables.

 Checking for Product Updates
Sun Chili!Soft occasionally provides product updates and fixes to enhance the security and
performance of Sun Chili!Soft ASP software. When using the Administration Console you will
see periodic prompts asking you if you want to check for updates. You can also check for updates
on demand, to quickly determine if your specific installation of Sun Chili!Soft ASP is up-to-date.
To check for updates on demand from the Administration Console, use the following procedure.

Note
Configuration information transmitted while checking for updates DOES NOT contain
any personal or company identifying information.

This feature is not available with Sun Chili!Soft ASP for Windows.

To check for product updates

1. Open the Administration Console by using the following URL:

Sun Chili!Soft ASP 3.6.2 Product Documentation 83

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

The Server Management page displays.

2. In the left navigation pane, click check for updates.

The Sun Chili!Soft Product Update page displays, listing information about your Sun
Chili!Soft ASP installation.

3. Make your desired selection:

Select Check for update now to check the Sun Chili!Soft Web site for updates and transmit
your installation information.

- or -

Select Do not ask for 90 days to be prompted to check for updates again in 90 days.

Managing the ASP Server

Sun Chili!Soft ASP includes an ASP Server that processes ASP page requests. On UNIX and
Linux systems, the ASP Server is managed from the Server Management page in the
Administration Console. This page has two tabs (ASP Server and Web Server), which you use
to access settings for the ASP Server and the Web server.

Note
The Administration Console is not available with Sun Chili!Soft ASP for Windows. On
Windows NT and Windows 2000, regedit32 can be used to edit some of the Sun
Chili!Soft ASP configuration settings. For more information, see "Editing the Windows
Registry" in this chapter.

On Windows NT and Windows 2000, Sun Chili!Soft ASP runs automatically whenever
an ASP page is requested by a user (provided the Web server is running). Sun Chili!Soft
runs until the Web server is stopped. When the Web server is restarted, Sun Chili!Soft
ASP will not run until an ASP page is requested by a user.

Sun Chili!Soft ASP 3.6.2 Product Documentation 84

The ASP Server tab of the Server Management page displays when you open the
Administration Console.

The ASP Server tab displays the following items:

� Status indicates whether the ASP Server is running or stopped.

� Uptime indicates the length of time since the ASP Server was started or restarted.

� Location indicates the directory in which the ASP Server is installed.

� Stop, Start, and Restart buttons enable you to stop, start, and restart the ASP Server. For
more information, see "Stopping and Restarting the ASP Server" in this chapter.

� The ASP Applications link displays settings for adding, removing, and configuring ASP
applications. For more information, see "Configuring ASP Applications" in this chapter.

� The Components link takes you to the page where you can enable or disable SpicePack
and Chili!Beans components. For more information, see "Enabling External Components"
in this chapter.

� The Databases link takes you to database configuration settings. For more information,
see "Configuring a Database" in this chapter.

� The Settings link takes you to general ASP Server settings. For more information, see
"Changing ASP Server Settings" in this chapter.

� The View Logs link takes you to pages where you can view the log files enabled for the
ASP Server. For more information, see "Viewing Log Files" in this chapter.

When you click the Web Server tab, the following page displays:

Sun Chili!Soft ASP 3.6.2 Product Documentation 85

The Web Server tab displays the following items:

� Status indicates whether the Web server is running or stopped.

� Name is the Web server hostname.

� Port is the port the Web server is using.

� Stop, Start, and Restart buttons enable you to stop, start, and restart the Web server. For
more information, see "Starting and Stopping the Web Server" in this chapter.

� The Virtual Hosts link takes you to an option for enabling and disabling ASP processing
for individual virtual hosts. For more information, see "Enabling ASP for a Virtual Host"
in this chapter.

Note
On Cobalt systems, the Web server is managed from the Cobalt Administration Console.

 Changing ASP Server Settings
The Sun Chili!Soft ASP Administration Console Server Settings page provides access to the
basic configuration settings for the ASP Server. You can change these settings using the
following procedure.

For changes to take effect, you must restart the ASP Server. Restarting the ASP Server resets all
Session and Application variables.

To change ASP Server settings

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP Server tab of the Server Management page (the first page to display when you
open the console), click Settings.

Sun Chili!Soft ASP 3.6.2 Product Documentation 86

The Server Settings page displays.

3. Configure the settings as desired (settings are described below).

4. When finished, click Save to save your changes.

– or –

Click Cancel to revert to the last settings that were saved.

The Server Management page displays.

5. To put your changes into effect, restart the ASP Server by clicking Restart.

Note
Restarting the ASP Server resets all Session and Application variables.

Sun Chili!Soft ASP 3.6.2 Product Documentation 87

ASP Server Setting Explanation

Scripts buffering on Yes enables scripts buffering. The ASP Server processes
an entire ASP page before returning its HTML output to
the browser, yielding better server performance. No
disables scripts buffering. The ASP Server returns the
HTML output for an ASP page to the browser
incrementally, as soon as the HTML is processed,
making debugging easier. This setting is yes by default.
For more information, see "Enabling Scripts Buffering"
in this chapter.

Session timeout This specifies the number of minutes the ASP Server
maintains a user’s session information since the last
page request. When a user does not submit a page
request for the specified length of time, the server
cancels the session and discards its information. If a
value for SessionTimeout is specified in the script, it
overrides this setting. This setting is 20 minutes by
default. For more information, see "Changing the
Session Timeout Value" in this chapter.

Script timeout This specifies the number of seconds the ASP Server
waits for a page to finish processing before it cancels the
page request. A value for ScriptTimeout specified in a
script is used only if it is higher than this value. This
setting is 90 seconds by default. For more information,
see "Changing the Script Timeout Value" in this
chapter.

Allow session state This specifies whether the ASP Server maintains session
state. This setting must be enabled (yes) for Session
objects in scripts to function. This setting is yes by
default. For more information, see "Enabling Session
State" in this chapter.

Script engines in memory Yes enables ASP scripts to be cached in memory, so
ASP pages are served faster. No disables caching, which
reduces the system memory used by the server. This
setting is yes by default. For more information, see
"Enabling Script Caching" in this chapter.

ASP errors logging file To enable logging for the ASP Server and specify the
location of the log file, type the absolute path name of
the log file in this text box. Sun Chili!Soft ASP creates
the log file in the directory you specify. You cannot give
the log file the same name as a file that already exists in
that directory. If the ASP errors logging file text box is
empty (the default), no logging is performed. For more

Sun Chili!Soft ASP 3.6.2 Product Documentation 88

information, see "Enabling ASP Error Logging" in this
chapter.

Number of threads This specifies the number of simultaneous threads the
ASP Server handles. The number of threads is 10 by
default. If you have many ASP pages that include
blocking operations (database access, for example), it is
best to increase this number. However, keep in mind
that increasing the number of threads also increases
system overhead. For more information, see
"Configuring Multi-threading" in this chapter.

Inherit user security When Inherit user security is set to yes, the ASP
Server runs with the permissions of the Apache Web
server or the virtual host defined in the Apache Web
server’s httpd.conf file. This is the default security mode
for Sun Chili!Soft ASP. However, if you are running
iPlanet Web Server or Zeus Web Server, be sure to read
the security note that follows.

When Inherit user security is set to no, the ASP Server
runs with the permissions of the user who started the
ASP Server, unless a different user or group is specified
in the Sun Chili!Soft ASP configuration file, casp.cnfg.
This can create a security risk for your server. If you
change Inherit user security to no, be sure to specify a
user or group in casp.cnfg, as described in "Editing the
Chili!Soft Configuration File" in "Chapter 3: Managing
Sun Chili!Soft ASP."

Important Security Information about iPlanet and
Zeus Web Servers

iPlanet Web Server and Zeus Web Server do not support
Inherit User Security mode, even when Inherit user
security is set to yes in the Administration Console.

To protect the security of your server, when running Sun
Chili!Soft ASP with these Web servers, you should
specify a user or group in the casp.cnfg file, as described
in "Editing the Chili!Soft Configuration File" in
"Chapter 3: Managing Sun Chili!Soft ASP." The ASP
Server then runs with the permissions of that user or
group.

For more information, see "Securing the Server" in this
chapter.

Note: ADO logging will not be functional if Inherit
user security is set to yes.

Sun Chili!Soft ASP 3.6.2 Product Documentation 89

Locale This specifies the locale setting. The ASP Server uses
the appropriate code page for the language associated
with the locale specified here. It also correctly formats
dates, numbers, and currency according to the locale.
For more information, see "Configuring International
Support" in this chapter. (Supported locales vary by
platform.)

Enable parent paths This enables file system access by an ASP application to
a directory in the file system that is not contained in the
ASP application root directory or its subdirectories.

By default, Enable parent paths is set to no. This is the
most secure setting and is appropriate for most shared
Web hosting environments. Changing Enable parent
paths to yes can affect the security of your server. For
more information, see "Configuring File System
Access" in this chapter.

 Stopping and Restarting the ASP Server
There are times when you need to stop and restart the ASP Server (for example, you need to stop
the ASP Server to perform a product upgrade). You must restart the ASP Server to put ASP
Server configuration settings into effect. To stop or restart the ASP Server, use the following
procedure.

Note
Restarting the ASP Server resets all Session and Application variables.

To stop, start, or restart the ASP Server

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the Server Management page (the first page to display when you open the
Administration Console), click Stop, Start, or Restart as desired.

Sun Chili!Soft ASP 3.6.2 Product Documentation 90

Stopping, starting, or restarting can take from several seconds to about one minute to execute.

 Configuring International Support
You might want to use the Sun Chili!Soft ASP Server to serve Web pages in languages other than
United States (US) English or in countries other than the US. If so, you can change the locale
setting. When you do this, the ASP Server uses the appropriate code pages for the language
associated with the locale you specify. It also correctly formats dates, numbers, and currency
according to the locale. Depending on your operating system, you can specify locales for the
following languages:

� English - US

� English - British

� Dutch

� French

� German

� Japanese Shift-JIS

� Spanish

� Swedish

To change the Sun Chili!Soft ASP locale setting

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP Server tab of the Server Management page (the first page to display when you
open the Administration Console), click Settings.

Sun Chili!Soft ASP 3.6.2 Product Documentation 91

The Server Settings page displays.

3. In the Locale drop-down list, select the desired locale.

4. Click Save to save your changes.

– or –

Click Cancel to revert to the last settings that were saved.

The Server Management page displays.

5. To put your changes into effect, restart the ASP Server by clicking Restart.

Note
Restarting the ASP Server resets all Session and Application variables.

See also:

Developing International Applications in "Chapter 4: Building a Sun Chili!Soft ASP Application"

Sun Chili!Soft ASP 3.6.2 Product Documentation 92

 Enabling Session State
With Sun Chili!Soft ASP you can specify whether the ASP Server maintains session state.
Session state is enabled by default. To conserve system resources, you might want to disable this
feature. However, for the Session object used in scripts to function, session state must be enabled.

To enable or disable session state

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP Server tab of the Server Management page (the first page to display when you
open the Administration Console), click Settings.

The Server Settings page displays.

Sun Chili!Soft ASP 3.6.2 Product Documentation 93

3. In the Allow session state drop-down list, select yes or no as desired.

4. Click Save to save your changes.

– or –

Click Cancel to revert to the last settings that were saved.

The Server Management page displays.

5. To put your changes into effect, restart the ASP Server by clicking Restart.

Note
Restarting the ASP Server resets all Session and Application variables.

See also:

ASP Session Object Overview in "Chapter 4: Building a Sun Chili!Soft ASP Application"

ASP Session Object in "Chapter 5: Developer’s Reference"

 Enabling External Components
The Sun Chili!Soft ASP Administration Console Components page provides access to external
SpicePack and Chili!Beans components.

Sun Chili!Soft SpicePack is a set of Component Object Model (COM) components that handle
commonly used ASP application functionality. The components are Chili!Mail, Chili!POP3, and
Chili!Upload.

The Chili!Beans ActiveX control is a wrapper that enables Java objects to be used by COM
controllers, such as ActiveX scripting engines like VBScript.

Sun Chili!Soft ASP 3.6.2 Product Documentation 94

To enable external components

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP Server tab of the Server Management page (the first page to display when you
open the console), click Components.

The Components page displays.

3. Click to select or clear (enable or disable) the components as desired.

Note: If you did not enable Chili!Beans support during installation (install a Java runtime
environment), Chili!Beans will not be listed on the Components page. See "Enabling Java
Support" in "Chapter 2: Installing and Configuring Sun Chili!Soft ASP."

4. When finished, click Save to save your changes.

– or –

Click Cancel to revert to the last settings that were saved.

The Server Management page displays.

Sun Chili!Soft ASP 3.6.2 Product Documentation 95

5. If you changed the status of the Chili!Beans component, you must restart the ASP Server by
clicking Restart on the Server Management page. You do not need to restart the ASP
Server if you changed the status of the other components.

Note
Restarting the ASP Server resets all Session and Application variables.

See also:

SpicePack Component Reference in "Chapter 5: Developer’s Reference"

Chili!Beans Component Reference in "Chapter 5: Developer’s Reference"

Securing the Server

The following topics address security issues for the Sun Chili!Soft ASP Server:

� Configuring File System Access

� Setting the Security Mode

� Disabling Performance Monitoring

 Configuring File System Access
You might want to enable access by an ASP application to a directory in the file system that is
not contained in the ASP application root directory or its subdirectories. This type of access is
configured from the Sun Chili!Soft ASP Administration Console using the Enable parent paths
setting.

By default, Enable parent paths is set to no. When Enable parent paths is set to no, a
FileSystemObject instantiated by an ASP application is limited to that application’s defined
directory. In this case, #include statements cannot use the "../" syntax to access files outside
the ASP application root directory. This is the most secure setting, and is appropriate for most
shared Web hosting environments. (Unlike Sun Chili!Soft ASP, with Microsoft ASP, when
Enable parent paths is set to no, you can still create a text file outside of the application
directory.)

When Enable parent paths is set to yes, FileSystemObject can access files outside the ASP
application directory. In this scenario, ASP developers can use the "../" syntax in #include
statements to access any file outside of the Web directory that the ASP Server has file system
permission to read.

Warning! Important Security Information

Changing Enable parent paths to yes can affect the security of your server. Before you change
this setting, make sure that your ASP Server has permission to access only the files you want to
be publicly accessible, and that it does not have access to sensitive files containing configuration
or password information. You can restrict the permissions of the ASP Server by defining the user

Sun Chili!Soft ASP 3.6.2 Product Documentation 96

it runs under, and making sure that that user has appropriately restricted file system permissions.
For more information, see "Setting the Security Mode."

To configure file system access

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP Server tab of the Server Management page (the first page to display when you
open the console), click Settings.

The Server Settings page displays.

3. In the Enable parent paths drop-down list, select yes or no.

See also:

Defining ASP Applications on the Server in "Chapter 2: Installing and Configuring Sun
Chili!Soft ASP"

Using Server-side Includes in "Chapter 4: Building a Sun Chili!Soft ASP Application"

 Setting the Security Mode
With Sun Chili!Soft ASP for Linux, Cobalt, and UNIX-based systems, you can configure the Sun
Chili!Soft ASP Server to run under either Defined User Security mode or Inherit User Security
mode. The appropriate mode depends on your Web hosting environment, and has important
security implications for your server. Be sure to read "Important Security Information" later in
this topic, particularly if you are running a Zeus or iPlanet Web server.

Sun Chili!Soft ASP 3.6.2 Product Documentation 97

� Inherit User Security mode is available only for Sun Chili!Soft ASP running with
Apache. This mode is useful in shared Web hosting environments because the ASP Server
runs with the permissions of the user defined for the Apache Web server. In a Web
hosting environment using virtual hosts, the ASP Server runs as the user configured for
the virtual host. For example, if the Web server is configured to run as user "john," when
someone accesses the virtual server www.johns-site.com, the ASP Server runs under the
account "john" when processing ASP page requests for www.johns-site.com. You can
enable this mode from the Sun Chili!Soft ASP Administration Console, as described later
in this topic

Note that ADO logging will not be functional if Inherit user security is set to yes. For
information about ADO logging, see "Enabling ADO Logging" in this chapter.

� Defined User Security mode is appropriate for most corporate or dedicated Web hosting
environments. In this mode, the ASP Server runs with the permissions of the user and
group defined in the Sun Chili!Soft ASP configuration file, casp.cnfg. The user and group
account under which the ASP Server is configured to run should have access rights to all
*.asp and *.asa pages, and should also have rights to Sun Chili!Soft ASP configuration
files, such as casp.cnfg and ODBC.INI. You enable this mode by setting Inherit user
security to no in the Sun Chili!Soft ASP Administration Console, and then specifying a
user and group in the casp.cnfg file, as described later in this topic.

Note that even if a user or group is specified in casp.cnfg, if Inherit user security is set to
yes in the Administration Console, the ASP Server runs under Inherit User Security mode.

Important Security Information

If you set Inherit user security to no and do not specify a user and group in the casp.cnfg file,
the ASP Server runs as root. This can compromise the security of your server.

IPlanet and Zeus Web servers do not support Inherit User Security mode, even when Inherit user
security is set to yes in the Administration Console. To protect the security of your server when
running Sun Chili!Soft ASP with these Web servers, you should specify a user or group in the
casp.cnfg file, as described in "Editing the Chili!Soft Configuration File" in "Chapter 3:
Managing Sun Chili!Soft ASP." The ASP Server then runs with the permissions of that user or
group.

To set the ASP Server security mode

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP Server tab of the Server Management page (the first page to display when you
open the Administration Console), click Settings.

Sun Chili!Soft ASP 3.6.2 Product Documentation 98

The Server Settings page displays.

3. In the Inherit user security drop-down list, select yes to run under Inherit User Security
mode, or no to run under Defined User Security mode. If you select no, you should edit the
casp.cnfg file to add a user or group for the ASP Server to run under, as described in "Editing
the Sun Chili!Soft ASP Configuration File" in this chapter. If you do not make that change,
the ASP Server runs as root, which can compromise the security of your server. You should
always run Web servers other than Apache under Defined User Security Mode.

4. Click Save to save your changes.

– or –

Click Cancel to revert to the last settings that were saved.

The Server Management page displays.

5. To put your changes into effect, restart the ASP Server by clicking Restart.

Sun Chili!Soft ASP 3.6.2 Product Documentation 99

Note
Restarting the ASP Server resets all Session and Application variables.

See also:

Configuring File System Access in this chapter

 Disabling Performance Monitoring
If you are running Sun Chili!Soft ASP for UNIX or Linux in a shared Web hosting environment,
it is strongly recommended that you disable server performance monitoring to protect the security
of your server. Disabling performance monitoring is described in this topic.

By default, Sun Chili!Soft ASP monitors server performance and displays this information on the
Sun Chili!Soft ASP Administration Console Server Monitoring page, as described in
"Monitoring the ASP Server" in this chapter.

Note
This feature is not available on Windows systems.

Sun Chili!Soft ASP stores the server performance information in the following files:

/tmp/.casp[PORT]/chili-psm

/tmp/.casp[PORT]/.pm-chili-psm

/tmp/.pm-chili-psm

/tmp/chili-psm

These files are created with "world-readable" permissions that might not be appropriate in a
shared Web hosting environment. You can disable performance monitoring and the creation of
these log files by editing the enablemonitoring setting in the [default machine] section of
the Sun Chili!Soft ASP configuration file, casp.cnfg. When you do this, server performance
information is no longer displayed on the Server Monitoring page of the Administration
Console.

For more information about editing casp.cnfg, see "Editing the Sun Chili!Soft ASP Configuration
File" in this chapter.

Configuring ASP Applications

As discussed in "Defining ASP Applications on the Server" in "Chapter 2: Installing and
Configuring Sun Chili!Soft ASP," you must define an ASP application on the ASP Server for the
application to be recognized and processed when a user requests an ASP page. The easiest way to
define and configure an application is by using the Sun Chili!Soft ASP Administration Console,
as discussed in this section. However, if you need to configure an application in a hosted
environment, see the instructions in "Running Applications in a Shared Web Hosting

Sun Chili!Soft ASP 3.6.2 Product Documentation 100

Environment" in this chapter. For more information about defining Microsoft FrontPage
applications, see "Using the FrontPage Services File in a Shared Environment" in this chapter.

You can define and configure an ASP application from the Administration Console Applications
page.

� Add a new application creates a new application and associates it with the physical
directory containing the global.asa file. See "Adding an ASP Application" in this chapter.

� remove removes an ASP application from the ASP Server. See "Removing an ASP
Application" in this chapter.

� configure associates an ASP application with a physical directory containing the
global.asa file. See "Editing ASP Application Settings" in this chapter.

Note
On Windows NT and Windows 2000, ASP applications are defined by adding aliases or
virtual directories to the Web server. Sun Chili!Soft ASP treats each alias or virtual
directory as an ASP application. With Apache Web Server, ASP applications are defined
by adding an alias to the httpd.conf file. With iPlanet Web Server, ASP applications are
defined by adding an "additional document directory" using the server’s Administration
tool.

 Adding an ASP Application
For the ASP Server to process an ASP application when a user requests an ASP page, the ASP
application must be defined on the ASP Server. The easiest way to do this is by using the Sun
Chili!Soft ASP Administration Console. From the console, you "add" an application by giving
the application a name and specifying the physical directory containing the application files and
the global.asa file. When you do this, a virtual directory for the application is created on the Web
server and associated with the physical directory containing the application files.

To define an application for a virtual host, instead of using the following procedure, use the
instructions in "Enabling ASP for a Virtual Host" in this chapter. If the Web developers you

Sun Chili!Soft ASP 3.6.2 Product Documentation 101

support use Microsoft FrontPage, see the description of FrontPage applications in "Using the
FrontPage Services File in a Shared Environment" in this chapter.

Note
On Windows NT and Windows 2000, ASP applications are defined by adding aliases or
virtual directories to the Web server. Sun Chili!Soft ASP treats each alias or virtual
directory as an ASP application. With the Apache Web Server, ASP applications are
defined by adding an alias to the httpd.conf file. With iPlanet Web Server, ASP
applications are defined by adding an "additional document directory" using the Web
server’s Administration tool.

To define an ASP application that will not be served by a virtual host, use the following
procedure.

To add an ASP application to the ASP Server

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP Server tab of the Server Management page (the first page to display when you
open the Administration Console), click ASP Applications.

The Applications page displays, showing a list of currently configured ASP applications.

3. Click Add a new application.

The Add application page displays.

Sun Chili!Soft ASP 3.6.2 Product Documentation 102

4. In the Application name box, type the name of the virtual directory to create and enable as
an ASP application.

Note: On Cobalt RaQ4, the application name must be the same as the name of the physical
directory containing the application files. You do not have the option to specify a directory.
When you enter the application name, Sun Chili!Soft ASP automatically creates a directory
on your hard disk with the same name, if it does not already exist. You can then copy your
application files into this directory.

5. In the Directory box, type the absolute path name of the application directory. The
application directory is the top-level physical directory that contains the application ASP
files, the global.asa file (if one is being used for this application), and any application
subdirectories. Note that this step does not apply to Cobalt RaQ4 (see the note in the previous
step).

6. Click Save.

– or –

Click Cancel to cancel any entries.

The Applications page displays.

7. In the left navigation pane, click server management.

The Server Management page displays.

8. To put your changes into effect, restart the ASP Server by clicking Restart.

Note
Restarting the ASP Server resets all Session and Application variables.

See also:

Defining ASP Applications on the Server in "Chapter 2: Installing and Configuring Sun
Chili!Soft ASP"

Configuring ASP Applications in this chapter

Editing ASP Application Settings in this chapter

Sun Chili!Soft ASP 3.6.2 Product Documentation 103

Removing an ASP Application in this chapter

 Removing an ASP Application
If you want the ASP Server to stop processing an ASP application, you must remove the ASP
application from the ASP Server, as described in the following procedure. This deletes the virtual
directory for the application from the Web server. It does not delete the physical directory
containing the application files. For more information about ASP applications, see "Configuring
ASP Applications" in this chapter.

To remove an ASP application from the ASP Server

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP Server tab of the Server Management page (the first page to display when you
open the Administration Console), click ASP Applications.

The Applications page displays, showing a list of currently configured ASP applications.

3. In line with the application that you want to remove, click remove.

4. When prompted to confirm removing the application, click Yes.

The Applications page displays.

5. In the left navigation pane, click server management.

6. To put your changes into effect, restart the ASP Server by clicking Restart.

Note
Restarting the ASP Server resets all Session and Application variables.

Sun Chili!Soft ASP 3.6.2 Product Documentation 104

See also:

Defining ASP Applications on the Server in "Chapter 2: Installing and Configuring Sun
Chili!Soft ASP"

Configuring ASP Applications in this chapter

Editing ASP Application Settings in this chapter

Adding an ASP Application in this chapter

 Editing ASP Application Settings
For the ASP Server to process an ASP application when a user requests an ASP page, you must
first add it to the ASP Server, as described in "Adding an ASP Application" in this chapter. Later,
if you want to change the application name (for example, the virtual directory name) or the
physical directory associated with the application, you can use the following procedure to do so.
For more information about ASP applications, see "Configuring ASP Applications" in this
chapter.

To edit ASP application settings

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP Server tab of the Server Management page (the first page to display when you
open the Administration Console), click ASP Applications.

The Applications page displays, showing a list of currently configured ASP applications.

3. In line with the application that you want to edit, click configure.

Sun Chili!Soft ASP 3.6.2 Product Documentation 105

The Configure application page displays.

4. If you want to change the application name, type the new name in the Application name
box.

5. If you want to change the physical directory associated with the application, type the absolute
path name of the new directory in the Directory box. The application directory is the top-
level directory that contains the application files, optional global.asa file, and any application
subdirectories.

6. Click Save.

– or –

Click Cancel to cancel any changes.

The Applications page displays.

7. In the left navigation pane, click server management.

8. To put your changes into effect, restart the ASP Server by clicking Restart.

Note
Restarting the ASP Server resets all Session and Application variables.

See also:

Sun Chili!Soft ASP 3.6.2 Product Documentation 106

Defining ASP Applications on the Server in "Chapter 2: Installing and Configuring Sun
Chili!Soft ASP"

Configuring ASP Applications in this chapter

Adding an ASP Application in this chapter

Removing an ASP Application in this chapter

Viewing Information about the ASP Server

Sun Chili!Soft ASP provides several options for viewing information about the ASP Server. It
enables you to monitor real-time performance data, view diagnostic information, and log ASP
errors.

In this section:

� Monitoring ASP Server Performance

� Enabling ASP Error Logging

� Viewing the ASP Errors Log

� Viewing Server Diagnostics

See also:

Optimizing Server Performance in this chapter

 Monitoring ASP Server Performance
On UNIX and Linux systems, the Server Monitoring page of the Sun Chili!Soft ASP
Administration Console displays real-time information about ASP Server performance.

Note
This feature is not available with Sun Chili!Soft ASP for Windows. On Windows
systems, performance monitoring information is available via the Windows NT or
Windows 2000 Performance Monitor. See your Microsoft documentation for more
information.

If you have disabled performance monitoring, as described in "Disabling Performance
Monitoring" in this chapter, you cannot view this server performance information.
Disabling server performance monitoring is a recommended security precaution if you
are running Sun Chili!Soft ASP in a shared Web hosting environment.

To view real-time information about the ASP Server

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

Sun Chili!Soft ASP 3.6.2 Product Documentation 107

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

The Server Management page displays.

2. In the left navigation pane, click monitor a server.

The Server Monitoring page displays.

3. To continuously monitor the server, click live monitoring. This opens a separate window that
displays constantly updated information.

The Server Monitoring page displays the following information:

Item Explanation

Total requests Total number of requests since the ASP Server was started

Requests per second Number of requests per second being processed by the ASP
Server

Total errors received Number of ASP Server errors logged since the server was
started

Current number of sessions Number of sessions currently active on the ASP Server

Script engines in memory Number of ASP scripts currently cached by the ASP Server

Sun Chili!Soft ASP 3.6.2 Product Documentation 108

Active virtual hosts Number of virtual hosts that currently have one or more active
sessions

Total memory in use System memory (RAM) currently being used by the ASP
Server

Uptime Length of time the ASP Server has been running since the last
restart

See also:

Changing ASP Server Settings in this chapter

Viewing Server Diagnostics in this chapter

Enabling ASP Errors Logging in this chapter

Viewing the ASP Errors Log in this chapter

Optimizing Server Performance in this chapter

 Enabling ASP Errors Logging
For Sun Chili!Soft ASP to log ASP errors, you must first enable logging. For more information
about viewing the log file, see "Viewing the ASP Errors Log" in this chapter.

To enable ASP errors logging

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP Server tab of the Server Management page (the first page to display when you
open the Administration Console), click Settings.

The Server Settings page displays.

Sun Chili!Soft ASP 3.6.2 Product Documentation 109

3. In the ASP errors logging file box, type the name of the log file to which you want ASP
errors logged. You cannot give the log file the same name as a file that already exists in the
directory. If the ASP errors logging file box is empty (the default), no logging is performed.

4. Click Save to save your changes.

– or –

Click Cancel to revert to the last settings that were saved.

The Server Management page displays.

5. To put your changes into effect, restart the ASP Server by clicking Restart.

Note
Restarting the ASP Server resets all Session and Application variables.

A log file with the name you specified is created in the following directory:

/[C-ASP_INSTALL_DIR]/logs

where [C-ASP_INSTALL_DIR] is the path name of the Sun Chili!Soft ASP installation directory
(/opt/casp by default).

See also:

Monitoring ASP Server Performance in this chapter

Optimizing Server Performance in this chapter

Viewing Information About the ASP Server in this chapter

Sun Chili!Soft ASP 3.6.2 Product Documentation 110

 Viewing the ASP Errors Log
You can view the ASP errors log from the ASP Server tab of the Server Management page of
the Sun Chili!Soft ASP Administration Console. To log ASP errors and view the logging
information, you must first enable logging as described in "Enabling ASP Errors Logging" in this
chapter.

To view the ASP errors log

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP Server tab of the Server Management page (the first page to display when you
open the Administration Console), click View Logs.

The Server Logs Files page displays, showing the ASP errors that have been logged.

See also:

Enabling ASP Errors Logging in this chapter

Monitoring ASP Server Performance in this chapter

Optimizing Server Performance in this chapter

Viewing Information About the ASP Server in this chapter

 Viewing Server Diagnostics
You can view diagnostic information about the ASP Server from the Server Logs Files page of
the Sun Chili!Soft ASP Administration Console, including information such as when ASP
engines were started and stopped, and configuration changes that have been made since Sun
Chili!Soft ASP was installed.

To view server diagnostics

Sun Chili!Soft ASP 3.6.2 Product Documentation 111

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP Server tab of the Server Management page (the first page to display when you
open the Administration Console), click View Logs.

The Server Logs Files page displays.

3. Click the Server Diagnostics tab.

Server diagnostic information displays.

See also:

Enabling ASP Errors Logging in this chapter

Monitoring ASP Server Performance in this chapter

Optimizing Server Performance in this chapter

Viewing Information About the ASP Server in this chapter

Managing the Web Server

Sun Chili!Soft ASP is configured to run with a Web server, which receives page requests and
transfers them to the ASP Server for processing. Most Web server management is handled
through the Web server's own management interface. However, from the Sun Chili!Soft ASP
Administration Console Web Server page, you can view information about the Web server, start
and stop the Web server, and enable ASP processing for individual virtual hosts.

Sun Chili!Soft ASP 3.6.2 Product Documentation 112

Note
On Cobalt systems, the Cobalt Administration Console is used to manage the Web server
and configure virtual hosts.

In this section:

� Starting and Stopping the Web Server

� Starting the Apache Web Server in SSL Mode

� Enabling ASP for a Virtual Host

See also:

Changing the Web Server after Installation in "Chapter 2: Installing and Uninstalling Sun
Chili!Soft ASP"

 Starting and Stopping the Web Server
By using the Sun Chili!Soft ASP Administration Console, you can start, stop, and restart the Web
server with which the Sun Chili!Soft ASP Server is configured to run. You can also view the
status of the Web server (stopped or running).

Note
This feature is not available on Cobalt systems. For those systems the Web server is
managed from the Cobalt Administration Console.

To start, stop, and restart the Web Server

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

Sun Chili!Soft ASP 3.6.2 Product Documentation 113

2. On the Server Management page (the first page to display when you open the
Administration Console), click the Web Server tab.

The Web Server tab displays.

3. Click Start, Stop, or Restart as desired.

See also:

Managing the Web Server in this chapter

 Starting the Apache Web Server in SSL Mode
The Sun Chili!Soft ASP Administration Console can be used to start, stop, and restart the Web
server with which the Sun Chili!Soft ASP Server is configured to run. Use the following
procedure to start the Apache Web server in SSL mode when Apache is started from the Sun
Chili!Soft ASP Administration Console.

Note
The steps in this procedure are based on the assumption that the Apache Web server has
been correctly configured with SSL support.

To start the Apache Web server in SSL mode

In the .installed_db file in the CHILI_INSTALL_DIR directory, make the following changes:

� Change:

webserver_start_script=/<ASP_INSTALL_DIR>/INSTALL/apachectl

"binary=/<APACHE_INSTALL_DIR>/bin/httpd"

"conf=/<APACHE_INSTALL_DIR>/conf/httpd.conf" start

To:

webserver_start_script=/<APACHE_INSTALL_DIR>/bin/apachectl

startssl

Sun Chili!Soft ASP 3.6.2 Product Documentation 114

� Change:

webserver_stop_script=/<ASP_INSTALL_DIR>/INSTALL/apachectl

"binary=/<APACHE_INSTALL_DIR>/bin/httpd"

"conf=/<APACHE_INSTALL_DIR>/conf/httpd.conf" stop

To:

webserver_stop_script=/<APACHE_INSTALL_DIR>/bin/apachectl
stop

 Enabling ASP for a Virtual Host
For the ASP Server to recognize and process an ASP application when a user requests an ASP
page, you must first define the application. In a Web hosting environment that makes use of
virtual hosts, such as with an Internet Service Provider (ISP), you define ASP applications in a
different manner than is described in "Adding an ASP Application" in this chapter. This is
because the ASP Server automatically recognizes ASP applications for each virtual host defined
for the Web server. This topic describes how to use the Sun Chili!Soft ASP Administration
Console to selectively enable or disable ASP processing for each virtual host.

In this scenario, the ASP application files must be located in the document root directory of the
Web server or virtual host. In addition, the directory containing the global.asa file cannot be
below the top-level directory of the Web server or virtual host document root. For more
information about ASP applications and the global.asa file, see "Configuring ASP Applications"
in this chapter.

Note
On Cobalt systems, the Cobalt Administration Console is used to manage the Web server
and configure virtual hosts.

Use the following procedure to selectively enable or disable ASP processing for a virtual host.

To enable or disable ASP processing for a virtual host

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the Server Management page (the first page to display when you open the
Administration Console), click the Web Server tab.

The Web Server tab displays.

Sun Chili!Soft ASP 3.6.2 Product Documentation 115

3. Click Virtual Hosts.

4. Select or deselect the check box of each virtual host for which you want to enable or disable
ASP processing.

5. Click server management in the left navigation pane.

6. Restart the ASP Server by clicking Restart.

Note
Restarting the ASP Server resets all Session and Application variables.

See also:

Managing the Web Server in this chapter

Starting and Stopping the Web Server in this chapter

Enabling FrontPage Publishing

Sun Chili!Soft ASP supports Microsoft FrontPage Server Extensions. With FrontPage Server
Extensions, Web authors and developers working on Windows-based computers can use the
FrontPage client to publish Web pages and applications to UNIX- or Linux-based Web servers, or
to Windows-based computers running a Web server other than Internet Information Server (IIS).

Sun Chili!Soft ASP supports but no longer installs FrontPage Server Extensions. You must obtain
the extensions from Microsoft. Once the extensions are installed, you must take additional steps
to enable users to publish their pages to the server. These issues are addressed in the following
topics:

� Installing FrontPage 2002 Server Extensions

� Installing FrontPage Support on Apache 1.3.19

� Enabling FrontPage Authoring

� Setting up FrontPage Users

Sun Chili!Soft ASP 3.6.2 Product Documentation 116

Sun Chili!Soft ASP enables you to run ASP pages generated by Microsoft FrontPage. Specific
questions about the installation, configuration, and use of FrontPage and FrontPage Server
Extensions should be directed to Microsoft or its representatives.

When publishing ASP pages created with FrontPage, be aware that EnableParentPaths is set to
No by default in the Sun Chili!Soft ASP configuration file. With this configuration,
CreateObject ("Scripting.FileSystemObject") calls generated in the global.asa file by
FrontPage will not work. This means that you must either change EnableParentPaths to Yes
(using the Administration Console) or else ASP developers must change the code that FrontPage
generated in the global.asa file to Server.CreateObject ("Scripting.FileSystemObject").
However, be aware that changing this setting from the default can create a security risk for your
server. For more information, see "Configuring File System Access" in this chapter.

See also:

Managing the Web Server in this chapter

 Installing FrontPage 2002 Server Extensions
FrontPage Server Extensions are no longer installed with Sun Chili!Soft ASP. You must obtain
the extensions from Microsoft. The FrontPage 2002 Server Extensions download is located at:

http://msdn.microsoft.com/library/en-us/dnservext/html/fpse02unix.asp

After you install FrontPage 2002 Server Extensions, you can connect to the Web server from the
FrontPage 2002 client to change your administrator password ("root" by default) and set up
usernames, passwords, and directories, as described in "Setting up FrontPage Users" in this
chapter.

Note
To install FrontPage support on Apache 1.3.19, see "Installing FrontPage Support on
Apache 1.3.19" in this section.

See also:

Enabling FrontPage Authoring in this chapter

Using the FrontPage Services File in a Shared Environment in this chapter

 Installing FrontPage Support on Apache 1.3.19
This topic describes how to install FrontPage 2002 support on Apache 1.3.19. If you installed the
preconfigured ("bundled") Apache 1.3.19 during the installation of Sun Chili!Soft ASP, follow
the steps in "To install FrontPage support on the bundled Apache 1.3.19" in this topic. Otherwise,
follow the steps immediately below.

To install FrontPage support on Apache 1.3.19

1. Uncompress and untar the Apache 1.3.19 package.

Sun Chili!Soft ASP 3.6.2 Product Documentation 117

2. Download the following FrontPage files from http://msdn.microsoft.com/library/en-
us/dnservext/html/fpse02unix.asp:

fp_install.sh

The FrontPage package for your platform (for example, fp50.solaris.tar.Z)

3. Uncompress and untar the FrontPage package.

4. Copy [FRONTPAGE_SOURCE_DIR]/fp-patch-apache_1.3.19 to the Apache
1.3.19 source directory.

5. Type:

#> cd [APACHE_1.3.19_SOURCE_DIR]

6. (Note: Make sure you use the GNU version of the "patch" program for this step.) Type:

#> patch -p0 <fp-patch-apache_1.3.19

7. Type:

#> ./configure --prefix=[APACHE_INSTALL_DIR] --enable-
module=so --add-module=mod_frontpage.c

8. Type:

#> make

9. Type:

#> make install

10. In the Apache httpd.conf file, change the AllowOverride option of the document root
directory to something other than "None" (for example, "All").

11. Run the fp_install.sh script.

Note: During the FrontPage install, you can skip the step for configuring subwebs.

12. Install Sun Chili!Soft ASP.

To install FrontPage support on the bundled Apache 1.3.19

1. Run the Sun Chili!Soft ASP installer and install the bundled Apache 1.3.19.

2. Download the following FrontPage files from http://msdn.microsoft.com/library/en-
us/dnservext/html/fpse02unix.asp:

fp_install.sh

The FrontPage package for your platform (for example, fp50.solaris.tar.Z)

3. Run the fp_install.sh script.

Sun Chili!Soft ASP 3.6.2 Product Documentation 118

 Enabling FrontPage Authoring
With Sun Chili!Soft ASP, Web authors can publish their work to the Web server using the
FrontPage client. To enable this capability, FrontPage Server Extensions must be installed and
FrontPage authoring must be enabled on the Web server. For information about enabling
FrontPage authoring, consult your FrontPage documentation.

FrontPage Server Extensions are supported but not installed by Sun Chili!Soft ASP. You must
obtain the extensions from Microsoft, as described in "Installing FrontPage 2002 Server
Extensions" in this chapter.

Once you have enabled FrontPage authoring, you can then access the FrontPage root Web on
your Web server to configure it for FrontPage users, as described in "Setting up FrontPage Users"
in this chapter.

Note
On Cobalt systems, FrontPage Server Extensions are managed from the Cobalt
Administration Console.

See also:

Enabling FrontPage Publishing in this chapter

Installing FrontPage 2002 Server Extensions in this chapter

Setting up FrontPage Users in this chapter

Using the FrontPage Services File in a Shared Environment in this chapter

 Setting up FrontPage Users
Before you can set up directories and Webs for FrontPage users, you must first install and
configure FrontPage Server Extensions, as described in "Installing FrontPage 2002 Server
Extensions" in this chapter. Then you must enable FrontPage authoring on the Web server, as
described in your Microsoft product documentation.

Once you have done this, you can use the FrontPage client to connect to the FrontPage root Web
to configure it for users. You can change your FrontPage administrator password ("root" by
default) and set up usernames, passwords, and directories (called "Webs") in FrontPage. For more
information about changing the administrator password and adding users and user Webs, see your
Microsoft product documentation.

To connect to the FrontPage root Web

1. Make sure FrontPage Server Extensions are installed and FrontPage authoring is enabled on
the Web server.

2. From the FrontPage client File menu, click Open Web.

3. In the Folder Name box, type the following URL:

http://[HOSTNAME]

Sun Chili!Soft ASP 3.6.2 Product Documentation 119

where [HOSTNAME] is the hostname of your Web server.

4. Click Open.

5. When prompted, type "admin" for the username and "root" for the password.

6. Make the desired configuration changes, as described in the FrontPage documentation.

See also:

Enabling FrontPage Publishing in this chapter

Using the FrontPage Services File in a Shared Environment in this chapter

Configuring a Database

Sun Chili!Soft ASP enables ASP developers to connect with several types of databases from
within an ASP application. It provides the built-in ADO Connection object that developers can
use to initiate a database connection, along with a set of ODBC drivers that enable the ASP
Server and ODBC Manager to establish and maintain the connection. (For more information
about creating and initializing ADO database connections from within an ASP application, see
"Connecting to a Database" in "Chapter 4: Building a Sun Chili!Soft ASP Application.")

For UNIX and Linux versions of Sun Chili!Soft ASP, the setup program automatically installs the
ODBC drivers for a number of databases (ODBC drivers are not installed with Sun Chili!Soft
ASP for Windows). However, for some types of databases, the system administrator must take
additional steps to configure the ASP Server. For example, the system administrator must
configure SequeLink to enable connections from an ASP Server running on a UNIX or Linux
system to a Microsoft Access and Microsoft SQL Server 6.5 database running on a Windows
system. In addition, the system administrator might want to create system DSNs to make it easier
for developers to connect with databases. This section describes how to create and edit DSNs, and
how to configure the ASP Server to connect with supported databases.

Note
You can view the list of installed drivers from the Administration Console, as described
in "Viewing the List of ODBC Drivers" in this chapter. Sun Chili!Soft provides customer
support only for ODBC drivers that are installed with Sun Chili!Soft ASP.

In this section:

� Configuring Data Source Names (DSNs)

� Viewing the List of ODBC Drivers

� Configuring SequeLink

� Configuring the Database Environment

� Configuring Database Parameters

See also:

Sun Chili!Soft ASP 3.6.2 Product Documentation 120

Creating Database Connections on the Server in "Chapter 2: Installing and Configuring Sun
Chili!Soft ASP"

Configuring Data Source Names (DSNs)

To make it easier for developers to connect an ASP application to a database, the system
administrator can add a system data source name (DSN) to the ASP Server. DSNs store
information about a database that the ASP Server and ODBC Manager use for connecting to it.
Developers can use the system DSN in connection strings on ASP pages to incorporate database
information by reference, rather than specifying the complete set of information in each string.

You can access DSN configuration settings on the Data Source Names tab of the Sun Chili!Soft
ASP Administration Console Databases page. This tab displays the list of system DSNs that are
currently configured for the ASP Server. It also provides access to settings for adding a new DSN
to the ASP Server, and for removing, editing, and testing an existing DSN.

Note
To protect the security of your database, in a shared Web hosting environment, you might
prefer that developers use DSN-less connection strings or file DSNs instead of system
DSNs. For a discussion of these security issues, see "Enabling Database Connections on
the Server" in "Chapter 2: Installing and Configuring Sun Chili!Soft ASP."

For Windows systems, DSNs are created and managed from the Windows Control Panel.
See Microsoft documentation for more information about using the Windows ODBC
Data Source Administrator.

The topics in this section describe how to add, remove, edit, and test system DSNs. In addition to
the steps described in this section, you also might need to take other steps to configure the ASP
Server to support a particular database. For more information, see "Configuring a Database" in
this chapter.

In this section:

� Adding a DSN

Sun Chili!Soft ASP 3.6.2 Product Documentation 121

� Removing a DSN

� Editing a DSN

� Testing a DSN

 Adding a DSN
To add a system DSN to the ASP Server, use the following procedure. When you add a DSN, Sun
Chili!Soft ASP automatically sets the correct parameters for the databases. If necessary, you can
edit these parameters, as described in "Editing a DSN" in this chapter.

Notes about specific databases
Microsoft Access and Microsoft SQL Server 6.5: Sun Chili!Soft ASP includes an ODBC
driver for Microsoft SQL Server 7.0 and 2000, but you must use SequeLink 4.51a for
connecting to Microsoft Access and Microsoft SQL Server 6.5 databases. You can create
a DSN for SequeLink using the procedure in this topic. However, before you do this, you
must first take the steps described in "Configuring SequeLink" in this chapter.

Oracle and Informix: For these databases, after adding a DSN you must also define
database environment variables, as described in "Configuring the Database Environment"
in this chapter. Unless the environment variables have been set previously, after you
finish adding a new DSN, the Administration Console opens the appropriate page on
which to configure these settings.

To add a system DSN

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP Server tab of the Server Management page (the first page to display when you
open the Administration Console), click Databases.

Sun Chili!Soft ASP 3.6.2 Product Documentation 122

3. On the Databases page, click Add new DSN.

The New Data Source Name page displays.

4. In the DSN box, type a name for the DSN.

5. If desired, in the Description box, type a description of the DSN to help distinguish it from
other DSNs.

6. In the Database type drop-down list, select the type of database for which you want to
configure a DSN (for Microsoft Access and Microsoft SQL Server 6.5 databases, select
SequeLink 4.51a).

7. In the remaining text boxes, provide the requested information. For more information, see the
topic for your database in "Configuring Database Parameters" in this chapter.

8. To save your changes, click Save, and then click Done.

– or –

Click Cancel to revert to the last settings that were saved.

Sun Chili!Soft ASP 3.6.2 Product Documentation 123

The new DSN displays in the Data Source Names list. After adding a DSN, it is a good idea to
test it, as described in "Testing a DSN" in this chapter.

Note
For Windows systems, data source names are created and managed from the Windows
Control Panel. See Microsoft documentation for more information about using the
Windows ODBC Data Source Administrator.

See also:

Configuring Data Source Names (DSNs) in this chapter

Removing a DSN in this chapter

Editing a DSN in this chapter

Enabling Database Connections on the Server in "Chapter 2: Installing and Configuring Sun
Chili!Soft ASP"

 Removing a DSN
You remove a system DSN from the ASP Server by using the Sun Chili!Soft ASP Administration
Console. When you do this, it no longer can be used in an ASP application to reference database
connection information.

To remove a system DSN

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP Server tab of the Server Management page (the first page to display when you
open the Administration Console), click Databases.

Sun Chili!Soft ASP 3.6.2 Product Documentation 124

3. On the Databases page, in the same line as the name of the DSN you want to remove, click
remove.

4. When prompted to confirm the removal, click Yes, and then click Done.

See also:

Configuring Data Source Names (DSNs) in this chapter

Adding a DSN in this chapter

Editing a DSN in this chapter

Testing a DSN in this chapter

Enabling Database Connections on the Server in "Chapter 2: Installing and Configuring Sun
Chili!Soft ASP"

 Editing a DSN
After adding a system DSN to the ASP Server you can change its information, such as name,
description, IP address, username, and password. You can also add values for parameters that
were not configured when you added the DSN.

When you add a new DSN to the ASP Server, Sun Chili!Soft ASP automatically sets the correct
parameters for the database. Changing these parameters can affect database performance and it is
not recommended that you do so. The default settings are sufficient for most applications. Before
editing database parameters, see the topics describing the required parameters for each ODBC
driver in "Configuring Database Parameters" in this chapter.

To edit system DSN information

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

Sun Chili!Soft ASP 3.6.2 Product Documentation 125

2. On the ASP Server tab of the Server Management page, click Databases.

3. On the Databases page, in the same line as the name of the DSN you want to change, click
edit.

The Edit Data Source Name page displays.

Sun Chili!Soft ASP 3.6.2 Product Documentation 126

4. Change the database parameters as desired.

5. To save your changes, click Save and then click Done.

– or –

Click Cancel to revert to the last settings that were saved.

See also:

Configuring Data Source Names (DSNs) in this chapter

Adding a DSN in this chapter

Removing a DSN in this chapter

Testing a DSN in this chapter

 Testing a DSN
When you have finished adding a new system DSN or editing its parameters, you can use the
following procedure to verify that it is functioning correctly.

To test a system DSN

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

Sun Chili!Soft ASP 3.6.2 Product Documentation 127

2. On the ASP Server tab of the Server Management page (the first page to display when you
open the Administration Console), click Databases.

3. On the Databases page, in the same line as the name of the DSN you want to change, click
test.

A dialog box opens, displaying information about the connection. If it reveals an error,
correct the problem and then retest the connection.

Sun Chili!Soft ASP 3.6.2 Product Documentation 128

Note
If you are running Sun Chili!Soft ASP with Zeus Web Server, and the test fails, it could
be because the Web server hostname is not configured correctly. When you configure
Zeus Web Server to run with Sun Chili!Soft ASP, you should NOT use the fully qualified
domain name ("server address") for the Web server hostname. Instead, use the hostname
alone. For example, do not use this: hostname.domain.com. Instead, use this: hostname.

If your Zeus Web server is configured with the server address rather than the hostname
alone, you can test a DSN by using the SQLEXECUTE diagnostic included with Sun
Chili!Soft ASP. For more information, see "Accessing Documentation, Samples, and
Diagnostics" in "Introduction: About This Documentation."

See also:

Configuring Data Source Names (DSNs) in this chapter

Adding a DSN in this chapter

Editing a DSN in this chapter

Removing a DSN in this chapter

Viewing the List of ODBC Drivers

Sun Chili!Soft ASP enables you to connect to a variety of ODBC-compliant databases by using
the appropriate ODBC driver. To verify whether Sun Chili!Soft ASP supports a specific version
of a database, you can view the list of ODBC drivers included with Sun Chili!Soft ASP on the
Drivers tab of the Sun Chili!Soft ASP Administration Console Databases page.

Note
Sun Chili!Soft ASP for UNIX and Linux installs the ODBC drivers for a number of
databases. Sun Chili!Soft ASP for Windows does not install any ODBC drivers. For
Windows systems, the list of installed ODBC drivers can be viewed from the Windows
Control Panel (double-click the Data Sources icon). See Microsoft documentation for
more information about using the Windows ODBC Data Source Administrator.

To view the list of ODBC Drivers

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP Server tab of the Server Management page (the first page to display when you
open the Administration Console), click Databases.

Sun Chili!Soft ASP 3.6.2 Product Documentation 129

3. Click the Drivers tab.

The ODBC Drivers page displays, showing the list of installed ODBC drivers and their
locations in the file system.

Configuring SequeLink

Sun Chili!Soft ASP includes the client portion of DataDirect SequeLink 4.5.1, which enables you
to connect to a remote Microsoft Access or Microsoft SQL Server 6.5 database running on
Windows 95, Windows 98, Windows NT 3.51 or 4.0, or Windows 2000. The SequeLink client
resides on the same computer as the ASP Server and behaves like an ODBC driver. It
communicates with a SequeLink server running on the remote database server.

Before you can use SequeLink to connect to a remote database, you must take the following
steps:

Sun Chili!Soft ASP 3.6.2 Product Documentation 130

1. Configure the SequeLink client software for Microsoft Access or Microsoft SQL Server 6.5,
as described later in this topic.

2. Install and configure the SequeLink server software on the database server. You can
download the software from the Sun Chili!Soft Web site at:

ftp://ftp.chilisoft.com/chiliasp/sequelink/slkntsrv.zip

3. Add a SequeLink DSN by using the Administration Console, as described in "Adding a
DSN" in this chapter. When you do this, be sure to use the DSN name that you create in the
following procedure.

To configure the SequeLink client for Microsoft Access

1. From the Sun Chili!Soft ASP instance subdirectory of the Sun Chili!Soft ASP installation
directory, type the following command:

./setsqlnk

2. Select [2] New to create a new SequeLink DSN. Enter the following information when
prompted:

Name: The name of the SequeLink DSN that you want to create (you must use the same
DSN name when you configure the SequeLink DSN in the Administration Console).

Description: Optional.

Transliteration: Do not configure or change this option.

Select a network: Select TCP.

Host: Enter the IP address of the Windows server on which your database is running.

ServerType: Select Windows NT Server.

User: Enter the username for accessing the Windows server.

Password: Enter the password for accessing the Windows server.

Select a Database service: Select ODBC MS Access.

Name: Enter the name of the Windows service that you created when installing the
SequeLink Server software.

Database: Enter the name of the database to which you want this DSN to connect, for
example, E:\data\publish.mdb (note the Windows syntax for providing the path
information).

3. Select [6] Test. The setup utility should return Test Passed. If you receive an error, select [4]
to edit your DSN information.

4. After completing SequeLink setup, select [0] to exit.

5. Configure the SequeLink DSN, as described in "Adding a DSN" in this chapter.

To configure the SequeLink client for Microsoft SQL Server 6.5

Sun Chili!Soft ASP 3.6.2 Product Documentation 131

1. From the Sun Chili!Soft ASP instance subdirectory of the Sun Chili!Soft ASP installation
directory, type:

./setsqlnk

2. Select [2] New to create a new SequeLink DSN. Enter the following information when
prompted:

Name: The name of the SequeLink DSN that you want to create (you must use the same
DSN name when you configure the SequeLink DSN in the Administration Console).

Description: Optional.

Transliteration: Do not configure or change this setting.

Select a network: Select TCP.

Host: Enter the IP address of the Windows server on which your database is running.

ServerType: Select Windows NT Server.

User: Enter the username for accessing the Windows server.

Password: Enter the password for accessing the Windows server.

Select a Database service: Select MS SQL Server.

Name: Enter the name of the Windows service that you created when installing the
SequeLink Server software.

Database: Enter the name of the database to which you want this DSN to connect.

User: Enter the SQL Server username for accessing the database.

Password: Enter the password for accessing the SQL Server database (required).

3. Select [6] Test. The setup utility should return Test Passed. If you receive an error, select [4]
to edit your DSN information.

4. After completing SequeLink setup, select [0] to exit.

5. Configure the SequeLink DSN, as described in "Adding a DSN" in this chapter.

See also:

Configuring a Database in this chapter

SequeLink Parameters in this chapter

Configuring the Database Environment

When you configure data source names (DSNs) for Oracle and Informix databases for Sun
Chili!Soft ASP, you must also specify additional environment information, as described in this
section. For more information about the settings to use, consult your database administrator. For
more information about configuring DSNs, see "Configuring Data Source Names (DSNs)" in this
chapter.

In this section:

Sun Chili!Soft ASP 3.6.2 Product Documentation 132

� Setting Oracle Environment Variables

� Setting Informix Environment Variables

 Setting Oracle Environment Variables
When you configure a DSN for an Oracle database, you must also specify values for the
Oracle_Home and Library path environment variables by using the following procedure. For
information about the values to set for these variables, consult your database administrator.

To set Oracle environment variables

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP Server tab of the Server Management page (the first page to display when you
open the Administration Console), click Databases.

3. On the Databases page, click the Environment tab.

The Environment Database Specific Variables page displays.

Sun Chili!Soft ASP 3.6.2 Product Documentation 133

4. Under the Oracle heading, in the ORACLE_HOME and Library path boxes, type the
desired values.

5. Select the Restart the ASP Server after saving check box, and then click Save.

Note
Restarting the ASP Server resets all Session and Application variables.

See also:

Configuring a Database in this chapter

 Setting Informix Environment Variables
When you configure a DSN for an Informix 7 or 9 database, you must also specify values for the
INFORMIXDIR, INFORMIXSERVER, Temp path, Library path, and eSQL path
environment variables by using the following procedure. For information about the values to set
for these variables, consult your database administrator.

To set Informix environment variables

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

Sun Chili!Soft ASP 3.6.2 Product Documentation 134

2. On the ASP Server tab of the Server Management page (the first page to display when you
open the Administration Console), click Databases.

3. On the Databases page, click the Environment tab.

The Environment Database Specific Variables page displays.

4. Under the Informix heading, in the INFORMIXDIR, INFORMIXSERVER, Temp path,
Library path, and eSQL path boxes, type the desired values.

5. Select the Restart the ASP Server after saving check box, and then click Save.

Note
Restarting the ASP Server resets all Session and Application variables.

Sun Chili!Soft ASP 3.6.2 Product Documentation 135

See also:

Configuring a Database in this chapter

Configuring Database Parameters

To make it easier for Web developers to connect to a database from an ASP page, you can "add"
a system DSN for the database to the ASP Server, as described in "Adding a DSN" in this
chapter. When you do this, Sun Chili!Soft ASP automatically configures the appropriate
parameters for the ODBC driver installed for that database. The ASP Server and ODBC Manager
use this information to establish the connection.

In most cases, you should not change the parameters that Sun Chili!Soft ASP configures.
However, there might be times when you need to edit them. This topic provides reference
information about the parameters that are configured for the ODBC drivers installed by Sun
Chili!Soft ASP.

Note
Sun Chili!Soft ASP for UNIX and Linux installs the ODBC drivers for a number of
databases (ODBC drivers are not installed with Sun Chili!Soft ASP for Windows). You
can view the list of installed drivers from the Administration Console, as described in
"Viewing the List of ODBC Drivers" in this chapter. Sun Chili!Soft provides support
only for ODBC drivers that are installed with Sun Chili!Soft ASP.

In this section:

� DB2

� dBASE 5

� Informix (with and without client)

� Microsoft SQL Server

� MySQL

� Oracle (with and without client)

� PostgreSQL

� SequeLink (for connecting to Microsoft Access and Microsoft SQL Server 6.5 databases)

� Sybase

� Text

See also:

Configuring a Database in this chapter

Editing a DSN in this chapter

Sun Chili!Soft ASP 3.6.2 Product Documentation 136

 DB2 Parameters
The following table describes the DB2 (UDB, v7.1) database parameters available for configuring
system DSNs, as they appear on the Sun Chili!Soft ASP Administration Console New Data
Source Name and Edit Data Source Name pages. For more information, see "Configuring Data
Source Names (DSNs)" in this chapter.

Parameter Explanation

DSN* This is the name of the data source name (DSN) you are
configuring. It must match the catalogued name of the DB2
database.

Description This field provides a description of the DSN to distinguish it
from others.

Database type* This indicates for which type of database you are configuring
this DSN (DB2).

Driver On the New Data Source Name page, this is the name of the
ODBC driver installed for the type of database selected in the
Database type box (DB2). It is a nonconfigurable field.

On the Edit Data Source Name page, this is the absolute path
name of the ODBC driver specified for this DSN. It is a
configurable field.

Database* This entry must match the catalogued name of this DB2
database. The data source name (DSN) specified above must
match this entry.

LogonID* This is the username required for accessing the database. If the
username is not provided when configuring a system DSN,
every connection string using this DSN must include the
username.

Important Security Note:

To prevent access to a database by unauthorized users in shared
Web hosting environments, it is recommended that the username
and password be provided in each connection string, rather than
in the system DSN.

Password* This is the password required for accessing the database. If the
password is not provided when configuring a system DSN,
every connection string using the DSN must include the
password.

Important Security Note:

To prevent access to a database by unauthorized users in shared
Web hosting environments, it is recommended that the username
and password be provided in each connection string, rather than
in the system DSN.

Sun Chili!Soft ASP 3.6.2 Product Documentation 137

IPAddress* This is the IP address for the database server (DB2).

TcpPort* This is the port for the database server (DB2).

Location Specify this attribute only if the DB2 database is running on
OS/390.

Location is a path that specifies the DB2 location name. Use the
name that was defined during the local DB2 installation.

Collection Specify this attribute only if the DB2 database is running on
OS/390.

Collection is the name that identifies a group of packages. These
packages include the Connect ODBC for DB2 Wire Protocol
driver packages. The default is DATADIRECTOO.

Package This is the package created by the DataDirect driver that reflects
all of the parameters associated with a specific database (the
parameters you specified).

Package is displayed in the Administration Console only when
you are editing an existing DSN, not adding a new one.

Note: Do not edit this package. The package is unique to a
specific database.

*Required parameters

See also:

Configuring a Database in this chapter

Configuring Database Parameters in this chapter

 dBASE 5 Parameters
The following table describes the dBASE 5 database parameters available for configuring system
DSNs, as they appear on the Sun Chili!Soft ASP Administration Console New Data Source
Name and Edit Data Source Name pages. For more information, see "Configuring Data Source
Names (DSNs)" in this chapter.

Parameter Explanation

DSN* This is the name of the data source name (DSN) you are configuring.

Description This field provides a description of the DSN to help distinguish it from
others.

Database type* This indicates for which type of database you are configuring this DSN
(dBASE 5).

Driver* On the New Data Source Name page, this is the name of the ODBC
driver installed for the type of database selected in the Database type
box (dBASE 5). It is a nonconfigurable field.

Sun Chili!Soft ASP 3.6.2 Product Documentation 138

On the Edit Data Source Name page, this is the absolute path name of
the ODBC driver specified for this DSN. It is a configurable field.

Database* This is the path name of the directory in which the DBF files reside.

IntlSort This field determines the order in which records are retrieved when you
issue a Select statement with an Order By clause. When set to 0 (the
default), ASCII sort order is used. Items are sorted alphabetically, with
uppercase letters preceding lowercase letters (for example, "A, b, C"
would be sorted as "A, C, b").

When set to 1, international sort order is used, as defined by your
operating system. The order is always alphabetic, regardless of case.

* Required parameters

See also:

Configuring a Database in this chapter

Configuring Database Parameters in this chapter

 Informix Parameters (with Client): UNIX only
The following table describes the Informix 7 or 9 (with client) database parameters available for
configuring system DSNs, as they appear on the Sun Chili!Soft ASP Administration Console
New Data Source Name and Edit Data Source Name pages. For more information, see
"Configuring Data Source Names (DSNs)" in this chapter. For Informix Parameters (without
Client), see below.

Note
This driver is not installed with Sun Chili!Soft ASP for Linux. Parameters for the
Informix driver that is installed with Sun Chili!Soft ASP for Linux are listed below in
Informix Parameters (without Client).

Parameter Explanation

DSN* This is the name of the data source name (DSN) you are configuring.

Description This field provides a description of the DSN to help distinguish it from
others.

Database type* This indicates for which type of database you are configuring this DSN
(Informix).

Driver* On the New Data Source Name page, this is the name of the ODBC
driver installed for the type of database selected in the Database type
box (Informix). It is a nonconfigurable field.

On the Edit Data Source Name page, this is the absolute path name of

Sun Chili!Soft ASP 3.6.2 Product Documentation 139

the ODBC driver specified for this DSN. It is a configurable field.

ServerName* This is the name of the database server.

HostName* This is the name of the computer on which the Informix server resides.

Database* Because there can be multiple installations of a database running on one
computer, each database is given its own name. This parameter
indicates the name of the database for which you are configuring this
DSN.

LogonID This is the username required for accessing the database. If the
username is not provided when configuring a system DSN, every
connection string using this DSN must include the username.

Important Security Note:

To prevent access to a database by unauthorized users in shared Web
hosting environments, it is recommended that the username and
password be provided in each connection string, rather than in the
system DSN.

Password This is the password required for accessing the database. If the
password is not provided when configuring a system DSN, every
connection string using this DSN must include the password.

Important Security Note:

To prevent access to a database by unauthorized users in shared Web
hosting environments, it is recommended that the username and
password be provided in each connection string, rather than in the
system DSN.

* Required parameters

Informix Parameters (without Client): UNIX and Linux
The following table describes the Informix 2000 (without client) database parameters available
for configuring system DSNs, as they appear on the Sun Chili!Soft ASP Administration Console
New Data Source Name and Edit Data Source Name pages. For more information, see
"Configuring Data Source Names (DSNs)" in this chapter.

Note
On Linux, only one Informix driver is listed in the Sun Chili!Soft ASP Administration
Console.

Parameter Explanation

DSN* This is the name of the data source name (DSN) you are configuring.

Description This field provides a description of the DSN to help distinguish it from

Sun Chili!Soft ASP 3.6.2 Product Documentation 140

others.

Database type* This indicates for which type of database you are configuring this DSN
(Informix).

Driver* On the New Data Source Name page, this is the name of the ODBC
driver installed for the type of database selected in the Database type
box (Informix). It is a nonconfigurable field.

On the Edit Data Source Name page, this is the absolute path name of
the ODBC driver specified for this DSN. It is a configurable field.

Database* Because there can be multiple installations of a database running on one
computer, each database is given its own name. This parameter
indicates the name of the database for which you are configuring this
DSN.

LogonID This is the username required for accessing the database. If the
username is not provided when configuring a system DSN, every
connection string using this DSN must include the username.

Important Security Note:

To prevent access to a database by unauthorized users in shared Web
hosting environments, it is recommended that the username and
password be provided in each connection string, rather than in the
system DSN.

Password This is the password required for accessing the database. If the
password is not provided when configuring a system DSN, every
connection string using this DSN must include the password.

Important Security Note:

To prevent access to a database by unauthorized users in shared Web
hosting environments, it is recommended that the username and
password be provided in each connection string, rather than in the
system DSN.

HostName* This is the name of the computer on which the Informix server resides.

PortNumber* This is the port on which the database server is configured to listen.
Ask your database administrator for this information.

ServerName* This is the name of the database server.

* Required parameters

See also:

Configuring a Database in this chapter

Configuring Database Parameters in this chapter

Sun Chili!Soft ASP 3.6.2 Product Documentation 141

 Microsoft SQL Server Parameters
The following table describes the Microsoft SQL Server 7.0 and 2000 database parameters
available for configuring system DSNs, as they appear on the Sun Chili!Soft ASP Administration
Console New Data Source Name and Edit Data Source Name pages. For more information, see
"Configuring Data Source Names (DSNs)" in this chapter.

Parameter Explanation

Data Source Name* This is the name of the data source name (DSN) you are configuring.

Database type* This indicates for which type of database you are configuring this DSN
(Microsoft SQL Server).

Description This field provides a description of the DSN to help distinguish it from
others.

Driver* On the New Data Source Name page, this is the name of the ODBC
driver installed for the type of database selected in the Database type
box (Microsoft SQL Server). It is a nonconfigurable field.

On the Edit Data Source Name page, this is the absolute path name of
the ODBC driver specified for this DSN. It is a configurable field.

Database* Because there can be multiple installations of a database running on one
computer, each database is given its own name. This parameter
indicates the name of the database for which you are configuring this
DSN.

ServerIPAddress* This is the IP address of the SQL Server 7.0 or 2000 database server.

ServerPortNumber* This is the port on which the SQL Server 7.0 or 2000 database server is
configured to listen. The default is 1433.

LogonID This is the username required for accessing the database. If the
username is not provided when configuring a system DSN, every
connection string using this DSN must include the username.

Important Security Note:

To prevent access to a database by unauthorized users in shared Web
hosting environments, it is recommended that the username and
password be provided in each connection string, rather than in the
system DSN.

Password This is the password required for accessing the database. If the
password is not provided when configuring a system DSN, every
connection string using the DSN must include the password.

Important Security Note:

To prevent access to a database by unauthorized users in shared Web
hosting environments, it is recommended that the username and
password be provided in each connection string, rather than in the

Sun Chili!Soft ASP 3.6.2 Product Documentation 142

system DSN.

* Required parameters

See also:

Configuring a Database in this chapter

Configuring Database Parameters in this chapter

 MySQL Parameters (Solaris, AIX, and Linux only)
The following table describes the MySQL 3.22.30 and 3.23.49 database parameters available for
configuring system DSNs, as they appear on the Sun Chili!Soft ASP Administration Console
New Data Source Name and Edit Data Source Name pages. For more information, see
"Configuring Data Source Names (DSNs)" in this chapter.

Parameter Explanation

Data Source Name* This is the name of the data source name (DSN) you are configuring.

Database type* This indicates for which type of database you are configuring this DSN
(MySQL).

Description This field provides a description of the DSN to help distinguish it from
others.

Driver* On the New Data Source Name page, this is the name of the ODBC
driver installed for the type of database selected in the Database type
box (MySQL). It is a nonconfigurable field.

On the Edit Data Source Name page, this is the absolute path name of
the ODBC driver specified for this DSN. It is a configurable field.

Server* This is the IP address of the MySQL database server. If this field is
empty, the server is assumed to be running on the local computer.

Port* This is the port on which the MySQL database server is configured to
listen. The default is 3306.

Database* Because there can be multiple installations of a database running on one
computer, each database is given its own name. This parameter
indicates the name of the database for which you are configuring this
DSN.

User This is the username required for accessing the database. If the
username is not provided when configuring a system DSN, every
connection string using this DSN must include the username.

Important Security Note:

To prevent access to a database by unauthorized users in shared Web
hosting environments, it is recommended that the username and
password be provided in each connection string, rather than in the

Sun Chili!Soft ASP 3.6.2 Product Documentation 143

system DSN.

Password This is the password required for accessing the database. If the
password is not provided when configuring a system DSN, every
connection string using the DSN must include the password.

Important Security Note:

To prevent access to a database by unauthorized users in shared Web
hosting environments, it is recommended that the username and
password be provided in each connection string, rather than in the
system DSN.

UseCursorLib When this option is enabled (the check box is selected), ODBC
Manager cursor support overrides ODBC driver cursor support. This
enables RecordSet.Update, which is not supported in the default
MyODBC driver. This parameter is enabled by default.

* Required parameters

See also:

Configuring a Database in this chapter

Configuring Database Parameters in this chapter

 Oracle Parameters (with Client)
The following table describes the Oracle 7 and 8.05 (with client) database parameters available
for configuring system DSNs, as they appear on the Sun Chili!Soft ASP Administration Console
New Data Source Name and Edit Data Source Name pages. For more information, see
"Configuring Data Source Names (DSNs)" in this chapter. For Oracle Parameters (without
Client), see below.

Parameter Explanation

DSN* This is the name of the data source name (DSN) you are configuring.

Description* This field provides a description of the DSN to help distinguish it
from others.

Database type This indicates for which type of database you are configuring this
DSN (Oracle).

Driver* On the New Data Source Name page, this is the name of the ODBC
driver installed for the type of database selected in the Database
type box (Oracle). It is a nonconfigurable field.

On the Edit Data Source Name page, this is the absolute path name
of the ODBC driver specified for this DSN. It is a configurable field.

ServerName* This is the TNS name as defined in the tnsnames.ora file by the
Oracle database client utility.

Sun Chili!Soft ASP 3.6.2 Product Documentation 144

LogonID This is the username required for accessing the database. If the
username is not provided when configuring a system DSN, every
connection string using this DSN must include the username.

Important Security Note:

To prevent access to a database by unauthorized users in shared Web
hosting environments, it is recommended that the username and
password be provided in each connection string, rather than in the
system DSN.

Password This is the password required for accessing the database. If the
password is not provided when configuring a system DSN, every
connection string using the DSN must include the password.

Important Security Note:

To prevent access to a database by unauthorized users in shared Web
hosting environments, it is recommended that the username and
password be provided in each connection string, rather than in the
system DSN.

EnableDescribeParam When this option is enabled (the check box is selected), all
StoredProcedure arguments are returned as string types. This
parameter is enabled by default.

ProcedureRetResults When this option is enabled (the check box is selected), Oracle
returns record sets from a StoredProcedure call. This parameter is
enabled by default.

* Required parameters

Oracle Parameters (without Client)
The following table describes the Oracle 8i (8.1.6 and 8.1.7) and 9i database parameters (without
client) available for configuring system DSNs, as they appear on the Sun Chili!Soft ASP
Administration Console New Data Source Name and Edit Data Source Name pages. For more
information, see "Configuring Data Source Names (DSNs)" in this chapter.

Parameter Explanation

DSN* This is the name of the data source name (DSN) you are
configuring.

Description* This field provides a description of the DSN to help
distinguish it from others.

Database type This indicates for which type of database you are configuring
this DSN (Oracle).

Driver* On the New Data Source Name page, this is the name of the
ODBC driver installed for the type of database selected in the
Database type box (Oracle). It is a nonconfigurable field.

Sun Chili!Soft ASP 3.6.2 Product Documentation 145

On the Edit Data Source Name page, this is the absolute
path name of the ODBC driver specified for this DSN. It is a
configurable field.

HostName This is the computer on which the Oracle server resides. If
your network supports named servers, you can specify a host
name (such as Oracleserver). Otherwise, specify an IP
address.

PortNumber This is the port on which the database server is configured to
listen. Ask your database administrator for this information.

SID This is the Oracle System Identifier that refers to the instance
of Oracle running on the server. You must provide this
information when connecting to servers that support more
than one instance of an Oracle database.

LogonID This is the username required for accessing the database. If
the username is not provided when configuring a system
DSN, every connection string using this DSN must include
the username.

Important Security Note:

To prevent access to a database by unauthorized users in
shared Web hosting environments, it is recommended that the
username and password be provided in each connection
string, rather than in the system DSN.

Password This is the password required for accessing the database. If
the password is not provided when configuring a system
DSN, every connection string using the DSN must include
the password.

Important Security Note:

To prevent access to a database by unauthorized users in
shared Web hosting environments, it is recommended that the
username and password be provided in each connection
string, rather than in the system DSN.

EnableDescribeParam When this option is enabled (the check box is selected), all
StoredProcedure arguments are returned as string types.
This parameter is enabled by default.

ProcedureRetResults When this option is enabled (the check box is selected),
Oracle returns record sets from a StoredProcedure call. This
parameter is enabled by default.

CatalogOptions When this option is enabled (the check box is selected), the
result column REMARKS for the catalog functions
SQLTables and SQLColumns, and the result column
COLUMN_DEF for the catalog function SQLColumns,

Sun Chili!Soft ASP 3.6.2 Product Documentation 146

will have meaning for Oracle. Enabling this option reduces
the performance of your queries. This option is disabled by
default, which returns SQL_NULL_DATA for the result
columns COLUMN_DEF and REMARKS.

EnableStaticCursorsForLongD
ata

When this option is enabled (the check box is selected), the
driver supports long columns when using a static cursor.
Enabling this option causes a performance penalty at the time
of execution when reading long data. This option is disabled
by default.

ApplicationUsingThreads When this option is enabled (the check box is selected), the
driver works with multi-threaded applications. When
enabled, the driver is thread-safe. This option is enabled by
default.

* Required parameters

See also:

Configuring a Database in this chapter

Configuring Database Parameters in this chapter

 PostgreSQL Parameters (Solaris and Linux only)
The following table describes the PostgreSQL 6.5.2 and 7.1.3 database parameters available for
configuring system DSNs, as they appear on the Sun Chili!Soft ASP Administration Console
New Data Source Name and Edit Data Source Name pages. For more information, see
"Configuring Data Source Names (DSNs)" in this chapter.

Parameter Explanation

Data Source Name* This is the name of the data source name (DSN) you are configuring.

Database type* This indicates for which type of database you are configuring this
DSN (PostgreSQL).

Description This field provides a description of the DSN to help distinguish it
from others.

Driver* On the New Data Source Name page, this is the name of the ODBC
driver installed for the type of database selected in the Database
type box (PostgreSQL). It is a nonconfigurable field.

On the Edit Data Source Name page, this is the absolute path name
of the ODBC driver specified for this DSN. It is a configurable field.

ServerName* This is the IP address of the PostgreSQL database server. If this field
is empty, the server is assumed to be running on the local computer.

Port* This is the port on which the PostgreSQL database server is
configured to listen. The default is 5432.

Sun Chili!Soft ASP 3.6.2 Product Documentation 147

Database* Because there can be multiple installations of a database running on
one computer, each database is given its own name. This parameter
indicates the name of the database for which you are configuring this
DSN.

User This is the username required for accessing the database. If the
username is not provided when configuring a system DSN, every
connection string using this DSN must include the username.

Important Security Note:

To prevent access to a database by unauthorized users in shared Web
hosting environments, it is recommended that the username and
password be provided in each connection string, rather than in the
system DSN.

Password This is the password required for accessing the database. If the
password is not provided when configuring a system DSN, every
connection string using the DSN must include the password.

Important Security Note:

To prevent access to a database by unauthorized users in shared Web
hosting environments, it is recommended that the username and
password be provided in each connection string, rather than in the
system DSN.

ReadOnly* When this option is enabled (the check box is selected), the database
returns all record sets as read-only. This parameter is disabled by
default.

UseCursorLib When this option is enabled (the check box is selected), ODBC
Manager cursor support overrides ODBC driver cursor support. Use
this to enable scrollable cursors not supported by the driver. This
parameter is enabled by default.

* Required parameters

See also:

Configuring a Database in this chapter

Configuring Database Parameters in this chapter

 SequeLink Parameters
You use SequeLink for connecting to Microsoft Access and Microsoft SQL Server 6.5 databases
running on Windows-based computers. The following table describes the SequeLink database
parameters available for configuring system DSNs, as they appear on the Sun Chili!Soft ASP
Administration Console New Data Source Name and Edit Data Source Name pages.

Sun Chili!Soft ASP 3.6.2 Product Documentation 148

Parameter Explanation

Data Source Name* This is the name of the data source name (DSN) you are
configuring. It must match the entry for SQLnkDSN (below),
which is the DSN created with the ./setsqllnk utility. For more
information, see "Configuring SequeLink" in this chapter.

Database type On the New Data Source Name page, select SequeLink 4.51a
from the list to configure a DSN for a Microsoft Access or
Microsoft SQL Server 6.5 database.

On the Edit Data Source Name page, SequeLink 4.51a appears
in this field.

Description* This field provides a description of the DSN to help distinguish it
from others.

Driver* On the New Data Source Name page, this is the name of the
database driver configured for this DSN (SequeLink). It is a
nonconfigurable field.

On the Edit Data Source Name page, this is the absolute path
name of the database driver specified for this DSN. It is a
configurable field.

SQLnkDSN* This is the name of the DSN configured by running the ./setsqllnk
utility. For more information, see "Configuring SequeLink" in
this chapter.

Database* For Microsoft Access databases, this is the absolute path name of
the Access MDB file on the Windows-based server.

For Microsoft SQL Server 6.5 databases, this is the database
name of the SQL Server database.

LogonID This is the username required for accessing the database. If the
username is not provided when configuring a system DSN, every
connection string using this DSN must include the username.

Important Security Note:

To prevent access to a database by unauthorized users in shared
Web hosting environments, it is recommended that the username
and password be provided in each connection string, rather than
in the system DSN.

PreFetchRows This is an advanced feature. Do not change this setting without
first contacting Sun Chili!Soft Customer Support. The default is
30.

Password This is the password required for accessing the database. If the
password is not provided when configuring a system DSN, every
connection string using the DSN must include the password.

Sun Chili!Soft ASP 3.6.2 Product Documentation 149

Important Security Note:

To prevent access to a database by unauthorized users in shared
Web hosting environments, it is recommended that the username
and password be provided in each connection string, rather than
in the system DSN.

EnableWarnings This is an advanced feature. Do not change this setting without
first contacting Sun Chili!Soft Customer Support. This parameter
is enabled by default (the check box is selected).

UidPwdMapping Microsoft SQL Server requires two sets of usernames and
passwords, one for accessing the host server, and one for
accessing the database. Only one pair can be passed via the
connection string (or the LoginID/password configured here).
The other must be configured into the SqlnkDSN, as described in
"Configuring SequeLink" in this chapter.

When UidPwdMapping is enabled (the check box is selected),
the LoginID represents the host. When UidPwdMapping is
disabled (the check box is not selected) the LoginID represents
the database. This parameter is disabled by default.

AllowBatchStatements This is an advanced feature. Do not change this setting without
first contacting Sun Chili!Soft Customer Support. This parameter
is disabled by default (the check box is not selected).

EnableScrollableCursors This option enables the use of cursor types other than
"ForwardOnly." This parameter is enabled by default (the check
box is selected).

DataDictionary This is an advanced feature. Do not change this setting without
first contacting Sun Chili!Soft Customer Support.

* Required parameter

See also:

Configuring SequeLink in this chapter

Configuring a Database in this chapter

Configuring Database Parameters in this chapter

 Sybase Parameters
The following table describes the Sybase 11.9.2 or 12.5 database parameters available for
configuring system DSNs, as they appear on the Sun Chili!Soft ASP Administration Console
New Data Source Name and Edit Data Source Name pages. For more information, see
"Configuring Data Source Names (DSNs)" in this chapter.

Sun Chili!Soft ASP 3.6.2 Product Documentation 150

Parameter Explanation

DSN* This is the name of the data source name (DSN) you are configuring.

Description This field provides a description of the DSN to help distinguish it
from others.

Database type* This indicates for which type of database you are configuring this
DSN (Sybase).

Driver On the New Data Source Name page, this is the name of the ODBC
driver installed for the type of database selected in the Database type
box (Sybase). It is a nonconfigurable field.

On the Edit Data Source Name page, this is the absolute path name
of the ODBC driver specified for this DSN. It is a configurable field.

Server* This is the IP address of the Sybase database server. If this field is
empty, the server is assumed to be running on the local computer.

Port* This is the port of the Sybase database server.

Database* Because there can be multiple installations of a database running on
one computer, each database is given its own name. This parameter
indicates the name of the database for which you are configuring this
DSN.

LogonID* This is the username required for accessing the database. If the
username is not provided when configuring a system DSN, every
connection string using this DSN must include the username.

Important Security Note:

To prevent access to a database by unauthorized users in shared Web
hosting environments, it is recommended that the username and
password be provided in each connection string, rather than in the
system DSN.

Password* This is the password required for accessing the database. If the
password is not provided when configuring a system DSN, every
connection string using the DSN must include the password.

Important Security Note:

To prevent access to a database by unauthorized users in shared Web
hosting environments, it is recommended that the username and
password be provided in each connection string, rather than in the
system DSN.

*Required parameters

See also:

Configuring a Database in this chapter

Configuring Database Parameters in this chapter

Sun Chili!Soft ASP 3.6.2 Product Documentation 151

 Text Parameters
The following table describes the Text parameters available for configuring system DSNs, as they
appear on the Sun Chili!Soft ASP Administration Console New Data Source Name and Edit
Data Source Name pages. For more information, see "Configuring Data Source Names (DSNs)"
in this chapter.

Parameter Explanation

DSN* This is the name of the data source name (DSN) you are configuring.

Description This field provides a description of the DSN to help distinguish it from
others.

Database type* This indicates for which type of database you are configuring this DSN.

Driver* This is the installed OBDC driver specified for this DSN.

Database* This is the directory in which the text files are stored. If left empty, the
current working directory is used.

IntlSort This field determines the order in which records are retrieved when you
issue a Select statement with an Order By clause. When set to 0 (the
default), ASCII sort order is used. Items are sorted alphabetically, with
uppercase letters preceding lowercase letters (for example, "A, b, C"
would be sorted as "A, C, b").

When set to 1, international sort order is used, as defined by your
operating system. The order is always alphabetic, regardless of case.

* Required parameters

See also:

Configuring a Database in this chapter

Configuring Database Parameters in this chapter

Configuring ActiveX Data Objects (ADO) Connections

ActiveX Data Objects (ADO) is the Microsoft standard for database access. Sun Chili!Soft ASP
provides an ADO control, which you can configure by using the Sun Chili!Soft ASP
Administration Console. For more information about ADO, see "Enabling Database Connections
on the Server" in "Chapter 2: Installing and Configuring Sun Chili!Soft ASP," and "ADO
Component Reference" in "Chapter 5: Developer's Reference."

This section describes the following configuration options for the ADO control:

� Setting the ADO Connection Pool Size

� Enabling and Disabling ADO Logging

Sun Chili!Soft ASP 3.6.2 Product Documentation 152

 Setting the ADO Connection Pool Size
Sun Chili!Soft ASP supports database connection pooling, which improves the performance of
applications that rely heavily on database operations. With connection pooling, rather than
opening and closing a database connection for each individual request, Sun Chili!Soft ASP uses a
connection that is already open.

Sun Chili!Soft ASP uses an ADO control to provide database connectivity. You set the ADO
connection pool size parameter by using the Sun Chili!Soft ASP Administration Console. The
default ADO connection pool size is 25, which you can either increase or decrease according to
your requirements. Setting this parameter to 0 (zero) disables connection pooling.

To set the ADO connection pool size

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP Server tab of the Server Management page (the first page to display when you
open the Administration Console), click Databases.

3. Click the ADO Settings tab.

The ActiveX Data Object Connection Setting page displays.

Sun Chili!Soft ASP 3.6.2 Product Documentation 153

4. In the Connection pool size box, type the number of connections you want to pool.

5. Click Save, and then click server management in the left navigation pane.

6. Restart the ASP Server by clicking Restart.

Note
Restarting the ASP Server resets all Session and Application variables.

See also:

Pooling Database Connections in this chapter

 Enabling ADO Logging
Sun Chili!Soft ASP uses an ADO control to provide database connectivity. Logging for ADO is
enabled from the Sun Chili!Soft ASP Administration Console by providing an absolute path
name for the log file. When you do this, Sun Chili!Soft ASP creates the log file in the directory
you specify and begins logging to it. To disable logging, simply delete the path name of the log
file.

ADO logging should be used only for diagnostic purposes, and should not be enabled when
running Sun Chili!Soft ASP on a production server. ADO logging will not be functional if
Inherit user security is set to no. For information about this setting, see "Setting the Security
Mode" in this chapter.

To enable ADO logging

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

Sun Chili!Soft ASP 3.6.2 Product Documentation 154

2. On the ASP Server tab of the Server Management page (the first page to display when you
open the Administration Console), click Databases.

3. Click the ADO Settings tab.

The ActiveX Data Object Connection Setting page displays.

4. In the Logging file box, type the absolute path name of the log file. This includes the path to
the directory containing the file and the name of the log file. You cannot use the name of a
file that already exists in the directory.

5. Click Save, and then click server management.

6. Restart the ASP Server by clicking Restart.

Note
Restarting the ASP Server resets all Session and Application variables.

To disable ADO logging

1. Open the Administration Console by using the following URL:

Sun Chili!Soft ASP 3.6.2 Product Documentation 155

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP Server tab of the Server Management page (the first page to display when you
open the Administration Console), click Databases.

The Databases page displays.

3. Click the ADO Settings tab.

The ActiveX Data Object Connection Setting tab displays.

4. Delete the text in the Logging file box.

5. Click Save, and then click server management.

6. Restart the ASP Server by clicking Restart.

Note
Restarting the ASP Server resets all Session and Application variables.

Sun Chili!Soft ASP 3.6.2 Product Documentation 156

See also:

Configuring ActiveX Data Objects (ADO) Connections in this chapter

Running Sun Chili!Soft ASP in a Shared Web Hosting
Environment

Sun Chili!Soft ASP supports the scenario in which users share physical hardware and a Web
server, such as with an Internet Service Provider (ISP) or Internet Presence Provider (IPP). In a
shared Web hosting environment, a single Web server installation answers requests for multiple
domain names by using virtual hosts. This section provides information about running Sun
Chili!Soft ASP in a shared Web hosting environment.

In this section:

� Creating Database Connections in a Shared Environment

� Defining Applications in a Shared Environment

� Using the User Configuration File

� Using the FrontPage Services File in a Shared Environment

The following topic in this chapter describes security information you should be aware of when
configuring a shared Web hosting environment:

� Securing the Server

The following section in this chapter describes advanced options for administering Sun Chili!Soft
ASP, which can give you more flexibility when configuring a shared hosting environment:

� Advanced Administration Options

 Creating Database Connections in a Shared Environment
With Sun Chili!Soft ASP, ASP developers can specify the connection information for a database
by using either system DSNs, file DSNs, or DSN-less connection strings. The appropriate method
to use depends on user preferences and the environment in which Sun Chili!Soft ASP is running.

In enterprises and other dedicated hosting environments, it is recommended that ASP developers
use system DSNs. The system administrator uses the Sun Chili!Soft ASP Administration Console
to create system DSNs, which then can be referenced from within an ASP application for
initializing a database connection. For more information, see "Configuring Data Source Names
(DSNs)" in this chapter.

However, in a shared Web hosting environment, such as with an Internet Service Provider (ISP),
system DSNs pose two problems:

� System DSNs can be a security risk. System DSNs can include the username and
password required for accessing the database, making the data source accessible from any
ASP page on the server.

Sun Chili!Soft ASP 3.6.2 Product Documentation 157

� Creating DSNs for each customer can create a significant administrative burden for the
Web hosting provider. Because Web developers can create them, and database access is
restricted to the specific ASP application using the connection, file DSNs and DSN-less
connection strings are often more appropriate in a Web hosting environment.

See also:

Configuring a Database in this chapter

Enabling Database Connections on the Server in "Chapter 2: Installing and Configuring Sun
Chili!Soft ASP"

Using DSN-less Connection Strings" in "Chapter 4: Building a Sun Chili!Soft ASP Application"

 Defining Applications in a Shared Environment
For the ASP Server to process an ASP application, the set of directories and files comprising the
application must be defined as an ASP application. In dedicated Web hosting environments, you
define an ASP application by "adding" it to the ASP Server, as described in "Configuring ASP
Applications" in this chapter.

However, in a shared Web hosting environment in which you are using virtual hosts, such as with
an Internet Service Provider (ISP) or Internet Presence Provider (IPP), you do not "add"
applications in this manner. Instead, the top-level, or root, directory of each virtual host defined
on your Web server is automatically defined as an ASP application. No other steps are necessary
to enable ASP processing for the application.

There might be some situations, however, in which you want to enable or disable ASP processing
for a particular virtual host. You can do this by using the Sun Chili!Soft ASP Administration
Console, as described in "Enabling ASP for a Virtual Host" in this chapter.

FrontPage users can also define an application as described in "Using the FrontPage Services File
in a Shared Environment" in this chapter.

 Using the User Configuration File
In a shared Web hosting environment, rather than requiring the system administrator to define
each ASP application (as described in "Adding an ASP Application" in this chapter), you can
enable ASP developers to define their own ASP applications in a User Configuration file. To do
this, the system administrator must first edit the Sun Chili!Soft ASP configuration file, casp.cnfg,
so that the ASP Server recognizes applications that are defined in the User Configuration file.
Then ASP developers can create the file and define their ASP applications within it.

To enable developers to define their own ASP applications, take the following steps. First, in the
[applications] section of the Sun Chili!Soft ASP configuration file, casp.cnfg, specify the
path name of the User Configuration file (.aspconf) that defines the ASP applications.

 [applications]

config_name=.aspconf

Sun Chili!Soft ASP 3.6.2 Product Documentation 158

When you do this, the ASP Server looks for this file in the document root of the Web server and
each virtual host. For more information about editing casp.cnfg, see "Editing the Chili!Soft
Configuration File" in this chapter.

Next, create a User Configuration file. It should be a plain text file named .aspconf. Within this
file, specify the ASP application name to define as follows:

[applications]

/[appname]

where [appname] is the ASP application name. The ASP application name must be the same as
the name of the ASP application root directory, which is contained in the document root of the
virtual host.

Any applications defined in the User Configuration file are dynamically recognized, without
requiring the ASP Server to be restarted.

There are two limitations on applications defined in the User Configuration file. First, the
application directory containing the global.asa file must be directly below the top-level directory
of the Web server or virtual host document root. Second, if the User Configuration file appears in
the document root of a virtual host, then the ASP applications are applied only to that virtual host,
and not to others.

See also:

Configuring ASP Applications in this chapter

 Using the FrontPage Services File in a Shared Environment
In a shared Web hosting environment, you can enable developers to define new ASP applications
by using FrontPage. You can use FrontPage to create new global.asa files and ASP applications.
FrontPage stores the definitions of these new applications in the FrontPage services.cnf file in the
/_vti_pvt subdirectory.

Sun Chili!Soft ASP automatically looks for the services.cnf file in the /_vti_pvt subdirectory, and
treats the entries it finds in this file as ASP applications. Any applications defined in the
services.cnf file are dynamically recognized by Sun Chili!Soft ASP, and do not require the ASP
Server to be restarted. Sun Chili!Soft ASP looks for this filename in the document root directory
of the Web server (and each virtual host).

Entries in the services.cnf file use the following format:

/[appname] = "/path/to/app/home/directory"

If the services.cnf file and the /_vti_pvt subdirectory appear in the document root directory of a
virtual host, then the ASP applications are applied only to that virtual host, and not to others.

There are two limitations on applications defined in the services.cnf file. First, the files in the
application must be located within the document root directory of the Web server (or virtual
host). Second, the directory containing the global.asa file cannot be below the top-level directory

Sun Chili!Soft ASP 3.6.2 Product Documentation 159

of the Web server (or virtual host) document root. For more information about ASP applications
and the global.asa file, see "Configuring ASP Applications" in this chapter.

See also:

Adding an ASP Application in this chapter

Defining Applications in a Shared Evironment in this chapter

Optimizing Server Performance

Sun Chili!Soft ASP has many features that enhance its scalability and performance. This section
discusses those features, and includes the following topics:

� Enabling Scripts Buffering

� Changing the Session Timeout Value

� Changing the Script Timeout Value

� Enabling Script Caching

� Configuring Multi-threading

� Precompiling ASP Pages

� Pooling Database Connections

� Load Balancing

See also:

Enabling ASP Error Logging in this chapter

Monitoring the ASP Server in this chapter

Viewing Information About the ASP Server in this chapter

Viewing Log Files in this chapter

 Enabling Scripts Buffering
Sun Chili!Soft ASP enables you to buffer ASP scripts to improve server performance. When
scripts buffering is enabled, the ASP Server waits until the entire ASP page is processed before
returning the results to the browser. When scripts buffering is disabled, the ASP Server returns
the HTML output for an ASP page to the browser incrementally, as soon as it is processed. For a
production server, it is best to enable scripts buffering. During development, however, you might
want to disable scripts buffering so you can more easily debug problems with your ASP pages.

To enable or disable scripts buffering

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

Sun Chili!Soft ASP 3.6.2 Product Documentation 160

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP tab of the Server Management page (the first page that displays when you open
the Administration Console), click Settings.

The Server Settings page displays.

3. In the Scripts buffering on drop-down list, select yes to enable scripts buffering or no to
disable it.

4. Click Save, and then restart the ASP Server by clicking Restart.

Note
Restarting the ASP Server resets all Session and Application variables.

See also:

Optimizing Server Performance in this chapter

Sun Chili!Soft ASP 3.6.2 Product Documentation 161

 Changing the Session Timeout Value
You can specify the number of minutes that the ASP Server maintains a user's session
information since the last page request. When the user does not submit a request for the specified
length of time, the server cancels the session and discards its stored information. Enabling the
ASP Server to discard user information frees up its resources for another session.

By default, the session timeout value is 20 minutes. To change this value, use the following
procedure.

Note
A value specified for SessionTimeout in a script overrides this setting.

To change the session timeout value

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP tab of the Server Management page (the first page that displays when you open
the Administration Console), click Settings.

The Server Settings page displays.

Sun Chili!Soft ASP 3.6.2 Product Documentation 162

3. In the Session timeout box, type the number of minutes of inactivity after which a user
session times out.

4. Click Save, and then restart the ASP Server by clicking Restart.

Note
Restarting the ASP Server resets all Session and Application variables.

See also:

Optimizing Server Performance in this chapter

 Changing the Script Timeout Value
You can specify the number of seconds that the ASP Server waits for an ASP page to finish
processing before canceling the page request. Setting a script timeout prevents a malfunctioning
ASP page from indefinitely engaging server resources. Enabling the ASP Server to cancel a page
request frees up its resources for another session.

By default, the session timeout value is 90 seconds. To change this value, use the following
procedure.

To change the script timeout value

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

Sun Chili!Soft ASP 3.6.2 Product Documentation 163

2. On the ASP tab of the Server Management page (the first page that displays when you open
the Administration Console), click Settings.

The Server Settings page displays.

3. In the Script timeout box, type the number of seconds after which a script should time out.

4. Click Save, and then restart the ASP Server by clicking Restart.

Note
Restarting the ASP Server resets all Session and Application variables.

See also:

Optimizing Server Performance in this chapter

Sun Chili!Soft ASP 3.6.2 Product Documentation 164

 Enabling Script Caching
You can enable the ASP Server to cache ASP scripts in memory so that it can serve ASP pages
more quickly. Script caching is enabled by default. To change this value, use the following
procedure.

To enable or disable script caching

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]/

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP tab of the Server Management page (the first page that displays when you open
the Administration Console), click Settings.

The Server Settings page displays.

Sun Chili!Soft ASP 3.6.2 Product Documentation 165

3. In the Script engines in memory drop-down list, select yes or no as desired.

4. Click Save, and then restart the ASP Server by clicking Restart.

Note
Restarting the ASP Server resets all Session and Application variables.

See also:

Optimizing Server Performance in this chapter

 Configuring Multi-threading
The number of threads handled by the Sun Chili!Soft ASP Server at a time is set to 10 by default.
If you have many ASP pages that include blocking operations (database access, for example) it is
a good idea to increase this number. Keep in mind, however, that doing so creates more system
overhead. A maximum number of 20 threads is recommended.

To configure Sun Chili!Soft ASP to use a specific number of threads

1. Open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP tab of the Server Management page (the first page that displays when you open
the Administration Console), click Settings.

The Server Settings page displays.

Sun Chili!Soft ASP 3.6.2 Product Documentation 166

3. In the Number of threads box, type the maximum number of threads you want to have
running at once. This number is 10 by default.

4. Click Save, and then click Yes to restart the Web server and ASP Server.

Note
Restarting the ASP Server resets all Session and Application variables.

 Precompiling ASP Pages
The Sun Chili!Soft ASP Server automatically precompiles ASP pages to improve server
performance. When the ASP Server receives a page request, it compiles the page into bytecode
that can be more quickly processed in response to subsequent requests and saves the bytecode.

 Pooling Database Connections
In terms of server resources, accessing a database is one of the most expensive operations of a
Web application. Typically, for each request, the Web application must open a connection to the
database, retrieve the data, and then close the connection. Repeatedly opening and closing the
database adversely impacts server performance.

To reduce this impact on server performance, you can configure the Sun Chili!Soft ASP Server to
share open database connections among multiple users who are accessing the Web application.
This is called database connection pooling. With connection pooling, the ASP Server uses a
connection that is already open, rather than opening and closing a database connection for each
individual request. Database connection pooling dramatically improves the performance of
applications that rely heavily on database operations.

Sun Chili!Soft ASP 3.6.2 Product Documentation 167

To configure database connection pooling, use the procedure in "Setting the ADO Connection
Pool Size" in this chapter.

 Load Balancing
Sun Chili!Soft ASP supports various models for horizontal scalability and load balancing,
including both software- and hardware-based solutions.

The classic model for providing horizontal scalability is to add additional servers to an overall
"farm" of servers. The addition of user sessions, however, adds an element of complexity to the
horizontal scalability picture. For ASP to maintain session information for a specific user, the
user’s requests must consistently be routed back to the same machine with which the initial
session was created. This is called "session-aware load balancing," and can be done using either
software or hardware solutions.

Sun Chili!Soft ASP supports both hardware- and software-based session-aware load balancing
solutions. Software options are based primarily on round-robin DNS and clustering software,
while hardware solutions include the use of "intelligent routers" (also referred to as "sticky
sessions"). Intelligent routers are capable of routing a user’s request back to the same machine
with which the initial session was created.

Advanced Administration Options

This section describes options that advanced users may decide to use to configure the Sun
Chili!Soft ASP Server from the command line, or by directly editing configuration files.

Caution
Take great care when making the changes described in this section. Changes you make
could require a complete reinstall of Sun Chili!Soft ASP, and could void your eligibility
for customer support. You should back up your data before making any changes.

For UNIX and Linux systems, most of the configuration settings described in this section
are easily accessed from the Sun Chili!Soft ASP Administration Console. It is strongly
recommended that you use the Administration Console whenever possible. For more
information, see "Using the Administration Console" in this chapter.

In this section:

� Editing the Windows Registry

� Editing the Sun Chili!Soft ASP Configuration File

� Using the caspctrl Script

� Defining Applications on UNIX

� Relocating the System Files for a Shared Installation

Sun Chili!Soft ASP 3.6.2 Product Documentation 168

 Editing the Windows Registry
Sun Chili!Soft ASP for Windows stores some configuration information in the system registry.
This topic describes the registry settings Sun Chili!Soft ASP uses. You can use regedit32 to edit
these settings; regedit32 is installed with the operating system.

Caution
Take great care when making the changes described in this section. Changes you make
could require a complete reinstall of Sun Chili!Soft ASP, and could void your eligibility
for customer support. Be sure to back up your data before making any changes.

Key Default Value Description

AllowOutOfProcCmpnts 0 (False) Controls whether Sun Chili!Soft ASP allows Active
Server Components that do not run in the Sun Chili!Soft
ASP process space. Out-of-process components run more
slowly than in-process components, but they are safer
because an individual component cannot bring down the
ASP Server.

AllowSessionState 1 (True) Controls whether the ASP Server maintains session state.
If AllowSessionState is False, the Session object cannot
be used.

BufferingOn 1 (True) Controls whether the ASP Server processes the entire
ASP page before returning HTML (BufferingOn = True),
or whether it returns the HTML generated from an ASP
page as the page is processed (BufferingOn = False).
BufferingOn provides slightly better performance when
set to True.

DefaultError See Description This value controls the message returned when the ASP
Server encounters a run-time error and cannot process a
page. It appears if ShowDefaultError = True. The
default error message is: "An error occurred on the server
when processing the URL. Please contact the system
administrator."

DefaultLanguage VBScript This setting determines the language that the ASP Server
assumes is used in ASP pages. The other option is
JScript. This setting can be overridden in individual pages
with an @LANGUAGE directive or <SCRIPT> block.

DefaultScriptLanguage VBScript This registry key is not active. See DefaultLanguage.

Enabled 1 (True) Controls whether the ASP Server processes ASP pages. If
False, when a user requests an ASP page, the ASP Server
returns the message "Sun Chili!Soft ASP has been
disabled and cannot process your request."

Sun Chili!Soft ASP 3.6.2 Product Documentation 169

LogDirectory See description Default value = "c:\WINNT\System32\chiliasp"

This value controls the directory to which the ASP Server
writes the log file if LogToFile is True.

LogErrors 0 (False) Determines if ASP Server errors should be written to the
Sun Chili!Soft ASP log file.

LogToFile 0 (False) This registry entry is set internally by the Sun Chili!Soft
ASP engine to control logging of debug information. Do
not modify this setting.

LogRequestErrors 0 (False) Creates a file named "errors" in the directory specified by
LogDirectory.

MaxThreads 10 This value controls the maximum number of threads per
CPU that the Sun Chili!Soft ASP engine uses to process
requests.

NumInitialThreads 2 The number of threads to start when the ASP Server
starts. This feature is not currently implemented. Use
MaxThreads instead.

Reset 00000000 This is a Sun Chili!Soft ASP internal setting. Do not
modify this setting.

Running 00000001 This registry entry is set internally by the Sun Chili!Soft
ASP engine to indicate whether Sun Chili!Soft ASP is
running. Do not modify this setting.

ScriptEngineCacheMax ffffffff This value controls the maximum number of script
engines that Sun Chili!Soft ASP caches for servicing
ASP page requests. This feature is not completely
implemented. The default setting turns caching on; any
other setting turns caching off.

ScriptTimeout 90 Seconds This is the amount of time the ASP Server waits for an
individual ASP page to finish processing before canceling
the request. The ScriptTimeout value can be increased in
a script, but this value sets the minimum.

SessionTimeout 20 minutes This value controls how long the ASP Server maintains
Session values for a user without receiving a page
request. If the user is not heard from in this amount of
time, the session is canceled and its values are discarded.
The SessionTimeout value can be increased in a script,
but this value is the minimum.

ShowDefaultError 0 (False) This value controls ASP Server response to run-time
errors. If True, the ASP Server returns a message in
DefaultError when a run-time error occurs.

StartConnectionPool 1 (True) If True, enables connection pooling when connecting to a

Sun Chili!Soft ASP 3.6.2 Product Documentation 170

database.

 Editing the Sun Chili!Soft ASP Configuration File
UNIX and Linux versions of Sun Chili!Soft ASP include a configuration file, casp.cnfg, in which
you can change Sun Chili!Soft ASP settings. This topic describes the settings and their
parameters.

Caution
Take great care when making the changes described in this section. Changes you make
could require a complete reinstall of Sun Chili!Soft ASP, and could void your eligibility
for customer support. You should back up your data before making any changes.

Most of the configuration settings described in this section are easily accessed from the
Sun Chili!Soft ASP Administration Console. It is strongly recommended that you use the
Administration Console whenever possible, as described in "Using the Administration
Console" in this chapter.

You can find the casp.cnfg file in the following location:

/[C-ASP_INSTALL_DIR]/asp-server-[PORT]

where [C-ASP_INSTALL_DIR] is the path name of the Sun Chili!Soft ASP installation
directory, and [PORT] is the ASP Server port number (resembles 3000).

You can open casp.cnfg in any text editor and make the changes you want. For the changes to
take effect, you must restart the ASP Server, as described in "Stopping and Restarting the ASP
Server" in this chapter.

The casp.cnfg file is divided into sections by keywords. The following sections describe the
keywords and parameters for each section.

[machines]
The [machines] keyword defines the computers that are running the Sun Chili!Soft ASP
Server. The parameters specified in this section affect all Sun Chili!Soft ASP Servers.

Parameters
count

The number of computers running the ASP Server.

machine1 … machineN

The IP address of each computer running the ASP Server. The number of entries should be the
same as the number of computers running an ASP Server.

portnumber

Sun Chili!Soft ASP 3.6.2 Product Documentation 171

The base IP port to which the ASP Server control process listens. In multi-threading mode, the
ASP Server uses two ports.

logfile

Defines the name and location of the ASP Server status log file.

mtengine (1)

Controls multi-threading in the ASP server. When mtengine is set to 1, the ASP Server runs
one process with multiple threads to serve requests.

disablerestart

This setting is useful for Sun Chili!Soft ASP diagnostics. If set to 1, the Sun Chili!Soft ASP
parent process does not automatically re-spawn Sun Chili!Soft ASP child processes that fail.

hashobj_pid

(Optional) This setting enables you to specify the name and location of the process ID (PID) file
for the Sun Chili!Soft ASP hash object.

[default machine]
The [default machine] keyword defines a section containing parameters that control the
operation of the ASP Server on each computer.

Parameters
license

The absolute path name of the directory containing the Sun Chili!Soft ASP license file.

caspd_pid

(Optional) The name and location of the process ID (PID) file for the Sun Chili!Soft ASP
daemon.

maxprocesses (1 to 20)

The maximum number of ASP Server threads that are used to process pending ASP requests. The
number specified can be between 1 and 20. I/O-heavy scripts run better with more processes.

inherit_user (1/0)

This setting enables you to specify the security mode under which the ASP Server runs and can
have a serious impact on the security of your server. In particular, if you are running iPlanet Web
Server or Zeus Web Server, be sure to read the following "Important Security Information" note.

The ASP Server can run with the permissions of the user defined for the Apache Web Server or
virtual host, with the permissions of a user or group defined in the casp.cnfg file, or with root
permissions. You can specify the mode as follows:

� Inherit User Security mode. This mode, the default, is available only on Sun Chili!Soft
ASP running with Apache Web Server. When inherit_user=1, the ASP Server runs
with ("inherits") the permissions of the user defined for the Apache Web Server or virtual

Sun Chili!Soft ASP 3.6.2 Product Documentation 172

host as defined in the Apache configuration file. This is the case even if a different user or
group is specified in the [default machine] section of the casp.cnfg file (as
discussed next).

� Defined User Security mode. This mode is available on Sun Chili!Soft ASP running with
any supported Web server. In this mode, the ASP Server runs with the permissions of the
user or group you specify. To run in this mode, set inherit_user=0 and then specify
the user or group in the [default machine] section of casp.cnfg, as described later.

Important Security Information

When inherit_user=0 and no user or group is specified in the [default machine]
section of casp.cnfg, the ASP Server runs as root. This can create a security risk for your server,
so it is not recommended that you set inherit_user=0 unless you also define a user or group
for the ASP Server to run under.

iPlanet and Zeus Web servers do not support Inherit User Security mode, even when when
Inherit user security is set to yes in the Administration Console. To protect the security of your
server, when running Sun Chili!Soft ASP with these Web servers, specify a user or group in
casp.cnfg for the ASP Server to run under.

For more information about the inherit_user setting, see "Setting the Security Mode" in this
chapter.

javasupport (yes/no)

Yes enables Java support, which is required for Chili!Beans. No, the default, disables Java
support. Because Java support can affect server performance, it is a good idea to enable it only
when using Chili!Beans.

Enablemonitoring (yes/no)

Yes, the default, enables creation of performance counter log files, as follows:

/tmp/.casp[PORT]/chili-psm

/tmp/.casp[PORT]/.pm-chili-psm

/tmp/.pm-chili-psm

/tmp/chili-psm

These files are created with permissions that might not be appropriate in a shared Web hosting
environment. No disables performance monitoring and the creation of these files.

user

(Optional) The username for the account under which the ASP Server runs. Make sure that this
user has permission to open Sun Chili!Soft ASP configuration files such as casp.cnfg and
odbc.ini. The user starting the ASP Server by using caspctrl must have root permissions. If this
attribute is not present and inherit_user=0, the ASP Server runs under the account of the
user that started the ASP Server.

group

Sun Chili!Soft ASP 3.6.2 Product Documentation 173

(Optional) The group name for the account under which the ASP Server runs. Make sure that this
group has permission to open Sun Chili!Soft ASP configuration files such as casp.cnfg and
odbc.ini. The user starting the ASP Server using caspctrl must have greater permissions than this
group. If this attribute is not present and inherit_user=0, the ASP Server runs under the
account of the user that started the ASP Server.

[default application]
bufferingon (yes/no)

Yes enables script buffering.

sessiontimeout

Amount of time in seconds that the ASP Server waits for a new page request before canceling the
session.

scripttimeout

Amount of time in seconds the ASP Server waits for an ASP page to finish processing before
canceling the request.

allowsessionstate (yes/no)

Yes enables the use of the Session object in ASP scripts.

enableparentpaths (yes/no)

No, the default, limits file system access by the FileSystemObject to the application directory
and subdirectories, and disables the use of "../" syntax. Yes enables access to the file system
by the FileSystemObject outside the ASP application directory and the use of "../" syntax in
#include and Server.mapPath statements.

defaultlanguage

Specifies the default script interpreter. This value can either be vbscript or jscript.

[ado]
connectionpoolsize

The number of ADO connections to pool (re-use) to improve server performance. The default is
25. "0" disables connection pooling.

logpath

Absolute path name of the ADO errors log file. Specifying the path name enables logging. You
cannot use the name of a file that already exists in the directory.

maxlongfieldlength

Maximum long field length in bytes. By default this value is 65535. If the data you pass to a
database exceeds this limit, the ODBC driver might crash. You can increase this value as
needed.

Sun Chili!Soft ASP 3.6.2 Product Documentation 174

[applications]
The [applications] keyword defines a section in which to specify information on how the
ASP Server handles ASP applications. There are several ways to define an ASP application on
the ASP Server. For more information, see "Configuring ASP Applications" in this chapter.

Parameters
use_aliases

If use_aliases=yes, then any virtual directory or alias defined in the Web server
configuration file is treated as an ASP application. If use_aliases=no, then the virtual
directories or aliases defined in the Web server configuration file are not treated as ASP
applications by the ASP Server.

/caspdoc

Absolute path name of the directory containing the Sun Chili!Soft ASP product documentation.

/caspadmin

Absolute path name of the directory containing the admin files.

/caspsamp

Absolute path name of the directory containing the Sun Chili!Soft ASP samples.

config_name

(Optional) This parameter enables you to specify the name of the ASP User Configuration file.
Any applications defined in this file are dynamically recognized by the ASP Server without
requiring the ASP Server to be restarted. If config_name=.aspconf, for example, the ASP
Server looks for this filename in the document root directory of the Web server. Entries in the
config_name file should use the following format:

/[appname]

There are two limitations on applications defined in the ASP User Configuration file. First, the
files in the application must be located within the document root of the Web server. Second, the
directory containing the global.asa file must not be below the top-level directory of the Web
server document root directory.

/appname

(Optional) To define an ASP application on the ASP Server, use the following format:

/[appname] = "/[path_name]" (the path name must be enclosed in double quotes).

where [appname] is the name specified for the application and [path_name] is the absolute
path name of the directory containing the application files. If no applications are defined in the
[applications] section, then the ASP Server treats the root directory of the Web server as
the location of the "default" ASP application.

Sun Chili!Soft ASP 3.6.2 Product Documentation 175

[virtual hosts]
(Optional) The [virtual hosts] keyword defines a section in which to configure the ASP
Server to work with the virtual hosts feature of Apache Web Server. For more information, see
"Defining Applications on UNIX," "Enabling ASP for a Virtual Host," and "Defining
Applications in a Shared Environment" in this chapter.

Parameters
allow_all

(Optional) If allow_all=no, then ASP functionality is only enabled for the virtual host
defined later in the [virtual hosts] section. If this attribute is omitted (or if
allow_all=yes), ASP is enabled for all of the virtual hosts defined in the Web server
configuration file.

timeout

(Optional) If a virtual host has had no ASP activity for the number of minutes specified in the
timeout attribute, the ASP Server releases all of the cached ASP pages for that virtual host. The
ASP Server does not time out a virtual host unless all of the sessions for that virtual host have
timed out. If this setting is not configured, the default timeout is 60 minutes.

hostID(s)

(Optional) This setting applies only to Apache Web Server. It is a line-delimited list of hostnames
that identify which virtual hosts are allowed to handle requests for ASP pages. The hostname(s)
listed in this section should match the virtual hosts ServerName directive in the httpd.conf file of
the Apache Web Server. This attribute becomes active if allow_all=no. If allow_all=no
and no hostIDs are provided, ASP functionality is disabled for all virtual hosts.

 Using the caspctrl Script
In addition to using the Administration Console, you can manage Sun Chili!Soft ASP by using
the caspctrl script. This topic describes how to use the script and lists the options it provides.

Caution
Take great care when making the changes described in this section. Changes you make
could require a complete reinstall of Sun Chili!Soft ASP, and could void your eligibility
for customer support. You should back up your data before making any changes.

Most of the configuration settings described in this section are easily accessed from the
Sun Chili!Soft ASP Administration Console. It is strongly recommended that you use the
Administration Console whenever possible, as described in "Using the Administration
Console" in this chapter.

To use the caspctrl script

� From the Sun Chili!Soft ASP installation directory, type caspctrl at the command
prompt, followed by the options you want to use. The correct format is as follows:

Sun Chili!Soft ASP 3.6.2 Product Documentation 176

caspctrl (-v|version) (-vc|verbose) [-
](startdaemon|stopdaemon|starteng|stopeng|startall|stopall|viewlog|c
learlog|status)

The options are as follows:

� version: reports the version of Sun Chili!Soft ASP

� verbose: enables the Sun Chili!Soft ASP engines to output status messages to stdout

� startdaemon: starts the Sun Chili!Soft ASP Server daemon

� stopdaemon: stops the Sun Chili!Soft ASP Server daemon (plus any running ASP
engines)

� starteng: starts Sun Chili!Soft ASP engine(s) on all Sun Chili!Soft ASP computers in the
configuration with running daemons

� stopeng: stops the Sun Chili!Soft ASP engine(s) on all computers running Sun Chili!Soft
ASP in the configuration with running daemons

� startall: starts the Sun Chili!Soft ASP daemon and engine(s) on single-computer
installations of Sun Chili!Soft ASP

� stopall: stops the Sun Chili!Soft ASP daemon and engine(s) on single-computer
installations of Sun Chili!Soft ASP

� viewlog: enables you to view the Sun Chili!Soft ASP Server log

� clearlog: clears the Sun Chili!Soft ASP Server log

� status: reports the status of each Sun Chili!Soft ASP Server in the configuration

 Defining Applications on UNIX
This topic describes the options that are available for defining Sun Chili!Soft ASP applications on
UNIX-based systems. Some options might not be available on Cobalt platforms.

Caution
Take great care when making the changes described in this section. Changes you make
could require a complete reinstall of Sun Chili!Soft ASP, and could void your eligibility
for customer support. You should back up your data before making any changes.

Most of the configuration settings described in this section are easily accessed from the
Sun Chili!Soft ASP Administration Console. It is strongly recommended that you use the
Administration Console whenever possible, as described in "Using the Administration
Console" in this chapter.

With Sun Chili!Soft ASP running on a UNIX system with any supported Web server, you can
define an ASP application by using the following methods:

Sun Chili!Soft ASP 3.6.2 Product Documentation 177

� Adding an entry to the [applications] section of the Sun Chili!Soft ASP
configuration file, casp.cnfg. For more information, see "Editing the Sun Chili!Soft
Configuration File" in this chapter.

� Adding an alias to the Web server configuration file (only if use_aliases=yes in the
[applications] section of casp.cnfg).

� Adding an entry to the services.cnf file generated by FrontPage, located in the /_vti_pvt
subdirectory of the Web server document root directory.

The ASP Server dynamically recognizes ASP applications that are defined in the Sun Chili!Soft
ASP User Configuration file or the FrontPage services.cnf file. These applications must be
defined by using the application name (for example, "/appname"). An application named
/customers must correspond to a real top-level directory named "customers" in the Web
server document root directory. The files that make up this application must all exist within the
Web server document root directory. The global.asa file, if present, must be located in the top-
level directory.

The ASP Server does not dynamically recognize ASP applications that are defined in the Sun
Chili!Soft ASP configuration file, casp.cnfg, or that are defined by using an alias in the Web
server configuration files. The ASP Server must be restarted to recognize them. ASP applications
defined in the casp.cnfg file or by creating an alias in the Web server configuration files can
include files outside of the Web server document root directory. The global.asa file, if present,
must be located in the top-level directory referenced by the ASP application.

If there are naming conflicts between ASP applications that are defined in different directories,
the ASP Server honors application definitions in the following order:

1. Web server aliases

2. casp.cnfg file entries

3. FrontPage services.cnf file entries

4. ASP User Configuration file entries

Note
Sun Chili!Soft ASP for UNIX- and Linux-based systems dynamically recognizes ASP
applications created by FrontPage, but only if the application is not in a nested sub-Web.
If the application (and its associated global.asa file) is located in a directory that is not a
top-level directory of the Web server document root directory, you must define this
application using either the [applications] section of Sun Chili!Soft ASP casp.cnfg
file, or by adding an alias to your Web server configuration. For more information, see
"Editing the Sun Chili!Soft Configuration File" in this chapter.

Defining an Application on iPlanet Web Server
For the purpose of defining Application and Session scope, the ASP Server considers all .asp files
located in a virtual directory to be part of one application. You can use the NameTrans
parameter in the obj.conf file to define an application. The following example defines an
application called "/dosperros":

Sun Chili!Soft ASP 3.6.2 Product Documentation 178

NameTrans fn="pfx2dir" from="/dosperros" dir="/opt/casp-
net30/caspsamp/dosperros"

If you are using the Web server’s Administration tool, you can define an ASP application by
adding an "additional document directory."

Defining an Application on Apache Web Server
For the purpose of defining Application and Session scope, the ASP Server considers all *.asp
files located in a virtual directory to be part of one ASP application. You can use the Alias
parameter in the srm.conf file (in httpd.conf for Apache 1.3.4, 1.3.6, or 1.3.9) to define an ASP
application. The following example defines an application called "/caspsamp":

Alias /caspsamp "/[C_ASP_INSTALL_DIR]/samples"

where [C-ASP_INSTALL_DIR] is the directory in which Sun Chili!Soft ASP is installed.

If you have configured support for virtual hosts, you can define ASP applications on Apache Web
Server as follows:

� By adding an entry to the [applications] section of casp.cnfg. This applies to the
"real host" only.

� By adding an alias to the Web server configuration file (only if use_aliases=yes in
the [applications] section of casp.cnfg.) If the alias appears outside a
<virtualhost> ... </virtualhost> block, it applies to the "real host" only. If
the alias appears inside a <virtualhost> ... </virtualhost> block, it applies
to the virtual host.

� By adding an entry to the ASP User Configuration file. The name of this file is defined in
the [applications] section of the casp.cnfg file. Sun Chili!Soft ASP looks for this
file in the document root directory of each host, "real" or virtual. "Real host" entries apply
to the "real host" only.

� By adding an entry to the services.cnf file generated by FrontPage. This file is located in
the /_vti_pvt subdirectory of the root directory of each host, "real" or virtual. "Real host"
entries apply to the "real host" only.

 Relocating the System Files for a Shared Installation
For users installing Sun Chili!Soft ASP to shared file systems such as NFS or AFS (Andrew File
System), use the following instructions to relocate the system files. If you are not installing to a
shared file system, you should not alter the locations of the Sun Chili!Soft ASP system files.

Caution
Take great care when making the changes described in this section. Changes you make
could require a complete reinstall of Sun Chili!Soft ASP, and could void your eligibility
for customer support. You should back up your data before making any changes.

Sun Chili!Soft ASP 3.6.2 Product Documentation 179

Most of the configuration settings described in this section are easily accessed from the
Sun Chili!Soft ASP Administration Console. It is strongly recommended that you use the
Administration Console whenever possible, as described in "Using the Administration
Console" in this chapter.

Relocating the Registry File
One of the key Sun Chili!Soft ASP system files, the registry file (registry.bin), must be located on
a local file system that supports file locking to ensure proper operation. During Sun Chili!Soft
ASP installation, the installer creates a script named chsetup.sh in the Sun Chili!Soft ASP
installation directory (/opt/casp by default). Contained within this file is a line of code that
resembles the following:

MWREGISTRY=[path name]/registry.bin

where [path name] is the current location of the registry file.

To relocate the registry file
1. Write down the current value of [path name].

2. Create the new directory where you wish to relocate the registry file. This directory must
reside on the local machine where the file system supports file locking. For the following
steps, this new directory will be referred to as <new path name>.

3. Edit chsetup.sh with a text editor such as vi and change the following line:

MWREGISTRY=[path name]/registry.bin

to

MWREGISTRY=[new path name]/registry.bin

4. Copy the registry file from its old location ([path name]/registry.bin) to its new
location ([new path name]/registry.bin).

Relocating Sun Chili!Soft ASP PID Files
For users who want to install Sun Chili!Soft ASP to a shared file system, but move writeable Sun
Chili!Soft ASP files to a local file system, Sun Chili!Soft ASP provides a mechanism to allow for
this. For single machine Sun Chili!Soft ASP installations, this is not required, but has the added
benefit that it may decrease network congestion.

There are three attributes of importance in the casp.cnfg file (which is contained under each
asp-<server>-<port> directory). These are the hashobj_pid and logfile attributes
(located in the [machines] section), and the caspd_pid attribute (located in the [default
machine] section). These attributes allow you to specify the locations of the two process ID
(PID) files. If you need to relocate these files, remember the following:

� If you have several Sun Chili!Soft ASP installations on a single physical server (with
separate asp-<server>-<port> directories), then the casp.cnfg file in each
directory may point to common directories for the PID and log files, but must point to
different file names for the PID and log files.

Sun Chili!Soft ASP 3.6.2 Product Documentation 180

For example, suppose the [machines] and [default machine] sections of your current casp.cnfg
file resemble the following.

[machines]

count=1

machine1=127.0.0.1

portnumber=3000

logfile=/opt/casp/logs/server-3000

mtengine=0

disablerestart=0

hashobj_pid=/opt/casp/logs/asp-apache-3000/hashobj.pid

[default machine]

caspd_pid=/opt/casp/logs/asp-apache-3000/caspd.pid

maxprocesses=1

inherit_user=1

#user=nobody

#group=nobody

In this situation, to relocate all of your files off of the shared /opt directory to a /usr/local/casp
directory, use the following procedure.

To relocate all files

1. Create the destination directory(ies), for example:

mkdir -p /usr/local/casp/pids

mkdir -p /usr/local/casp/logs

2. Edit the casp.cnfg file to resemble the following example:

[machines]

count=1

machine1=127.0.0.1

portnumber=3000

logfile=/usr/local/casp/logs/server-3000

mtengine=0

disablerestart=0

hashobj_pid=/usr/local/casp/pids/hashobj-3000.pid

Sun Chili!Soft ASP 3.6.2 Product Documentation 181

[default machine]

caspd_pid=/usr/local/casp/pids/caspd-3000.pid

maxprocesses=1

inherit_user=1

#user=nobody

#group=nobody

3. Copy the server log file and the PID files to the directories you created.

Sun Chili!Soft ASP 3.6.2 Product Documentation 182

Chapter 4: Building a Sun Chili!Soft ASP
Application

Active Server Pages (ASP) enables the Web author and developer to easily create dynamic Web
applications by using scripts that run on the Web server. An ASP page can contain a combination
of HTML text, server-side scripts, and client-side scripts, creating an engaging experience for the
Web user.

Sun Chili!Soft ASP enables the scripting logic to interface with five built-in ASP objects, which
automatically handle many menial tasks, making application development easier. In addition to
using these basic elements, you can extend ASP by using the Component Object Model (COM).
This enables you to add sophisticated functionality by using components written in programming
languages such as Java. You can incorporate this functionality into your Web applications by
using scripts as the "glue" to link the COM objects. For example, Sun Chili!Soft ASP includes an
ActiveX Data Object (ADO) component that provides a high-performance interface between Web
pages and databases that adhere to the Open Database Connectivity (ODBC) standard. In
addition, Chili!Beans support included with Sun Chili!Soft ASP enables you to use Java objects
with your ASP applications.

The first section in this chapter discusses the basics of building a Sun Chili!Soft ASP application:
creating an ASP page, adding server-side scripts and server-side includes, and defining the
application. Next, the chapter discusses extending applications by using objects and components,
connecting to databases, and developing applications to publish in locales other than the United
States. Finally, it gives instructions for publishing a Sun Chili!Soft ASP application.

Who should read this chapter: Web authors and developers who are new to ASP and system
administrators who want a basic introduction to Sun Chili!Soft ASP technology should read the
first section. Web authors and developers who have mastered the basics of building ASP
applications might be interested in reading the more advanced topics covered in subsequent
sections. Everyone should read the last section about publishing a Sun Chili!Soft ASP
application.

In this chapter:

� Creating the Basic ASP Application

� Using Sun Chili!Soft ASP Built-in Objects

� Using Sun Chili!Soft ASP Installed Components

� Connecting to a Database

� Developing International Applications

� Publishing a Sun Chili!Soft ASP Application

Sun Chili!Soft ASP 3.6.2 Product Documentation 183

Creating the Basic ASP Application

Sun Chili!Soft ASP combines ASP technology with server-side object-oriented components to
provide an integrated Web development environment. A Sun Chili!Soft ASP application consists
of the following elements:

� ASP files, or pages, which are plain text files having an .asp extension. ASP pages
comprise a combination of standard HTML and scripting, written in either JScript or
Visual Basic Scripting Edition (VBScript)

� Optional components written in any language

� An optional global.asa file that contains global application information and session
information for individual users

Web servers normally send HTML files directly to the client's Web browser in response to HTTP
requests. When a browser requests an ASP page, the Web server calls the Sun Chili!Soft ASP
Server to read through the file. The ASP Server executes the server-side scripts and commands in
the page, executes any components called by the scripts, and sends the resulting HTML page to
the browser.

This section discusses the following steps that you can take to create a basic ASP application:

� Choosing an Authoring Tool

� Creating an ASP Page

� Adding Scripts

� Changing the Scripting Language

� Using Server-side Includes

� Defining the ASP Application

� Using the global.asa File

When you are ready to publish your application, be sure to read "Publishing a Sun Chili!Soft ASP
Application" in this chapter.

Once you have mastered the basics in this section, you also might want to read the following
advanced topics:

� Using Sun Chili!Soft ASP Built-in Objects

� Using Sun Chili!Soft ASP Installed Components

� Using Java Objects and Classes

� Connecting to a Database

� Developing International Applications

Sun Chili!Soft ASP 3.6.2 Product Documentation 184

 Choosing an Authoring Tool
ASP is one of the few technologies that can be used effectively for creating both sophisticated
and entry-level Web applications. Because of the flexibility of ASP, there are many ASP
development tools available for Web developers and authors with varying skill levels.

You can use any text editor to create *.asp files. As you progress, you may find it more
productive to use an editor with enhanced support for ASP, such as Macromedia Dreamweaver
UltraDev, Adobe GoLive, Microsoft FrontPage, or Microsoft Visual InterDev.

Sun Chili!Soft ASP, combined with one or more of these development tools, gives you a common
Web application platform for:

� Applications that are large and small, simple or complex.

� A host of popular Web servers and operating systems.

� Developers and page creators with widely varying skill levels.

Note

Sun Chili!Soft ASP enables you to run ASP pages generated by a variety of development tools. Questions about
the installation, configuration, and use of these tools should be directed to the tool’s manufacturer.

 Creating an ASP Page
The first step in building an ASP application is to create an ASP page. ASP pages are simply
plain text files that have an .asp filename extension. An ASP page contains optional text (usually
HTML and/or client-side scripts) interspersed with one or more ASP script blocks for
interpretation by the server.

Any valid HTML page can be a valid ASP page, enabling the Web developer to easily transform
a static Web site into a dynamic Web site by adding ASP scripts to existing HTML pages. With
Sun Chili!Soft ASP, you can write scripts in VBScript or JScript. Saving the page with an *.asp
filename extension tells the Web server how to process the script commands.

See also:

Creating the Basic ASP Application in this chapter

Adding Scripts in this chapter

Using Server-side Includes in this chapter

Using @ Directives in this chapter

 Adding Scripts
Once you have created an ASP page, as described in "Creating an ASP Page" in this chapter, you
can use a text editor or other authoring tool to insert script commands into the page. ASP pages
can include both client-side scripts, which are processed by the browser, and server-side scripts
(or ASP scripts), which are processed by the ASP Server.

Sun Chili!Soft ASP 3.6.2 Product Documentation 185

ASP scripts enable you to dynamically create HTML responses based on the user's identity,
parameters in the HTTP request, and interactions with other objects, such as ASP built-in objects,
components, and databases. ASP enables you to assign values to variables, request information
from the server, or combine any set of commands into procedures.

For example, a common use of Web applications is to process a form submitted by a browser.
With ASP, you can embed scripts directly into an HTML file to process the form. The ASP
Server processes the HTML and script commands and returns the results to the browser.

Within the ASP page, script blocks are set off from other text by using delimiters. You must use
different script delimiters to distinguish between client-side and server-side scripts. You enclose
client-side scripts between the <script> and </script> tags. You enclose server-side scripts
between the delimiters <% and /%>.

You can write ASP scripts in either VBScript or JScript. The default scripting language for Sun
Chili!Soft ASP is VBScript, but you can specify the scripting language for each ASP page. Your
system administrator can also change the default scripting language for the ASP Server. For more
information, see "Changing the Scripting Language" in this chapter.

As the ASP Server processes each ASP script block, it creates HTML text that is returned to the
browser for rendering. Unlike client-side scripts, with server-side ASP scripts you do not need to
be concerned about the capabilities of the browser; all processing is done at the server and only
standard HTML is returned.

Users cannot copy server-side scripts because only the output is returned to the browser.
Consequently, to view the results of a script you have added to an ASP page, you must first
publish the page to an ASP Server and then request the page by using a Web browser.

The following example shows how you can combine standard HTML tags with a simple script
that provides the current time of day:

<%@ LANGUAGE="VBSCRIPT" %>

<HTML>

<HEAD>

<META NAME="GENERATOR" Content="Microsoft Visual InterDev 1.0">

<META HTTP-EQUIV="Content-Type" content="text/html; charset=iso-8859-1">

<TITLE>An ASP Page</TITLE>

</HEAD>

<BODY>

<The time is now <%Response.Write Now%>

</BODY>

</HTML>

Sun Chili!Soft ASP 3.6.2 Product Documentation 186

Both VBScript and JScript support the If-Then-Else construct, enabling you to embed some real
logic into your HTML. The following example shows how you can set the greeting shown based
upon the time of day:

<%If Time >= #12:00:00 AM# And Time < #12:00:00 PM# Then%>

Good Morning!

<%Else%>

Hello!

<%End If%>

See also:

Creating the Basic ASP Application in this chapter

Creating an ASP Page in this chapter

Using Server-side Includes in this chapter

Using @ Directives in this chapter

 Changing the Scripting Language
Sun Chili!Soft ASP provides both VBScript and JScript script interpreters to process the
commands in an ASP script. The default scripting language is VBScript, but you can change this
to JScript for an ASP page by using the <%@ LANGUAGE> directive at the beginning of your
ASP file, as described in "Using @ Directives" in this chapter.

You can change the scripting language for a single block of script by enclosing the block in
<SCRIPT> ... </SCRIPT> tags. Normally, a block of code enclosed in <SCRIPT> tags
runs on the client side, but you can force the block to run on the server by including the
runat=server attribute, as shown in the following example:

<SCRIPT language=JScript runat=server>

Alternatively, your system administrator can change the default scripting language to either
VBScript or JScript on the ASP Server. For Windows systems, see "Editing the Windows
Registry" in "Chapter 3: Managing Sun Chili!Soft ASP." For UNIX and Linux systems, see
"Editing the Sun Chili!Soft ASP Configuration File" in "Chapter 3: Managing Sun Chili!Soft
ASP."

 Using @ Directives
Sun Chili!Soft ASP provides @ directives in addition to the available scripting commands. The
following standard ASP @ directives are available:

Sun Chili!Soft ASP 3.6.2 Product Documentation 187

ENABLESESSIONSTATE. This directive turns session tracking on and off for an ASP page. If
your page does not rely on session information, turning session tracking off can decrease the time
it takes Sun Chili!Soft ASP to process the script. By default, sessions are enabled. For more
information, see "Managing User Sessions" in this chapter. The syntax for this directive is as
follows:

Syntax: ENABLESESSIONSTATE @ Directive
<%@ ENABLESESSIONSSTATE=True|False %>

LANGUAGE. By default, the primary scripting language for Sun Chili!Soft ASP is VBScript,
but this can be changed to JScript for each ASP page by using the <%@ LANGUAGE> directive at
the beginning of your ASP file. The syntax and parameters are as follows:

Syntax: LANGUAGE @ Directive
<%@ LANGUAGE=scriptengine %>

There must be a space between the @ and the keyword. More than one keyword can be specified
in a directive; each keyword/value pair must be separated by a space. Do not put spaces around
the equal sign (=).

Parameters: LANGUAGE @ Directive
scriptengine

The script engine that should process the script.

Note

The following standard ASP directives are not implemented by Sun Chili!Soft ASP: CODEPAGE, LCID, and
TRANSACTION.

For more information about configuring Sun Chili!Soft ASP language support, see "Developing
International Applications" in this chapter.

See also:

Creating the Basic ASP Application in this chapter

Creating an ASP Page in this chapter

Using Server-side Includes in this chapter

 Using Server-side Includes
You use a server-side include directive to import a file into an ASP page during processing. Any
text file can be imported, or "included." The contents of the included file are placed on the page at
the location of the server-side include directive.

Sun Chili!Soft ASP 3.6.2 Product Documentation 188

You can include files that themselves contain included files. In the event of a "loop," in which the
first file contains an included file that in turn includes the first file, ASP reports an error. Included
files can also be ASP files; the results of an included ASP file are placed at the position of the
#include statement. You cannot build a server-side include statement programmatically because
ASP processes #include directives before processing any script.

The syntax for a server-side include is as follows:

<!--#INCLUDE VIRTUAL|FILE="filename"-->

To specify the path, use the virtual keyword to indicate a path name beginning with a virtual
directory. Use the file keyword to indicate a relative path name that begins with the directory
containing the include file. For example, if a file is in the directory Dir1, and the file header1.inc
is in Dir1/Headers, the following code would insert header1.inc in your file:

<!--#INCLUDE FILE="Headers/header1.inc"-->

If the EnableParentPaths configuration setting is set to yes, you can also use the File parameter
with ../ syntax to include a file from a parent (higher-level) directory. By default,
EnableParentPaths is set to no. In this case, the CreateObject ("Scripting.FileSystemObject")
calls generated in the global.asa file by FrontPage do not work. Your system administrator must
change EnableParentPaths to yes, or you must change the code generated by FrontPage in the
global.asa file to Server.CreateObject ("Scripting.FileSystemObject"). For more information,
see "Configuring File System Access" in "Chapter 3: Managing Sun Chili!Soft ASP."

There is no real performance penalty for using server-side includes. ASP saves files in memory in
a compiled form after processing them. Processing only occurs the first time a file is accessed.

Often after you edit an "included" file, the change does not show up in your ASP page. The ASP
Server only picks up changes in an included file if it recompiles the page that contains the
#include directive. You can force a recompile of this page by "touching" the file or by making a
trivial change that updates the timestamp on the file.

Within an included ASP file, script commands and procedures must be entirely contained within
the script delimiters <% and %>, the HTML tags <SCRIPT> and </SCRIPT>, or the HTML tags
<OBJECT> and </OBJECT>. That is, you cannot open a script delimiter in an included ASP
file, and then close the delimiter in the referencing file. The script or script command must be a
complete unit.

See also:

Creating the Basic ASP Application in this chapter

Creating an ASP Page in this chapter

Using @ Directives in this chapter

 Defining the ASP Application
An ASP application is synonymous with a directory structure. It represents a collection of files
and virtual directories that are intended to work together to create a Web-based application. An

Sun Chili!Soft ASP 3.6.2 Product Documentation 189

application is defined by flagging a directory as the application start point. The application scope
then includes all items within the directory and the sub-directories, except those that are included
in another application. Applications can include a global.asa file that contains global application
information and user session information.

For the Sun Chili!Soft ASP Server to recognize and process an ASP application, your
administrator must first define the application on the server, as described in "Configuring ASP
Applications" in "Chapter 3: Managing Sun Chili!Soft ASP."

See also:

Using the global.asa File in this chapter

Creating the Basic ASP Application in this chapter

Creating an ASP Page in this chapter

Using the global.asa File

Global.asa is an optional file that stores script procedures and objects used globally by an
application. There can only be one global.asa file per ASP application. The file must be named
global.asa and must be stored in the root directory of the application. The root directory of an
application is the top-level directory containing all of the application files and sub-directories.

The only script procedures you can declare in a global.asa are the following:

� Application_OnStart event, as described in "Specifying Application Events" in this
chapter.

� Application_OnEnd event, as described in "Specifying Application Events" in this
chapter.

� Session_OnStart event, as described in "Managing User Sessions" in this chapter.

� Session_OnEnd event, as described in "Managing User Sessions" in this chapter.

Notes

Scripts that do not have session or application scope cause the server to return an error. Global.asa files that do
not specify Application and Session events are ignored.

Script procedures declared in the global.asa file cannot be called from ASP pages in an application.

See also:

Saving Changes to the global.asa File in this chapter.

 Specifying Application Events
An ASP application starts the first time the Web server receives a request for one of the ASP
pages contained in the application directory. The application ends when the Web server is shut
down. You can create global data for an application using the built-in ASP Application object.

Sun Chili!Soft ASP 3.6.2 Product Documentation 190

You can assign variables and object instances to application variables so that they are available to
all pages of an application.

When an application starts, the Application_OnStart event occurs. The Application_OnEnd
event occurs when the application shuts down. When the application starts or stops, the server
looks in the global.asa file to find the event scripts.

ASP Application_OnStart Event
The Application_OnStart event occurs before the first session is created, before the
Session_OnStart event occurs. Only the Server and Application built-in objects are available.
Referencing the Session, Request, or Response object in the Application_OnStart event
generates an error.

Syntax: ASP Application_OnStart Event

<SCRIPT LANGUAGE=ScriptLanguage RUNAT=Server>

Sub Application_OnStart

. . .

End Sub

</SCRIPT>

Parameters: ASP Application_OnStart Event
ScriptLanguage

Specifies the scripting language used to write the event script, either VBScript or JScript. If more
than one event uses the same scripting language, the events can be enclosed within a single set of
<SCRIPT> tags.

Runat

Must be "Server."

ASP Application_OnEnd Event
The Application_OnEnd event occurs when the application ends, after the Session_OnEnd
event (see below). Only the Server and Application objects are available.

Syntax: ASP Application_OnEnd Event

<SCRIPT LANGUAGE=ScriptLanguage RUNAT=Server>

Sub Application_OnEnd

. . .

End Sub

</SCRIPT>

Sun Chili!Soft ASP 3.6.2 Product Documentation 191

Parameters: ASP Application_OnEnd Event
ScriptLanguage

Specifies the scripting language used to write the event script, either VBScript or JScript. If more
than one event uses the same scripting language, the events can be enclosed within a single set of
<SCRIPT> tags.

Runat

Must be "Server."

See also:

Managing User Sessions in this chapter

Using the global.asa File in this chapter

Saving Changes to the global.asa File in this chapter

 Managing User Sessions
Communication between a browser and a Web server uses the HTTP protocol. This protocol is
stateless, meaning that there is no information retained when a user goes from one page to
another. In a real-world application, it is usually necessary to retain information between pages
visited by the same user. The use of an application by a single user is called a session.

Sun Chili!Soft ASP includes the built-in Session object for retaining session information. When a
new session starts, an instance of the Session object is created automatically. You can assign
variables and object instances to session variables so that they are available to all pages of the
application visited by the same user.

The global.asa file can contain the following handlers for two session-level events:
Session_OnStart and Session_OnEnd, which are described later in this topic. These subroutines
are automatically executed the first time a user accesses an ASP page within the application.
Sessions exist until one of the following occurs:

� The user closes the browser

� The session times out (configurable by the ASP developer)

� The session is explicitly abandoned (Session.Abandon)

Turning Session Tracking On and Off
The ENABLESESSIONSTATE @ directive turns off session tracking for a page. If your page
does not rely on session information, turning off session tracking can decrease the time it takes
Sun Chili!Soft ASP to process the script. By default, sessions are enabled.

Syntax

<%@ ENABLESESSIONSSTATE=True|False %>

Sun Chili!Soft ASP 3.6.2 Product Documentation 192

ASP Session_OnStart Event
The Session_OnStart event occurs when the server creates a new session. The server processes
this script prior to executing the requested page. The Session_OnStart event is where, when you
set any session-wide variables, those variables will be set before any pages are accessed. All of
the built-in objects are available and can be referenced in the Session_OnStart event script.

Syntax: Session_OnStart Event

<SCRIPT LANGUAGE=ScriptLanguage RUNAT=Server>

Sub Session_OnStart

. . .

End Sub

</SCRIPT>

Parameters: Session_OnStart Event
ScriptLanguage

Specifies the scripting language used to write the event script, either VBScript or JScript. If more
than one event uses the same scripting language, the events can be enclosed within a single set of
<SCRIPT> tags.

Runat

Must be "Server."

ASP Session_OnEnd Event
The Session_OnEnd event occurs when a session is abandoned or times out. Only the
Application, Server and Session built-in objects are available.

Syntax: ASP Session_OnEnd Event

<SCRIPT LANGUAGE=ScriptLanguage RUNAT=Server>

Sub Session_OnEnd

. . .

End Sub

</SCRIPT>

Parameters: ASP Session_OnEnd Event
ScriptLanguage

Specifies the scripting language used to write the event script, either VBScript or JScript. If more
than one event uses the same scripting language, the events can be enclosed within a single set of
<SCRIPT> tags.

Sun Chili!Soft ASP 3.6.2 Product Documentation 193

Runat

Must be "Server."

See also:

Specifying Application Events in this chapter

Using the global.asa File in this chapter

Saving Changes to the global.asa File in this chapter

 Saving Changes to the global.asa File
When you make changes to the global.asa file and then save them, the Sun Chili!Soft ASP Server
reloads and compiles the file. Saving changes to a file "included" by the global.asa file does not
force the server to reload it, so you must force a reload by resaving the global.asa file.

Note that the ASP Server processes all current application requests before it recompiles. During
that time, additional requests are refused, returning the message, "The request cannot be
processed while the application is being restarted."

See also:

Using the global.asa File in this chapter

Specifying Application Events in this chapter

Managing User Sessions in this chapter

Using Sun Chili!Soft ASP Built-in Objects

Sun Chili!Soft ASP includes five built-in objects--Application, Request, Response, Server, and
Session--that handle many common programming tasks. These objects enable you to avoid much
of the overhead associated with complex Web programming, so you can focus on creating
interesting, interactive Web content rather than on doing low-level programming.

Sun Chili!Soft ASP objects use "methods" to perform some type of procedure and "properties" to
store object attributes (such as color, font, or size). The Request and Response objects also
contain "collections" (bits of information that are accessed in the same way).

For Web applications requiring more powerful programming, you can use Component Object
Model (COM) objects to process data and deliver output, with scripts acting as the "glue" to link
COM objects. Sun Chili!Soft ASP also supports JavaBeans, Enterprise JavaBeans (EJB), and
Common Object Request Broker Architecture (CORBA) objects. For more information, see
"Component Programmer's Reference" in "Chapter 5: Developer's Reference."

This section provides a basic overview of the following built-in ASP objects included with Sun
Chili!Soft ASP. For more information, see "ASP Built-in Objects Reference" in "Chapter 5:
Developer's Reference."

In this section:

Sun Chili!Soft ASP 3.6.2 Product Documentation 194

� ASP Application Object Overview: shares application-level information and control
settings for the lifetime of the application

� ASP Request Object Overview: gets information from the user

� ASP Response Object Overview: sends information to the user

� ASP Server Object Overview: controls the Web server

� ASP Session Object Overview: stores information about and changes settings for the
user's current session

 ASP Request Object Overview
The Request object is one of the five Sun Chili!Soft ASP built-in objects. The Request object is
used to get information from the user that is passed along in an HTTP request. Both the Request
and Response objects support the following collections:

� QueryString: gets text

� Form: gets data from an HTML form

� Cookies: gets the value of application-defined cookie

� ServerVariables: gets HTTP information, such as the server name

See also:

Using Sun Chili!Soft ASP Built-in Objects in this chapter

ASP Request Object in "Chapter 5: ASP Built-in Objects Reference"

 ASP Response Object Overview
The Response object is one of the five Sun Chili!Soft ASP built-in objects. The Response object
is used to send information to the user. The Response object supports only Cookies as a
collection (to set cookie values). Both the Request and Response objects support the following
collections:

� QueryString: gets text, such as a name

� Form: gets data from an HTML form

� Cookies: gets the value of application-defined cookie

� ServerVariables: gets HTTP information, such as the server name

The Response object also supports a number of properties and methods. Supported properties are:

� Buffer: buffers page output at the server. When this is set to TRUE, the server will not
send a response until all of the server scripts on the current page have been processed, or
until the Flush or End method has been called.

� ContentType: sets the type of content (such as text/HTML, Excel, and so forth).

Sun Chili!Soft ASP 3.6.2 Product Documentation 195

� Expires: sets the expiration based on minutes (when the data in the user's cache for this
Web page is considered invalid; for example, expires in 10 minutes).

� ExpiresAbsolute: enables you to set the expiration date to an absolute date and time.

� Status: returns the status line (defined in the HTTP specification for the server).

Supported methods are:

� AddHeader: adds an HTML header with a specified value

� AppendToLog: appends a string to the end of the Web server log file

� BinaryWrite: writes binary data (for example, Excel spreadsheet data)

� Clear: clears any buffered HTML output

� End: stops processing of the script

� Flush: sends all of the information in the buffer

� Redirect: redirects the user to a different URL

� Write: writes into the HTML stream. You can do this by using the construct
Response.Write("hello") or the shortcut command <%="hello"%>.

For information about using the ASP built-in objects, see "ASP Built-in Objects Reference" in
"Chapter 5: Developer's Reference."

See also:

Using Sun Chili!Soft ASP Built-in Objects in this chapter

ASP Response Object in "Chapter 5: ASP Built-in Objects Reference"

 ASP Server Object Overview
The Server object is one of the five Sun Chili!Soft ASP built-in objects. The Server object
provides high-level access to the ASP Server. Along with the Application object, the Server
object provides ASP applications with global data: information that applies to all users of the
application. The Server object gives you programmatic control of the Web server, providing
access to HTTP services that you would otherwise need to code for each application. By using
Server object properties and methods, you can create objects, execute scripts on other ASP
pages, translate virtual path names to physical path names, and perform server-side redirects.

The Server object supports one property, ScriptTimeout, which allows you to set the value for
when the script processing will time out, and the following methods:

� CreateObject: creates an instance of a server component. This component can be any
component that you have installed on your server (such as an ActiveX).

� HTMLEncode: encodes the specified string in HTML.

� MapPath: maps the current virtual path to a physical directory structure. You can then
pass that path to a component that creates the specified directory or file on the server.

Sun Chili!Soft ASP 3.6.2 Product Documentation 196

� URLEncode: applies URL encoding to a specified string.

For information about using the ASP built-in objects, see "ASP Built-in Objects Reference" in
"Chapter 5: Developer's Reference."

See also:

Using Sun Chili!Soft ASP Built-in Objects in this chapter

ASP Server Object in "Chapter 5: ASP Built-in Objects Reference"

 ASP Session Object Overview
The Session object is one of the five Sun Chili!Soft ASP built-in objects. The Session object is
used to store information about the current user's session. Variables stored with this object exist
as long as the user's session is active, even if more than one application is used.

This object supports one method, Abandon, which abandons the current Web server session,
destroying any objects. It supports two properties, SessionID, containing the identifier for the
current session, and Timeout, specifying a time-out value for the session. Keep in mind that the
session identifier persists as long as the current Web server session is running. If you shut down
the Web server service, the identifiers restart. Therefore, it is not a good idea to use the session
identifier to create logon IDs, because you could end up with duplicates.

For information about using the ASP built-in objects, see "ASP Built-in Objects Reference" in
"Chapter 5: Developer's Reference."

See also:

Using Sun Chili!Soft ASP Built-in Objects in this chapter

ASP Session Object in "Chapter 5: ASP Built-in Objects Reference"

 ASP Application Object Overview
The Application object is one of the five Sun Chili!Soft ASP built-in objects. The Application
object stores information that persists for the entire lifetime of an ASP application, which is
generally the entire time that the Web server is running.

The Application object is a good place to store information that must exist for more than one
user (such as a page counter). However, because a new instance of this object is not created for
each user, errors that might not show up when the code is called once might show up when it is
called many times in a row. In addition, because all users share the Application object, it can be
difficult to implement threading.

For more information about using the ASP built-in objects, see "ASP Built-in Objects Reference"
in "Chapter 5: Developer's Reference."

See also:

Using Sun Chili!Soft ASP Built-in Objects in this chapter

Sun Chili!Soft ASP 3.6.2 Product Documentation 197

ASP Application Object in "Chapter 5: ASP Built-in Objects Reference"

Using Sun Chili!Soft ASP Installed Components

In addition to the five built-in objects described in "Using Sun Chili!Soft ASP Built-in Objects,"
Sun Chili!Soft ASP automatically installs a number of components that you can use to build
dynamic Web pages. The following table lists these installed components. For more information
about using them, see "ASP Component Reference" in "Chapter 5: Developer’s Reference."

Component Description
Ad Rotator Creates an AdRotator object that automates the rotation of

advertisement images on a Web page.

Browser Capabilities Creates a BrowserType object that determines the type, version,
and capabilities of every browser that visits your site.

Content Linking Creates a NextLink object that manages a list of URLs so that
you can treat the pages in your Web site like the pages in a
book.

Content Rotator Creates a ContentRotator object that automatically rotates
HTML content strings on a Web page.

Counters Creates a Counters object that can create, store, increment, and
retrieve any number of individual counters.

Database Access Provides access to databases using ActiveX Data Objects
(ADO).

FileSystemObject Object
(VBScript)

FileSystemObject Object
(JScript)

Provides access to file input and output.

MyInfo Creates a MyInfo object that keeps track of personal
information, such as the site administrator's name, address, and
display choices.

Tools Creates a Tools object that provides utilities that enable you to
easily add sophisticated functionality to your Web pages.

Using Java Objects and Classes

Through Chili!Beans, Sun Chili!Soft ASP provides support for Java objects and classes.
Chili!Beans is an ActiveX control that acts as a wrapper to enable Java objects to be used by

Sun Chili!Soft ASP 3.6.2 Product Documentation 198

Component Object Model (COM) controllers such as ActiveX scripting engines or VBScript.
Chili!Beans is designed to work with Java Virtual Machine (JVM) versions 1.2 or greater.

For more information, see "Chili!Beans Component Reference" in "Chapter 5: Developer’s
Reference."

See also:

Using Sun Chili!Soft ASP Installed Components in this chapter

ASP Component Reference in "Chapter 5: Developer’s Reference"

Connecting to a Database

The topics in this section take you through the two basic steps required for connecting to a
database from an ASP page: creating a connection string, and opening a database connection.
This section also explains how to use FrontPage database features with Sun Chili!Soft ASP. It
also explains how to migrate a Microsoft Access database running on a Windows-based computer
to a dBASE database running on a UNIX or Linux system.

A connection string provides information required by the Sun Chili!Soft ASP Server to establish
the connection. Within a connection string, you can use one of three ways to specify information
about a database, as described later in this section: a system DSN, a DSN-less connection string,
and a file DSN.

You open a database connection by using the ADO Connection object included with Sun
Chili!Soft ASP. You can then use other ADO objects to display and manipulate data on the ASP
page. For more information about using ADO objects, see "ADO Component Reference" in
"Chapter 5: Developer's Reference."

If you are going to pass data exceeding 64,000 bytes to a database, your system administrator
should increase the maxLongFieldLength parameter for ADO, as described in "Editing the
Chili!Soft Configuration File" in "Chapter 3: Managing Sun Chili!Soft ASP."

In this section:

� Creating Connection Strings

� Opening the Database Connection

� Using FrontPage Database Features

� Migrating a Microsoft Access Database to dBASE

Creating Connection Strings

When you want to connect to a database from an ASP page, your first step is to create the
connection string. This provides information (in the form of parameters and their values) that is
required for the server to establish the connection.

Sun Chili!Soft ASP 3.6.2 Product Documentation 199

Each type of database has a specific set of parameters for which you must specify values; these
are the required parameters. Some databases also provide optional parameters that you can
specify to implement special features.

Exactly what you must include in a connection string depends on the type of database and the
approach you use to specify its parameters. Sun Chili!Soft ASP supports the following three
approaches to specifying parameters in a connection string:

� System DSNs. With a system DSN, all you need to provide in the connection string is the
name of the DSN that your system administrator has configured for the database on the
ASP Server. For more information, see "Using System DSNs" in this section.

� File DSNs. A file DSN is similar to a system DSN, except the database information is
contained in a file (*.dsn) that can be stored in the root directory for a virtual host, rather
than being stored centrally by the ASP Server. File DSNs are useful in shared Web
hosting environments because a system administrator does not need to configure each file
DSN; users can configure their own. For more information, see "Using File DSNs" in this
section.

� DSN-less connection strings. With a DSN-less connection string, you specify all of the
required database information in the connection string. For more information, see "Using
DSN-less Connection Strings" in this section.

Note about using Windows connection strings with Sun Chili!Soft ASP for UNIX or Linux

Connection strings must be constructed according to the requirements of the ODBC driver being used. Sun
Chili!Soft ASP for Windows uses standard Windows ODBC drivers, so connection strings you developed for
Windows will work. However, the ODBC drivers for UNIX and Linux platforms are different than for
Windows, so before you can use Windows connection strings with Sun Chili!Soft ASP for UNIX or Linux, you
must edit them to use the syntax described in this section.

When creating file system references in ASP applications, keep in mind that UNIX and Linux are case-sensitive
operating systems. Be sure to use the correct capitalization in all references to files and directories.

Ask your server administrator which approach you should use in your specific Web server
environment.

Once you have created the connection string in your ASP page, you can add the code needed to
open a database connection, as described in "Opening the Database Connection" in this chapter.

Note

On UNIX and Linux systems, Sun Chili!Soft ASP installs the ODBC drivers to support a number of databases.
However, it does not support all databases on all platforms. To see the list of installed drivers for your platform,
go to the platform-specific installation requirements section in "Installing and Uninstalling Sun Chili!Soft ASP"
in "Chapter 2: Installing and Configuring Sun Chili!Soft ASP."

 Using System DSNs
As discussed in "Creating Connection Strings" in this chapter, using a system DSN is one way to
specify database information in a connection string.

Sun Chili!Soft ASP 3.6.2 Product Documentation 200

Before you can use a system DSN in a connection string, your administrator must first add it to
the ASP Server, as described in "Adding a DSN" in "Chapter 3: Managing Sun Chili!Soft ASP."
This saves information on the ASP Server about all parameters required for connecting to the
database.

Note

On UNIX and Linux systems, Sun Chili!Soft ASP installs the ODBC drivers to support a number of databases.
However, it does not support all databases on all platforms. To see the list of installed drivers for your platform,
go to the platform-specific installation requirements section in "Installing and Uninstalling Sun Chili!Soft ASP"
in "Chapter 2: Installing and Configuring Sun Chili!Soft ASP."

Once a system DSN is configured, rather than needing to specify all of the database information
in the connection string as you do with DSN-less connection strings, you can simply reference the
system DSN name. When you do this, the ASP Server uses the information stored in the system
DSN to establish the connection.

Often, all you need to provide in the connection string is the name of the DSN that your system
administrator has configured for the database. In this case, use the following syntax:

connect_string = "dsn=[dsn_name]"

where [dsn_name] is the name your system administrator defined for the DSN.

However, if the username and password required for connecting to the database are not specified
in the system DSN, you must include them in the connection string. Ask your database
administrator for this information. Be sure to use the correct syntax for your type of database, as
follows:

connect_string = "dsn=[dsn_name]; UID=[username]; PWD=[password]"

Note

dBASE does not require a username and password.

If your system administrator asks you to use file DSNs or DSN-less connection strings rather than
system DSNs, see "Using File DSNs" and "Using DSN-less Connection Strings" in this chapter.
However, you must use system DSNs for connecting to Microsoft Access and Microsoft SQL
Server 6.5 databases. You cannot use DSN-less connection strings or file DSNs for connecting to
these databases.

See also:

Connecting to a Database in this chapter

Using FrontPage Database Features in this chapter

 Using DSN-less Connection Strings
As discussed in "Creating Connection Strings" in this chapter, using a DSN-less connection string
is one way to specify the information (in the form of parameters and their values) that is needed
for establishing a database connection. Unlike system DSNs and file DSNs, which incorporate

Sun Chili!Soft ASP 3.6.2 Product Documentation 201

this information by reference, DSN-less connection strings include all required database
parameters.

You use the following syntax for a connection string:

connect_string = "[parameter_1=value_1; parameter_2=value_2; parameter_3=value_3]"

where [parameter_1=value1; parameter_2=value_2; parameter_3=value_3]
specifies the required parameters for the given database.

The following example shows a DSN-less connection string for a MySQL database:

connect_string = "Driver={Mysql}; Server=[server_name]; Database=[database_name];

UID=[username]; PWD=[password]"

where [server_name] is the name of the database server, [database_name] is the name of
the database, and [username] and [password] are the username and password required for
accessing the database.

Different types of databases can require that you specify different parameters. The parameters to
configure for each database in a DSN-less connection string are provided in "Syntax for DSN-less
Connection Strings" in this section.

Note about using Windows connection strings with Sun Chili!Soft ASP for UNIX or Linux

Connection strings must be constructed according to the requirements of the ODBC driver being used. Sun
Chili!Soft ASP for Windows uses standard Windows ODBC drivers, so connection strings you developed for
Windows will work. However, the ODBC drivers for UNIX and Linux platforms are different than for
Windows, so before you can use Windows connection strings with Sun Chili!Soft ASP for UNIX or Linux, you
must edit them to use the syntax described in this section.

Note about supported databases

With Sun Chili!Soft ASP for UNIX or Linux you cannot use DSN-less connection strings or file DSNs for
connecting to Microsoft Access or Microsoft SQL Server 6.5 databases; you must use system DSNs for
connecting to these databases.

On UNIX and Linux systems, Sun Chili!Soft ASP installs the ODBC drivers to support a number of databases.
However, it does not support all databases on all platforms. To see the list of installed drivers for your platform,
go to the platform-specific installation requirements section in "Installing and Uninstalling Sun Chili!Soft ASP"
in "Chapter 2: Installing and Configuring Sun Chili!Soft ASP."

See also:

Connecting to a Database in this chapter

Creating Connection Strings in this chapter

 Syntax for DSN-less Connection Strings
The following table lists the parameters to define and the syntax to use for each type of database
in DSN-less connection strings.

Sun Chili!Soft ASP 3.6.2 Product Documentation 202

Database Type Syntax for DSN-less Connection Strings
DB2 connect_string = "Driver={DB2}; IP=[ip_address];

Port=[port_number]; Database=[database_name];
UID=[username]; PWD=[password]"

where [ip_address] is the IP address of the database server,
[port_number] is the port for the database server,
[database_name] is the name of the database, and [username] and
[password] are the username and password required for accessing the
database.

dBASE 5 connect_string = "Driver={Dbase}; DBQ=[pathname];
defaultDir=[default_directory]"

where [pathname] is the absolute path name of the directory
containing the database file and [default_directory] is the default
directory for the database.

Informix 7, 9 connect_string = "Driver={Informix};
ServerName=[server_name];
Database=[database_name]; UID=[username];
PWD=[password]"

where [server_name] is the name of the database server,
[database_name] is the name of the database, and [username] and
[password] are the username and password required for accessing the
database.

Informix 2000 connect_string = "Driver={Informix};
HostName=[host_name]; ServerName=[server_name];
Port=[port_number];Database=[database_name];
UID=[username]; PWD=[password]"

where [host_name] is the name of the computer on which the
database server resides, [server_name] is the name of the database
server as it appears in the sqlhosts file, [port_number] is the port on
which the database server is configured to listen, [database_name] is
the name of the database, and [username] and [password] are the
username and password required for accessing the database.

Microsoft Access DSN-less connection strings and file DSNs are not supported for
Microsoft Access databases. You must use system DSNs.

Microsoft SQL Server
6.5

DSN-less connection strings and file DSNs are not supported for
Microsoft SQL Server 6.5 databases. You must use system DSNs.

Microsoft SQL Server
7.0 and 2000

connect_string = "Driver={SQL Server};
Database=[database_name];
Address=[ip_address],[port_number];
UID=[username]; PWD=[password]"

where [database_name] is the name of the database,

Sun Chili!Soft ASP 3.6.2 Product Documentation 203

[ip_address],[port_number] is the IP address of the database
server and the port on which the database server is configured to listen,
and [username] and [password] are the username and password
required for accessing the database.

MySQL connect_string = "Driver={Mysql};
Server=[server_name]; Database=[database_name];
UID=[username]; PWD=[password]"

where [server_name] is the name of the database server,
[database_name] is the name of the database, and [username] and
[password] are the username and password required for accessing the
database.

Oracle 7, 8 connect_string = " Driver={Oracle};
Server=[TNS_name]; UID=[username];
PWD=[password]"

where [TNS_name] is the TNS name as defined in the tnsnames.ora
file, and [username] and [password] are the username and
password required for accessing the database.

Oracle 8i, 9i connect_string = " Driver={Oracle};
Host=[host_name];Port=[port_number];
SID=[oracle_SID]; UID=[username]; PWD=[password]"

where [host_name] is the computer on which the database server
resides, [port_number] is the port on which the database server is
configured to listen, [oracle_SID] is the Oracle System Identifier
that refers to the instance of Oracle running on the server, and
[username] and [password] are the username and password
required for accessing the database.

PostgreSQL connect_string = " Driver={Postgres};
Server=[server_name]; Port=[port_number];
Database=[database_name]; UID=[username];
PWD=[password]"

where [server_name] is the name of the database server,
[port_number] is the port on which the database server is configured
to listen, [database_name] is the name of the database, and
[username] and [password] are the username and password
required for accessing the database.

Sybase connect_string = " Driver={Sybase};
NetworkAddress=[host_name],[port_number];
Database=[database_name]; UID=[username];
PWD=[password]"

where [host_name],[port_number] is the IP address of the
database server and the port on which the database server is configured
to listen, [database_name] is the name of the database,; and

Sun Chili!Soft ASP 3.6.2 Product Documentation 204

[username] and [password] are the username and password
required for accessing the database.

Text connect_string = " Driver={Text};
Database=[database_location]"

where [database_location] is the directory in which the text files
are stored.

See also:

Using DSN-less Connection Strings in this chapter

 Using File DSNs
As discussed in "Creating Connection Strings" in this chapter, using file DSNs is one way to
specify the information needed for establishing a connection to a database from an ASP
application. This topic explains how to create a file DSN and reference it from within a
connection string.

When you have a number of connection strings referencing the same database, file DSNs can be
quicker to implement than DSN-less connection strings. File DSNs can also make ASP
applications easier to port from the development environment to the production server because
you can edit the database information in a single file, rather than editing multiple connection
strings.

To use file DSNs, the first step is to create a file containing the required parameters and values
for the database with which you want to connect. Then you simply reference the file from within
the connection string, rather than duplicating the database information each time.

To create a file DSN, open a plain text file and specify the parameters for the database to which
you want to connect by using the following general syntax:

[ODBC]

a=b

c=d

e=f

where a=b, c=d, and e=f are the key-value pairs that define the database parameters and their
values. One of the key-value pairs must specify the name of the ODBC driver for the database.
The parameters you must configure for each database are provided in "Parameters for File DSNs"
in this section.

Sun Chili!Soft ASP 3.6.2 Product Documentation 205

Note about using Windows file DSNs with Sun Chili!Soft ASP for UNIX or Linux

File DSNs and connection strings must be constructed according to the requirements of the ODBC driver being
used. On Windows, Sun Chili!Soft ASP uses the same ODBC drivers as Microsoft ASP, so you do not need to
change any file DSNs or connection strings to use them. However, the ODBC drivers available for UNIX and
Linux platforms are different than for Windows. To connect to a database from an ASP application that you
developed for Windows on Sun Chili!Soft ASP for UNIX or Linux, you must edit your file DSNs and
connection strings to use the syntax described in this topic.

Also, when porting file DSNs to UNIX or Linux systems, be sure to remove the "control-M" characters that
Windows inserts at the end of each line.

The following example shows a file DSN for a Sybase 11 database:

[ODBC]

Driver={Sybase}

Server=Sun

DB=MyDatabase

UID=John

PWD=Some.Password

When finished defining parameters, give the file a DSN filename extension (*.dsn) and save it in
the document root of your Web server or virtual host.

Once you have created the file DSN, you can refer to it from within a connection string. The
syntax to use is as follows:

connect_string = "FileDSN=[MyFileDSN.dsn]"

- or -

connect_string = "File_Name=[MyFileDSN.dsn]"

where [MyFileDSN.dsn] is the absolute path name of the file DSN (*.dsn) containing the
database parameters and values.

In a shared Web hosting environment, such as with an Internet Service Provider, you might not
know the directory structure above the document root for your virtual host. In this situation, you
cannot specify the absolute path name of the file DSN, so you must use the Server.mapPath
directive instead. The following example uses a file DSN that is stored in the document root of
the virtual host:

dim myConnFile,connection_string

myConnFile = Server.mapPath("/") & "/" & "MyFileDSN.dsn"

connect_string = "FileDSN=" & myConnFile

Sun Chili!Soft ASP 3.6.2 Product Documentation 206

Note about supported databases

On UNIX and Linux systems, Sun Chili!Soft ASP installs the ODBC drivers to support a number of databases.
However, it does not support all databases on all platforms. To see the list of installed drivers for your platform,
go to the platform-specific installation requirements section in "Installing and Uninstalling Sun Chili!Soft ASP"
in "Chapter 2: Installing and Configuring Sun Chili!Soft ASP."

Note about Microsoft Access and Microsoft SQL Server databases

You cannot use DSN-less connection strings or file DSNs for connecting to Microsoft Access or Microsoft SQL
Server 6.5 databases from Sun Chili!Soft ASP for UNIX or Linux; you must use system DSNs.

See also:

Connecting to a Database in this chapter

Creating Connection Strings in this chapter

Using System DSNs in this chapter

Using FrontPage Database Features in this chapter

 Parameters for File DSNs
The following table lists the parameters you must define in a file DSN for each type of database.
In each case, use the driver name for your database that is provided in the table.

Database Type Parameters
DB2 Driver={DB2}

IP=[ip_address]

Port=[port_number]

Database=[database_name]

UID=[username]

PWD=[password]
where [ip_address] is the IP address of the database server,
[port_number] is the port for the database server, [database_name]
is the name of the database, and [username] and [password] are the
username and password required for accessing the database.

dBASE 5 Driver={Dbase}

DBQ=[pathname]

defaultDir=[default_directory]
where [pathname] is the absolute path name of the directory containing
the database file and [default_directory] is the default directory for
the database.

Informix 7, 9 Driver={Informix}

Server=[server_name]

Sun Chili!Soft ASP 3.6.2 Product Documentation 207

Database=[database_name]

UID=[username]

PWD=[password]
where [server_name] is the name of the database server,
[database_name] is the name of the database, and [username] and
[password] are the username and password required for accessing the
database.

Informix 2000 Driver={Informix}

HostName=[host_name]

Server=[server_name]

Port=[port_number]

Database=[database_name]

UID=[username]

PWD=[password]
where [host_name] is the name of the computer on which the database
server resides, [server_name] is the name of the database server as it
appears in the sqlhosts file, [port_number] is the port on which the
database server is configured to listen, [database_name] is the name of
the database, and [username] and [password] are the username and
password required for accessing the database.

Microsoft Access DSN-less connection strings and file DSNs are not supported for Microsoft
Access databases. You must use system DSNs.

Microsoft SQL
Server 6.5

DSN-less connection strings and file DSNs are not supported for Microsoft
SQL Server 6.5 databases. You must use system DSNs.

Microsoft SQL
Server 7.0 and 2000

Driver={SQL Server}

Address=[ip_address],[port_number]

Database=[database_name]

UID=[username]

PWD=[password]
where [database_name] is the name of the database;
[ip_address],[port_number] is the IP address of the database server
and the port on which the database server is configured to listen, and
[username] and [password] are the username and password required
for accessing the database.

MySQL Driver={Mysql}

Server=[server_name]

Database=[database_name]

UID=[username]

Sun Chili!Soft ASP 3.6.2 Product Documentation 208

PWD=[password]

where [server_name] is the name of the database server,
[database_name] is the name of the database, and [username] and
[password] are the username and password required for accessing the
database.

Oracle 7, 8 Driver={Oracle}

Server=[TNS_name]

UID=[username]

PWD=[password]

where [TNS_name] is the TNS name as defined in the tnsnames.ora file,
and [username] and [password] are the username and password
required for accessing the database.

Oracle 8i, 9i Driver={Oracle}

Host=[host_name]

Port=[port_number]

SID=[oracle_SID]

Server=[TNS_name]

UID=[username]

PWD=[password]

where [host_name] is the computer on which the database server
resides, [port_number] is the port on which the database server is
configured to listen, [oracle_SID] is the Oracle System Identifier that
refers to the instance of Oracle running on the server, and [username]
and [password] are the username and password required for accessing
the database.

PostgreSQL Driver={Postgres}

Server=[server_name]

Port=[port_number]

Database=[database_name]

UID=[username]

PWD=[password]

where [server_name] is the name of the database server,
[port_number] is the port on which the database server is configured to
listen, [database_name] is the name of the database, and [username]
and [password] are the username and password required for accessing
the database.

Sybase Driver={Sybase}

NetworkAddress=[host_name],[port_number]

Sun Chili!Soft ASP 3.6.2 Product Documentation 209

Database=[database_name]

UID=[username]

PWD=[password]

where [host_name],[port_number] is the IP address of the database
server and the port on which the database server is configured to listen,
[database_name] is the name of the database,; and [username] and
[password] are the username and password required for accessing the
database.

Text Driver={Text}

Database=[database_name]

where [database_location] is the directory in which the text files are
stored.

See also:

Using File DSNs in this chapter

Opening the Database Connection

Sun Chili!Soft ASP includes an ActiveX Data Object (ADO) control that developers can use for
initializing connections to databases and for retrieving and manipulating data on a Web page. The
ADO Connection object opens and closes database connections by using ODBC drivers. Other
ADO objects act as containers for storing information that is passed to and from the database. The
most common container is a Recordset object, which stores the results of a SELECT SQL query.

The topic, "Creating Connection Strings," explains the first step to take to connect an ASP page
to a database. After creating the connection string, your next step is to use the ADO control
included with Sun Chili!Soft ASP to open a database connection, as described in this topic.

Note

On UNIX and Linux systems, Sun Chili!Soft ASP installs the ODBC drivers to support a number of databases.
However, it does not support all databases on all platforms. To see the list of installed drivers for your platform,
go to the platform-specific installation requirements section in "Installing and Uninstalling Sun Chili!Soft ASP"
in "Chapter 2: Installing and Configuring Sun Chili!Soft ASP."

To open a database connection, you first add code for creating an instance of the ADO
Connection object, as shown in the following example:

set dbConn = server.createObject("ADODB.connection")

Next, you add code to call the Connection object Open method, which takes the connect_string
parameter, as shown in the next example:

dbConn.open connect_string

Sun Chili!Soft ASP 3.6.2 Product Documentation 210

This sends a request to the ODBC Manager to create an instance of the ODBC driver specified by
the connection string that you previously created. ADO then passes the remainder of the
connection string to the ODBC driver, which uses this information for connecting to the database.

Once you have established the connection, you can use the other ADO objects to retrieve, display,
and manipulate data on your Web page, as described in "ADO Component Reference" in
"Chapter 5: Developer's Reference."

If desired, you can also use FrontPage for creating connection strings and displaying data on a
Web page, as described in "Using FrontPage Database Features" in this chapter.

Note

Before you create a database connection, it is recommended that you ask your system administrator to verify
that the appropriate ODBC driver for your database is configured and functioning properly. It is a good idea to
test the driver on a nonproduction server because a malfunctioning ODBC driver can bring down your ASP
Server.

See also:

Connecting to a Database in this chapter.

Using FrontPage Database Features

This section describes Sun Chili!Soft ASP support for the database connectivity features of
FrontPage.

In this section:

� Using FrontPage Database Connections

� Displaying Data on a Web Page with FrontPage

 Using FrontPage Database Connections
To create a database connection in FrontPage, you must enter information about the database,
such as its name, ODBC driver, username, and password. FrontPage then writes this information
to the global.asa file as a connection string.

However, connection strings must be constructed according to the ODBC driver being used, and
the ODBC drivers are different on UNIX and Linux than on Windows. For this reason, before
you can use Windows connections with Sun Chili!Soft ASP for UNIX or Linux, you must first
edit them so they use the syntax described in "Creating Connection Strings" in this chapter.

In addition, when you use Microsoft SQL Server 6.5 or Microsoft Access databases with Sun
Chili!Soft ASP for UNIX or Linux, you must use system DSNs in connection strings; you cannot
use DSN-less connection strings or file DSNs. To use a system DSN for connecting to a
particular database, your administrator must create a DSN for the database on the ASP Server. In
addition, for SQL Server 6.5 and Access, your system administrator must configure SequeLink,
as described in "Configuring SequeLink" in "Chapter 3: Managing Sun Chili!Soft ASP."

Sun Chili!Soft ASP 3.6.2 Product Documentation 211

When you are using Sun Chili!Soft ASP for UNIX or Linux, consider migrating your Microsoft
Access databases to dBASE as described in "Migrating an Access Database to dBASE" in this
chapter. dBASE is relatively easy to learn and use and eliminates some of the platform
compatibility problems you might otherwise experience.

For Microsoft SQL Server 7.0 or 2000 databases, in addition to system DSNs, you can also use
DSN-less connection strings and file DSNs. You should verify that your connection strings
follow the syntax described in "Creating Connection Strings" in this chapter.

For all other databases supported by Sun Chili!Soft ASP, you can use system DSNs, file DSNs,
and DSN-less connection strings.

See also:

Using FrontPage Database Features in this chapter

Connecting to a Database in this chapter

 Displaying Data on a Web Page with FrontPage
With Sun Chili!Soft ASP, FrontPage developers can continue to use FrontPage features for
connecting to a database and displaying its information on an ASP page. Sun Chili!Soft ASP
supports all methods for displaying database data that are generated by the FrontPage Database
Results Wizard, including:

� Table format

� List format

� Drop-down menu format

By using the Database Results Wizard, developers can easily present the most recent data each
time a user views and refreshes a page. Sun Chili!Soft ASP also supports the FrontPage "Send To
Database" HTML form handler feature, and the Recordset navigation toolbar generated by the
Database Results Wizard for moving quickly through the pages of records returned by a query.

Important

When using the FrontPage Database Results Wizard, you must first create the ASP pages locally on your
workstation, and then publish them on the server running the ASP Server and FrontPage Server Extensions.
After moving the ASP pages, you can later use FrontPage to edit them on the server. Note that you must change
the connection strings created by FrontPage for them to work with Sun Chili!Soft ASP for UNIX or Linux. For
more information, see "Using FrontPage Database Connections" in this section.

See also:

Using FrontPage Database Connections in this chapter

Connecting to a Database in this chapter

Migrating a Microsoft Access Database to dBASE

Sun Chili!Soft ASP 3.6.2 Product Documentation 212

Microsoft Access databases are compatible with Sun Chili!Soft ASP running on Windows, but
these databases do not run on UNIX or Linux systems. You have two options for connecting to a
Microsoft Access database with Sun Chili!Soft ASP for UNIX or Linux.

First, you can use SequeLink. The necessary steps for creating the connection string are described
in "Creating Connection Strings" in this chapter. The steps the system administrator must take are
described in "Configuring SequeLink" in "Chapter 3: Managing Sun Chili!Soft ASP."

Alternatively, if you use FrontPage, you can easily migrate your Microsoft Access database to
dBASE by using the Microsoft Access Export Table feature. You can then import the resulting
folder of files to your FrontPage Web and use the Database Results Wizard. The dBASE database
management system is relatively easy to learn and use.

If you have moved a dBASE-based Web application to UNIX and then find that Sun Chili!Soft
ASP cannot open the database, make sure that the file extensions of your dBASE files are in all
capital letters (that is, *.DBF).

Note

dBASE databases do not support multi-table joins on UNIX.

See also:

Connecting to a Database in this chapter

Using FrontPage Database Features in this chapter

Developing International Applications

By default, the Sun Chili!Soft ASP Server displays content in United States (US) English and
uses US date, time, and currency formats. If you want to deliver ASP applications in locales and
languages other than US English, your administrator can change the locale specified for the ASP
Server, as described in "Configuring International Support" in "Chapter 3: Managing Sun
Chili!Soft ASP." This ensures that the characters in the specified language display properly and
that date, time, and currency formats are correct. Ask your administrator which locales are
available.

Regardless of the locale for which your server is configured, you can dynamically change how
certain content (such as date, time, and currency) is formatted so that it is appropriate for a given
locale. You can do this from within an ASP page by changing the value of the Session.LCID
property.

The following example shows how to display the current date first in German and then in
English, using the Session.LCID property:

<%

Session.LCID = &H0407 ' specify Germany/German

Sun Chili!Soft ASP 3.6.2 Product Documentation 213

Response.Write FormatDateTime(Date, vbLongDate) & "
" & vbNewLine

Session.LCID = &H0409 ' specify USA/English

Response.Write FormatDateTime(Date, vbLongDate) & "
" & vbNewLine

%>

Although you can dynamically change locales via Session.LCID, you can not effectively change
code pages in this release of Sun Chili!Soft ASP by using Session.CodePage. This means that
any characters that are not supported by the CODEPAGE specified for the ASP Server locale are
not reproduced correctly. The major exception to this is characters falling within the normal
ASCII range (0x00 to 0x7E), in which the graphical representations are the same in all languages
for almost all characters. (The rare exceptions include the 0x5C character, which displays as a
backslash in English but as a Yen symbol in Japanese.)

Notes about Japanese character support

Sun Chili!Soft ASP supports only the Shift-JIS encoding of Japanese characters and does not support
"extended" or "user-defined" characters. Please note that this applies to all Japanese usage in ASP pages,
including literal strings in the source files, text stored to files via the Scripting.FileSystemObject, text stored to
databases via the various ADODB objects and methods, and so forth. (The implementation of ADO used with
Sun Chili!Soft ASP is called ADODB.) Similarly, all output from ASP to browsers is in Shift-JIS only.

If a field is created as VarChar(nn) or Char(nn) then nn actually represents the number of bytes of data that can
be stored in that field. Since the majority of Shift-JIS characters occupy two bytes of memory, fields should be
specified with a size that is twice the maximum number of Shift-JIS characters that they need to hold.

Note about DB2 and locale

You must connect to a DB2 database that was created in the same locale in which the Web server and the Sun
Chili!Soft ASP Server are running. If you do not, upon attempting to make the database connection from an
ASP page, you might receive the following error message:

"There is no available conversion for the source code page "932" to the target code page "1252". Reason Code
"1". SQLSTATE=57017"

To address this problem, create and connect to a database that is in the appropriate locale.

See also:
Understanding Code Pages in this chapter.

 Understanding Code Pages
When you are building an ASP application that must support non-US-English users, the
application must support character set conversions. Internally, ASP and the language engine it
calls, VBScript or JScript, speak in Unicode strings. However, Web page content can be in ANSI,
DBCS, or another character-encoding scheme. Therefore, when an HTTP request from a browser
includes either form or query string values, they must be converted from the character set used by

Sun Chili!Soft ASP 3.6.2 Product Documentation 214

the browser into Unicode for processing by an ASP script. These conversions map characters
from one code page, which is a set of characters organized in some scheme, such as ANSI, to
another. For example, the value that refers to the letter "a" in ANSI is converted to the different
value that refers to that same letter "a" in Unicode. Similarly, when output is sent back to the
browser, any strings returned by scripts must be converted from Unicode back to the code page
used by the client.

These internal conversions are done using the default code page of the Web server. This works
great if the users and the server are all speaking the same language (more precisely, if they use
the same code page). However, for example, if you have a Japanese client hitting an English
server, the code page translations do not work because ASP treats Japanese characters as if they
are English.

See also:

Developing International Applications in this chapter.

Publishing a Sun Chili!Soft ASP Application

To publish an ASP application, you save the application files in the directory defined for that
application on your Web server (be sure that the directory has either Script or Execute
permission enabled). Your administrator can set up the ASP application directory on the server by
using the procedure in "Adding an ASP Application" in "Chapter 3: Managing Sun Chili!Soft
ASP." For more information about how ASP applications are structured, see "Creating the Basic
ASP Application" in this chapter.

To verify that an ASP page is displaying properly, you can request the page with your browser by
typing its URL. (Remember, ASP pages must be served, so you cannot request an *.asp file by
typing its physical path.) After the page loads in your browser, you will notice that the server has
returned an HTML page. This may seem strange at first, but remember that the ASP Server parses
and executes all server-side scripts prior to sending the file. The user always receives standard
HTML.

When publishing ASP pages created in FrontPage, be aware that if the EnableParentPaths
configuration setting is no, the default, CreateObject ("Scripting.FileSystemObject") calls
generated in the global.asa file by FrontPage will not work. Your system administrator must
either change EnableParentPaths to yes, or else you must change the code that FrontPage
generated in the global.asa file to Server.CreateObject ("Scripting.FileSystemObject"). For
more information, see "Configuring File System Access" in "Chapter 3: Managing Sun Chili!Soft
ASP."

Sun Chili!Soft ASP 3.6.2 Product Documentation 215

Chapter 5: Developer's Reference

This chapter contains the following reference information for ASP developers:

� ADO Component Reference

� ASP Built-in Objects Reference

� ASP Component Reference

� Chili!Beans Component Reference

� Component Programmer's Reference

� JScript Language Reference

� SpicePack Component Reference

� VBScript Language Reference

ADO Component Reference

Sun Chili!Soft ASP includes ActiveX Data Objects (ADO) for connecting ASP applications to
databases. ADO is a set of objects that provide a mechanism to access information from ODBC-
compliant data sources.

This section provides the following ADO reference information:

� ADO Overview

� ADO Objects

� ADO Command Object

� ADO Connection Object

� ADO Error Object

� ADO Field Object

� ADO Parameter Object

� ADO Property Object

� ADO Recordset Object

� ADO Collections

 ADO Overview
The implementation of ADO used with Sun Chili!Soft ASP is called ADODB. ADO enables
client applications to access and manipulate data in a database server from a variety of different

Sun Chili!Soft ASP 3.6.2 Product Documentation 216

vendors in the same manner. With ADO, data is updated and retrieved using a variety of existing
methods (including SQL). In the context of ASP, using ADO typically involves writing script
procedures that interact with a database and use HTML to display information from data sources.

In ADO, the Recordset object is the main interface to data. An example of the minimal VBScript
code to generate a recordset from an ODBC data source is as follows:

set rstMain = CreateObject("ADODB.Recordset")

rstMain.Open "SELECT * FROM authors", _

"DATABASE=pubs;UID=sa;PWD=;DSN=Publishers"

This generates a forward-only, read-only Recordset object useful for scanning data. A slightly
more functional recordset can be generated as follows:

set rstMain = CreateObject("ADODB.Recordset")

rstMain.Open "SELECT * FROM authors", _

"DATABASE=pubs;UID=sa;PWD=;DSN=Publishers",

adOpenKeyset, adLockOptimistic

This creates a fully scrollable and updateable recordset.

Note
Adovbs.inc & Adojavas.inc: For applications that use VBScript (for example, Active
Server Pages), you must include the Adovbs.inc file in your code in order to call ADO
constants by name (use Adojavas.inc for JScript). Always refer to constants by name
rather than by value since the values may change from one version to the next.

Note
Updatable Cursor support: Microsoft and Sun Chili!Soft use the Positioned Update and
Positioned SQL features of ODBC to implement the AddNew, Update, and Delete
methods of the ADO Recordset Object . For some of the supplied ODBC drivers these
features are not implemented at all (MySQL, PostgreSQL). For others the support is
incomplete (DataDirect SequeLink driver). For these drivers, Sun Chili!Soft uses the
implementation of updatable cursors in the ODBC Driver Manager to supply the missing
functionality. This works well for recordsets whose fields contain string or numeric data
as well as a primary key, auto-increment, or timestamp fields. However, in recordsets
containing binary fields or recordsets with duplicate rows, updates, inserts and deletes
should be done using the Execute method of the Connection object.
Connection.Execute will execute any SQL statement recognized by the database
regardless of the capabilities of the ODBC driver.

Note
Linux and multiple SELECT statements: On Linux, ADO does not support stored
procedures with multiple SELECT statements.

In ADO, the object hierarchy is de-emphasized. Unlike Data Access Objects (DAO) or Remote
Data Objects (RDO), you do not have to navigate through a hierarchy to create objects, because

Sun Chili!Soft ASP 3.6.2 Product Documentation 217

most ADO objects can be independently created. This allows you to create and track only the
objects you need. This model also results in fewer ADO objects, and thus a smaller working set.

ADO supports the following key features for building client/server and Web-based applications:

� Independently created objects.

� Support for stored procedures with in/out parameters and return values.

� Different cursor types, including the potential for support of back-end-specific cursors.

� Advanced recordsetcache management.

� Support for limits on number of returned rows and other query goals.

ADO Objects

ADO provides two objects for managing connections with data sources (Connection and
Command), two objects for managing the data returned from a data source (Field and
Recordset) and three secondary objects (Parameters, Properties, and Errors) for managing
information about ADO.

Object Description

ADO Command Object Defines a specific command to execute against a data source.

ADO Connection Object Represents an open connection to a data source.

ADO Error Object Provides specific details about each ADO error.

ADO Field Object Represents a column of data with a common data type.

ADO Parameter Object Represents a parameter or argument associated with a
Command object based on a parameterized query or stored
procedure.

ADO Property Object Represents a dynamic characteristic of an ADO object that is
defined by the provider. This object is not currently supported
on UNIX.

ADO Recordset Object Represents the entire set of records from a database table or the
results of an executed command.

ADO Command Object

 ADO Command Object
The Command object defines a specific command to execute against a data source.

ADO Command Object Collections
ADO Parameters Collection Contains all the Parameter objects of a Command

Sun Chili!Soft ASP 3.6.2 Product Documentation 218

object.

ADO Properties Collection Contains all the Property objects for a specific instance
of a Command object. This collection is not currently
supported on UNIX.

ADO Command Object Methods
ADO Command Object
CreateParameter Method

Creates a new Parameter object with the specified
properties.

ADO Command Object Execute
Method

Executes the query, SQL statement, or stored procedure
specified in the CommandText property.

ADO Command Object Properties
ADO Command Object
ActiveConnection Property

The Connection object to which the specified
Command object currently belongs.

ADO Command Object
CommandText Property

The text of a command that you want to issue against a
provider.

ADO Command Object
CommandTimeout Property

How long to wait while executing a command before
terminating the command and issuing an error.

ADO Command Object
CommandType Property

The type of Command object.

ADO Command Object Name
Property

The name of a specific Command object. This property
is not currently supported on UNIX

ADO Command Object Prepared
Property

Whether or not to save a compiled version of a
command before execution. This property is not
currently supported on UNIX.

ADO Command Object State
Property

The current state of the Command object. This property
is not currently supported on UNIX

ADO Command Object Remarks
A Command object is used to query a database, return records in a ADO Recordset Object,
execute bulk operations, or manipulate the structure of a database. It is a definition of a specific
command that you intend to execute against a data source.

The collections, methods, and properties of a Command object are used to:

� Define the executable text of the command (for example, an SQL statement) with the
ADO Command Object CommandText Property.

� Define parameterized queries or stored procedure arguments with ADO Parameter Object
objects and the ADO Parameters Collection.

� Execute a command and return a ADO Recordset Object if appropriate with the ADO
Command Object Execute Method.

Sun Chili!Soft ASP 3.6.2 Product Documentation 219

� Specify the type of command with the ADO Command Object CommandType Property
prior to execution to optimize performance.

� Set the number of seconds a provider will wait for a command to execute with the
CommandTimeout property.

� Associate an open connection with a Command object by setting its property.

� Set the ADO Command Object Name Property to identify the Command object as a
method on the associated ADO Connection Object.

� Pass a Command object to the ADO Recordset Object Source Property of an ADO
Recordset Object in order to obtain data.

To execute a query without using a Command object, pass a query string to the ADO Connection
Object Execute Method of an ADO Connection Object or to the ADO Recordset Object Open
Method of an ADO Recordset Object. However, a Command object is required when you want
to retain the command text and re-execute it, or use query parameters.

To create a Command object independently of a previously defined Connection object, set its
ActiveConnection property to a valid connection string. ADO still creates a Connection object,
but it doesn't assign that object to an object variable. However, if you are associating multiple
Command objects with the same connection, you should explicitly create and open a
Connection object; this assigns the Connection object to an object variable. If you do not set the
Command object’s ActiveConnection property to this object variable, ADO creates a new
Connection object for each Command object, even if you use the same connection string.

To execute a Command, simply call it by its ADO Command Object Name Property on the
associated Connection object. The Command must have its ActiveConnection property set to
the Connection object. If the Command has parameters, pass values for them as arguments to
the method.

Depending on the functionality of the provider, some Command collections, methods, or
properties may generate an error when referenced.

ADO Command Object Methods

 ADO Command Object CreateParameter Method
Creates a new Parameter object with the specified properties.

CreateParameter Method Syntax (ADO Command Object)
Set parameter = command.CreateParameter (

 Name, Type, Direction, Size, Value)

CreateParameter Method Parameters (ADO Command Object)
parameter

The new ADO Parameter Object.

Name

Sun Chili!Soft ASP 3.6.2 Product Documentation 220

An optional String representing the name of the Parameter object.

Type

An optional Long value specifying the data type of the Parameter object. See the ADO
Parameter Object Type Property for valid settings.

Direction

An optional Long value specifying the type of Parameter object. See the ADO Parameter Object
Direction Property for valid settings.

Size

An optional Long value specifying the maximum length for the parameter value in characters or
bytes.

Value

An optional varValue specifying the value for the Parameter object.

CreateParameter Method Return Value (ADO Command Object)
Returns a Parameter object.

CreateParameter Method Remarks (ADO Command Object)
Use the CreateParameter method to create a new ADO Parameter Object with the specified
name, type, direction, size, and value. Any values you pass in the arguments are written to the
corresponding Parameter properties.

This method does not automatically append the Parameter object to the ADO Parameters
Collection of a Command object. This lets you set additional properties whose values ADO will
validate when you append the Parameter object to the collection.

If you specify a variable-length data type in the Type argument, you must either pass a Size
argument or set the ADO Parameter Object Size Property of the Parameter object before
appending it to the Parameters collection; otherwise, an error occurs.

CreateParameter Method Examples (ADO Command Object)
See the ADO Collections Append Method example.

 ADO Command Object Execute Method
Executes the query, SQL statement, or stored procedure specified in the CommandText
property.

Object Execute Method Syntax (ADO Command Object)
For a row-returning Command:

Set recordset = command.Execute(

 RecordsAffected, Parameters, Options)

For a non-row-returning Command:

Sun Chili!Soft ASP 3.6.2 Product Documentation 221

command.Execute RecordsAffected, Parameters, Options

Object Execute Method Parameters (ADO Command Object)
RecordsAffected

An optional Long variable to which the provider returns the number of records that the operation
affected.

Parameters

An optional Variant array of parameter values passed with an SQL statement. (Output
parameters will not return correct values when passed in this argument.)

Options

An optional Long value that indicates how the provider should evaluate the CommandText
property of the Command object:

Constant Description

adCmdText The provider should evaluate CommandText as a textual definition
of a command, such as a SQL statement.

adCmdTable The provider should evaluate CommandText as a table name.

adCmdStoredProc The provider should evaluate CommandText as a stored procedure.

adCmdUnknown The type of command in CommandText is not known.

See the ADO Command Object CommandType Property for a more detailed explanation of the
four constants in this list.

Object Execute Method Remarks (ADO Command Object)
Using the Execute method on a Command object executes the query specified in the
CommandText property of the object. If the CommandText property specifies a row-returning
query, any results the execution generates are stored in a new ADO Recordset Object. If the
command is not a row-returning query, the provider returns a closed Recordset object. Some
application languages allow you to ignore this return value if no recordset is desired.

If the query has parameters, the current values for the Command object's parameters are used
unless you override these with parameter values passed with the Execute call. You can override a
subset of the parameters by omitting new values for some of the parameters when calling the
Execute method. The order in which you specify the parameters is the same order in which the
method passes them. For example, if there were four (or more) parameters and you wanted to
pass new values for only the first and fourth parameters, you would pass Array(var1,,,var4) as the
Parameters argument.

Note
Output parameters will not return correct values when passed in the Parameters
argument.

Object Execute Method Return Values (ADO Command Object)

Sun Chili!Soft ASP 3.6.2 Product Documentation 222

Returns a Recordset object reference.

Object Execute Method Examples (ADO Command Object)
This VBScript example demonstrates the Execute method when run from both a Command
object and an ADO Connection Object. It also uses the ADO Recordset Object Requery Method
to retrieve current data in a recordset, and the ADO Collections Clear Method to clear the
contents of the ADO Errors Collection. The ExecuteCommand and PrintOutput procedures are
required for this procedure to run.

<!-- #Include file="ADOVBS.INC" -->

<HTML><HEAD>

<TITLE>ADO 1.5 Execute Method</TITLE></HEAD>

<BODY>

<Center><H3>ADO Execute Method</H3><H4>Recordset Retrieved Using
Connection Object</H4>

<TABLE WIDTH=600 BORDER=0>

<TD VALIGN=TOP ALIGN=LEFT COLSPAN=3>

<!--- Recordsets retrieved using Execute method of Connection and
Command Objects-->

<%

Set OBJdbConnection = Server.CreateObject("ADODB.Connection")

OBJdbConnection.Open "AdvWorks"

SQLQuery = "SELECT * FROM Customers"

'First Recordset RSCustomerList

Set RSCustomerList = OBJdbConnection.Execute(SQLQuery)

Set OBJdbCommand = Server.CreateObject("ADODB.Command")

OBJdbCommand.ActiveConnection = OBJdbConnection

SQLQuery2 = "SELECT * From Products"

OBJdbCommand.CommandText = SQLQuery2

Set RsProductList = OBJdbCommand.Execute

%>

<TABLE COLSPAN=8 CELLPADDING=5 BORDER=0>

<!-- BEGIN column header row for Customer Table-->

<TR><TD ALIGN=CENTER BGCOLOR="#008080">

Sun Chili!Soft ASP 3.6.2 Product Documentation 223

Company
Name

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

Contact
Name

</TD>

<TD ALIGN=CENTER WIDTH=150 BGCOLOR="#008080">

E-mail
address

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

City

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

<FONT STYLE="ARIAL NARROW" COLOR="#ffffff"
SIZE=1>State/Province

</TD></TR>

<!--Display ADO Data from Customer Table-->

<% Do While Not RScustomerList.EOF %>

<TR>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RSCustomerList("CompanyName")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("ContactLastName") & ", " %>

<%= RScustomerList("ContactFirstName") %>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("ContactLastName")%>

Sun Chili!Soft ASP 3.6.2 Product Documentation 224

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("City")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("StateOrProvince")%>

</TD>

</TR>

<!-Next Row = Record Loop and add to html table-->

<%

RScustomerList.MoveNext

Loop

RScustomerList.Close

%>

</TABLE><HR>

<H4>Recordset Retrieved Using Command Object</H4>

<TABLE COLSPAN=8 CELLPADDING=5 BORDER=0>

<!-- BEGIN column header row for Product List Table-->

<TR><TD ALIGN=CENTER BGCOLOR="#800000">

Product
Type

</TD>

<TD ALIGN=CENTER BGCOLOR="#800000">

Product
Name

</TD>

<TD ALIGN=CENTER WIDTH=350 BGCOLOR="#800000">

Product
Description

</TD>

<TD ALIGN=CENTER BGCOLOR="#800000">

Sun Chili!Soft ASP 3.6.2 Product Documentation 225

Unit Price

</TD></TR>

<!-- Display ADO Data Product List-->

<% Do While Not RsProductList.EOF %>

<TR>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RsProductList("ProductType")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RsProductList("ProductName")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RsProductList("ProductDescription")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RsProductList("UnitPrice")%>

</TD>

<!-- Next Row = Record -->

<%

RsProductList.MoveNext

Loop

'Remove objects from memory to free resources

RsProductList.Close

OBJdbConnection.Close

Set ObJdbCommand = Nothing

Set RsProductList = Nothing

Set OBJdbConnection = Nothing

%>

Sun Chili!Soft ASP 3.6.2 Product Documentation 226

</TABLE></Center></BODY></HTML>

ADO Command Object Properties

 ADO Command Object ActiveConnection Property
Specifies to which Connection object the specified Command object currently belongs.

ActiveConnection Property Return Values (ADO Command Object)
Sets or returns a String containing the definition for a connection or a Connection object.
Default is a Null object reference.

ActiveConnection Property Remarks (ADO Command Object)
Use the ActiveConnection property to determine the Connection object over which the specified
Command object will execute.

For Command objects, the ActiveConnection property is read/write. If you attempt to call the
ADO Command Object Execute Method on a Command object before setting this property to an
open ADO Connection Object or valid connection string, an error occurs. Setting the
ActiveConnection property to Nothing disassociates the Command object from the current
Connection and causes the provider to release any associated resources on the data source. You
can then associate the Command object with the same or another Connection object. Some
providers allow you to change the property setting from one Connection to another, without
having to first set the property to Nothing.

If the ADO Parameters Collection of the Command object contains parameters supplied by the
provider, the collection is cleared if you set the ActiveConnection property to Nothing or to
another Connection object. If you manually create ADO Parameter Object objects and use them
to fill the Parameters collection of the Command object, setting the ActiveConnection property
to Nothing or to another Connection object leaves the Parameters collection intact.

Closing the Connection object with which a Command object is associated sets the
ActiveConnection property to Nothing. Setting this property to a closed Connection object
generates an error.

ActiveConnection Property Example (ADO Command Object)
This Visual Basic example uses the ActiveConnection, ADO Command Object
CommandText Property, CommandTimeout, ADO Command Object CommandType
Property, ADO Field Object ActualSize Property, and ADO Parameter Object Direction Property
properties to execute a stored procedure:

Public Sub ActiveConnectionX()

Dim cnn1 As ADODB.Connection

Dim cmdByRoyalty As ADODB.Command

Dim prmByRoyalty As ADODB.Parameter

Dim rstByRoyalty As ADODB.Recordset

Sun Chili!Soft ASP 3.6.2 Product Documentation 227

Dim rstAuthors As ADODB.Recordset

Dim intRoyalty As Integer

Dim strAuthorID As String

Dim strCnn As String

` Define a command object for a stored procedure.

Set cnn1 = New ADODB.Connection

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

cnn1.Open strCnn

Set cmdByRoyalty = New ADODB.Command

Set cmdByRoyalty.ActiveConnection = cnn1

cmdByRoyalty.CommandText = "byroyalty"

cmdByRoyalty.CommandType = adCmdStoredProc

cmdByRoyalty.CommandTimeout = 15

` Define the stored procedure's input parameter.

intRoyalty = Trim(InputBox(_

"Enter royalty:"))

Set prmByRoyalty = New ADODB.Parameter

prmByRoyalty.Type = adInteger

prmByRoyalty.Size = 3

prmByRoyalty.Direction = adParamInput

prmByRoyalty.Value = intRoyalty

cmdByRoyalty.Parameters.Append prmByRoyalty

` Create a recordset by executing the command.

Set rstByRoyalty = cmdByRoyalty.Execute()

` Open the Authors table to get author names for display.

Set rstAuthors = New ADODB.Recordset

rstAuthors.Open "authors", strCnn, , , adCmdTable

` Print current data in the recordset, adding

` author names from Authors table.

Debug.Print "Authors with " & intRoyalty & _

" percent royalty"

Sun Chili!Soft ASP 3.6.2 Product Documentation 228

Do While Not rstByRoyalty.EOF

strAuthorID = rstByRoyalty!au_id

Debug.Print , rstByRoyalty!au_id & ", ";

rstAuthors.Filter = "au_id = '" & strAuthorID & "'"

Debug.Print rstAuthors!au_fname & " " & _

rstAuthors!au_lname

rstByRoyalty.MoveNext

Loop

rstByRoyalty.Close

rstAuthors.Close

cnn1.Close

End Sub

 ADO Command Object CommandText Property
Contains the text of a command that you want to issue against a provider.

CommandText Property Return Values
Sets or returns a String value containing a provider command, such as an SQL statement, a table
name, or a stored procedure call. Default is "" (zero-length string).

CommandText Property Remarks
Use the CommandText property to set or return the text of a Command object. Usually, this will
be an SQL statement, but can also be any other type of command statement recognized by the
provider, such as a stored procedure call. An SQL statement must be of the particular dialect or
version supported by the provider's query processor.

If the ADO Command Object Prepared Property of the Command object is set to True and the
Command object is bound to an open connection when you set the CommandText property,
ADO prepares the query (that is, a compiled form of the query is stored by the provider) when
you call the ADO Command Object Execute Method or ADO Connection Object Open Method
methods. The Prepared property is not currently supported on UNIX.

Depending on the ADO Command Object CommandType Property setting, ADO may alter the
CommandText property. You can read the CommandText property at any time to see the actual
command text that ADO will use during execution.

CommandText Property Example
See the ActiveConnection property.

 ADO Command Object CommandTimeout Property

Sun Chili!Soft ASP 3.6.2 Product Documentation 229

How long to wait while executing a command before terminating the attempt and generating an
error.

CommandTimeout Property Return Values (ADO Command Object)
Sets or returns a Long value that specifies, in seconds, how long to wait for a command to
execute. Default is 30.

CommandTimeout Property Remarks (ADO Command Object)
Use the CommandTimeout property on a Command object to allow the cancellation of an ADO
Command Object Execute Method call due to delays from network traffic or heavy server use. If
the interval set in the CommandTimeout property elapses before the command completes
execution, an error occurs and ADO cancels the command. If you set the property to zero, ADO
will wait indefinitely until the execution is complete. Make sure the provider and data source to
which you are writing code supports the CommandTimeout functionality.

The CommandTimeout setting on a Connection object has no effect on the CommandTimeout
setting on a Command object on the same Connection; that is, the Command object's
CommandTimeout property does not inherit the value of the Connection object's
CommandTimeout value.

CommandTimeout Property Examples (ADO Command Object)
See the ActiveConnection property.

 ADO Command Object CommandType Property
The type of a Command object.

CommandType Property Return Values (ADO Command Object)
Sets or returns one of the following CommandTypeEnum values:

Constant Description

adCmdText Evaluates CommandText as a textual definition of a command.

adCmdTable Evaluates CommandText as a table name.

adCmdStoredProc Evaluates CommandText as a stored procedure.

adCmdUnknown (Default) The type of command in the CommandText property
is not known.

CommandType Property Remarks (ADO Command Object)
Use the CommandType property to optimize evaluation of the ADO Command Object
CommandText Property.

If the CommandType property value equals adCmdUnknown (the default value), you may
experience diminished performance because ADO must make calls to the provider to determine if
the CommandText property is an SQL statement, a stored procedure, or a table name. If you
know what type of command you're using, setting the CommandType property instructs ADO to

Sun Chili!Soft ASP 3.6.2 Product Documentation 230

go directly to the relevant code. If the CommandType property does not match the type of
command in the CommandText property, an error occurs when you call the ADO Command
Object Execute Method.

CommandType Property Example (ADO Command Object)
See the ActiveConnection property.

 ADO Command Object Name Property
The name of an object. This property is not currently supported on UNIX

Name Property Return Values (ADO Command Object)
Sets or returns a String value. The value is read/write.

Name Property Remarks (ADO Command Object)
Use the Name property to assign a name to or retrieve the name of a Command object.

 ADO Command Object Prepared Property
Determines whether or not the provider saves a compiled version of a command before execution.
This property is not currently supported on UNIX.

Prepared Property Return Values
Sets or returns a Boolean value.

Prepared Property Remarks
Use the Prepared property to have the provider save a prepared (or compiled) version of the
query specified in the ADO Command Object CommandText Property before a Command
object's first execution. This may slow a command's first execution, but once the provider
compiles a command, the provider will use the compiled version of the command for any
subsequent executions, which will result in improved performance.

If the property is False, the provider will execute the Command object directly without creating
a compiled version.

If the provider does not support command preparation, it may return an error as soon as this
property is set to True. If it does not return an error, it simply ignores the request to prepare the
command and sets the Prepared property to False.

Prepared Property Example
This Visual Basic example demonstrates the Prepared property by opening two Command
objects: one prepared and one not prepared.

Public Sub PreparedX()

Dim cnn1 As ADODB.Connection

Dim cmd1 As ADODB.Command

Sun Chili!Soft ASP 3.6.2 Product Documentation 231

Dim cmd2 As ADODB.Command

Dim strCnn As String

Dim strCmd As String

Dim sngStart As Single

Dim sngEnd As Single

Dim sngNotPrepared As Single

Dim sngPrepared As Single

Dim intLoop As Integer

` Open a connection.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set cnn1 = New ADODB.Connection

cnn1.Open strCnn

` Create two command objects for the same

` command -- one prepared and one not prepared.

strCmd = "SELECT title, type FROM titles ORDER BY type"

Set cmd1 = New ADODB.Command

Set cmd1.ActiveConnection = cnn1

cmd1.CommandText = strCmd

Set cmd2 = New ADODB.Command

Set cmd2.ActiveConnection = cnn1

cmd2.CommandText = strCmd

cmd2.Prepared = True

` Set timer, then execute unprepared command 20 times.

sngStart = Timer

For intLoop = 1 To 20

cmd1.Execute

Next intLoop

sngEnd = Timer

sngNotPrepared = sngEnd - sngStart

` Reset the timer, then execute the prepared

` command 20 times.

Sun Chili!Soft ASP 3.6.2 Product Documentation 232

sngStart = Timer

For intLoop = 1 To 20

cmd2.Execute

Next intLoop

sngEnd = Timer

sngPrepared = sngEnd - sngStart

` Display performance results.

MsgBox "Performance Results:" & vbCr & _

" Not Prepared: " & Format(sngNotPrepared, _

"##0.000") & " seconds" & vbCr & _

" Prepared: " & Format(sngPrepared, _

"##0.000") & " seconds"

cnn1.Close

End Sub

 ADO Command Object State Property
Describes the current state of an object. This property is not currently supported on UNIX

State Property Return Values (ADO Command Object)
Sets or returns a Long value that can be one of the following constants:

Constant Description

adStateClosed The object is closed. Default.

adStateOpen The object is open.

State Property Remarks (ADO Command Object)
You can use the State property to determine the current state of a given object at any time.

ADO Connection Object

 ADO Connection Object
A Connection object represents an open connection to a data source.

ADO Connection Object Collections
ADO Errors Collection Contains all stored Error objects that pertain to an ADO

operation.

ADO Properties Collection All Property objects for a specific instance of a Connection

Sun Chili!Soft ASP 3.6.2 Product Documentation 233

object. This collection is not currently supported on UNIX.

ADO Connection Object Methods
ADO Connection Object
BeginTrans, CommitTrans,
and RollbackTrans Methods

Begins a new database transaction within a Connection object.

ADO Connection Object
Close Method

Closes an open Connection object and any dependent objects.

ADO Connection Object
BeginTrans, CommitTrans,
and RollbackTrans Methods

Saves any pending changes and ends the current transaction. It
may also start a new transaction.

ADO Connection Object
Execute Method

Executes the specified query, SQL statement, stored procedure,
or provider-specified text.

ADO Connection Object
Open Method

Opens a connection to a data source.

ADO Connection Object
OpenSchema Method

Obtains database schema information from the provider. This
method is not currently supported on UNIX.

ADO Connection Object
BeginTrans, CommitTrans,
and RollbackTrans Methods

Cancels any changes made during the current transaction and
ends the transaction. It may also start a new transaction.

ADO Connection Object Properties
ADO Connection Object
Attributes Property

One or more characteristics of an object.

ADO Connection Object
CommandTimeout Property

How long to wait while executing a command before
terminating the command and issuing and error.

ADO Connection Object
ConnectionString Property

Contains the information used to establish a connection to a
data source.

ADO Connection Object
ConnectionTimeout Property

How long to wait while establishing a connection before
terminating the attempt and issuing and error.

ADO Connection Object
CursorLocation Property

The location of the cursor engine in a recordset.

ADO Connection Object
DefaultDatabase Property

The default database for the Connection object.

ADO Connection Object
IsolationLevel Property

The level of isolation for the Connection object.

ADO Connection Object
Mode Property

The available permissions for modifying data in a Connection
object.

ADO Connection Object The name of a provider for a Connection object. This property

Sun Chili!Soft ASP 3.6.2 Product Documentation 234

Provider Property is not available on UNIX.

ADO Connection Object
State Property

Describes the current state of the Connection object.

ADO Connection Object
Version Property

The ADO version number.

ADO Connection Object Remarks
A Connection object represents a session with a data source. In the case of a client/server
database system, it may represent an actual network connection to the server. Depending on the
functionality of the provider, some collections, properties, and methods of the Connection object
may not be available.

Use the collections, methods, and properties of a Connection object for:

� configuring the connection before opening it with the ConnectionString,
CommandTimeout, and ADO Connection Object Mode Property properties.

� setting the CursorLocation property to invoke the Client Cursor Provider, which supports
batch updates. Batch updates are not currently supported on UNIX.

� setting the default database for the connection with the DefaultDatabase property.

� setting the level of isolation for the transactions opened on the connection with the
IsolationLevel property. Transactions are not currently supported on UNIX.

� specifying an OLE DB provider with the ADO Connection Object Provider Property.

� establishing and breaking the physical connection to the data source with the ADO
Connection Object Open Method and ADO Connection Object Close Method methods.

� executing a command on the connection with the ADO Connection Object Execute
Method and configuring the execution with the CommandTimeout property.

� managing transactions on the open connection, including nested transactions if the
provider supports them, with the BeginTrans, CommitTrans, and RollbackTrans
methods and the ADO Connection Object Attributes Property. The transaction methods
are not currently supported on UNIX.

� examining errors returned from the data source with the ADO Errors Collection.

� reading the version from the ADO implementation in use with the ADO Connection
Object Version Property.

� obtaining schema information about your database with the ADO Connection Object
OpenSchema Method.

Note
To execute a query without using a Command object, pass a query string to the Execute
method of a Connection object. However, a Command object is required when you
want to retain the command text and re-execute it, or use query parameters.

Sun Chili!Soft ASP 3.6.2 Product Documentation 235

ADO Connection Object Methods

 ADO Connection Object Close Method
Closes an open object and any dependent objects.

Close Method Syntax (ADO Connection Object)
object.Close

Close Method Remarks (ADO Connection Object)
Use the Close method to close a Connection object to free any associated system resources.
Closing an object does not remove it from memory; you may change its property settings and
open it again later. To completely eliminate an object from memory, set the object variable to
Nothing.

Using the Close method to close a Connection object also closes any active Recordset objects
associated with the connection. An ADO Command Object associated with the Connection
object you are closing will persist, but it will no longer be associated with a Connection object;
that is, its ActiveConnection property will be set to Nothing. Also, the Command object's ADO
Parameters Collection will be cleared of any provider-defined parameters.

You can later call the ADO Connection Object Open Method to reestablish the connection to the
same or another data source. While the Connection object is closed, calling any methods that
require an open connection to the data source generates an error.

Closing a Connection object while there are open ADO Recordset Object objects on the
connection rolls back any pending changes in all of the Recordset objects. Explicitly closing a
Connection object (calling the Close method) while a transaction is in progress generates an
error. If a Connection object falls out of scope while a transaction is in progress, ADO
automatically rolls back the transaction.

Close Method Examples (ADO Connection Object)
This VBScript example uses the Open and Close methods on both Recordset and Connection
objects that have been opened.

<!-- #Include file="ADOVBS.INC" -->

<HTML><HEAD>

<TITLE>ADO 1.5 Open Method</TITLE>

</HEAD><BODY>

<Center><H3>ADO Open Method</H3>

<TABLE WIDTH=600 BORDER=0>

<TD VALIGN=TOP ALIGN=LEFT COLSPAN=3>

<!--- ADO Connection used to create 2 recordsets-->

Sun Chili!Soft ASP 3.6.2 Product Documentation 236

<%

Set OBJdbConnection = Server.CreateObject("ADODB.Connection")

OBJdbConnection.Open "AdvWorks"

SQLQuery = "SELECT * FROM Customers"

'First Recordset RSCustomerList

Set RSCustomerList = OBJdbConnection.Execute(SQLQuery)

'Second Recordset RsProductist

Set RsProductList = Server.CreateObject("ADODB.Recordset")

RsProductList.CursorType = adOpenDynamic

RsProductList.LockType = adLockOptimistic

RsProductList.Open "Products", OBJdbConnection

%>

<TABLE COLSPAN=8 CELLPADDING=5 BORDER=0>

<!-- BEGIN column header row for Customer Table-->

<TR><TD ALIGN=CENTER BGCOLOR="#008080">

Company
Name</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

Contact
Name</TD>

<TD ALIGN=CENTER WIDTH=150 BGCOLOR="#008080">

E-mail
address</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

City</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

<FONT STYLE="ARIAL NARROW" COLOR="#ffffff"
SIZE=1>State/Province</TD></TR>

<!--Display ADO Data from Customer Table-->

<% Do While Not RScustomerList.EOF %>

<TR><TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RSCustomerList("CompanyName")%>

Sun Chili!Soft ASP 3.6.2 Product Documentation 237

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("ContactLastName") & ", " %>

<%= RScustomerList("ContactFirstName") %>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("ContactLastName")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("City")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("StateOrProvince")%>

</TD></TR>

<!-Next Row = Record Loop and add to html table-->

<%

RScustomerList.MoveNext

Loop

RScustomerList.Close

OBJdbConnection.Close

%>

</TABLE>

<HR>

<TABLE COLSPAN=8 CELLPADDING=5 BORDER=0>

<!-- BEGIN column header row for Product List Table-->

<TR><TD ALIGN=CENTER BGCOLOR="#800000">

Product
Type</TD>

<TD ALIGN=CENTER BGCOLOR="#800000">

Sun Chili!Soft ASP 3.6.2 Product Documentation 238

Product
Name</TD>

<TD ALIGN=CENTER WIDTH=350 BGCOLOR="#800000">

Product
Description</TD>

<TD ALIGN=CENTER BGCOLOR="#800000">

Unit
Price</TD></TR>

<!-- Display ADO Data Product List-->

<% Do While Not RsProductList.EOF %>

<TR> <TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RsProductList("ProductType")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RsProductList("ProductName")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RsProductList("ProductDescription")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RsProductList("UnitPrice")%>

</TD>

<!-- Next Row = Record -->

<%

RsProductList.MoveNext

Loop

'Remove Objects from Memory Freeing

Set RsProductList = Nothing

Set OBJdbConnection = Nothing

Sun Chili!Soft ASP 3.6.2 Product Documentation 239

%>

</TABLE></Center></BODY></HTML>

 ADO Connection Object Execute Method
Executes the specified query, SQL statement, stored procedure, or provider-specific text.

Execute Method Syntax (ADO Connection Object)
For a non-row-returning command string:

connection.Execute CommandText, RecordsAffected, Options

For a row-returning command string:

Set recordset = connection.Execute (

 CommandText, RecordsAffected, Options)

Execute Method Parameters (ADO Connection Object)
CommandText

A String containing the SQL statement, table name, stored procedure, or provider-specific text to
execute.

RecordsAffected

An optional Long variable to which the provider returns the number of records that the operation
affected.

Options

An optional Long value that indicates how the provider should evaluate the CommandText
argument:

Constant Description

adCmdText The provider should evaluate CommandText as a textual definition
of a command.

adCmdTable The provider should evaluate CommandText as a table name.

adCmdStoredProc The provider should evaluate CommandText as a stored procedure.

adCmdUnknown The type of command in the CommandText argument is not known.

See the ADO Command Object CommandType Property for a more detailed explanation of the
four constants in this list.

Execute Method Return Values (ADO Connection Object)
Returns an ADO Recordset Object reference.

Execute Method Remarks (ADO Connection Object)
Using the Execute method on a Connection object executes whatever query you pass to the
method in the CommandText argument on the specified connection. If the CommandText

Sun Chili!Soft ASP 3.6.2 Product Documentation 240

argument specifies a row-returning query, any results the execution generates are stored in a new
Recordset object. If the command is not a row-returning query, the provider returns a closed
Recordset object.

The returned Recordset object is always a read-only, forward-only cursor. If you need a
Recordset object with more functionality, first create a Recordset object with the desired
property settings, then use the Recordset object's ADO Recordset Object Open Method to
execute the query and return the desired cursor type.

The contents of the CommandText argument are specific to the provider and can be standard SQL
syntax or any special command format that the provider supports.

Execute Method Examples (ADO Connection Object)
See the Command ADO Command Object Execute Method.

 ADO Connection Object OpenSchema Method
Obtains database schema information from the provider.

OpenSchema Method Syntax
Set recordset = connection.OpenSchema (QueryType,

 Criteria, SchemaID)

OpenSchema Method Parameters
QueryType

The type of schema query to run. Can be any of the constants listed below.

Criteria

Optional array of query constraints for each QueryType option, as listed below:

QueryType values Criteria values

adSchemaAsserts CONSTRAINT_CATALOG
CONSTRAINT_SCHEMA
CONSTRAINT_NAME

adSchemaCatalogs CATALOG_NAME

asSchemaCharacterSets CHARACTER_SET_CATALOG
CHARACTER_SET_SCHEMA
CHARACTER_SET_NAME

adSchemaCheckConstraints CONSTRAINT_CATALOG
CONSTRAINT_SCHEMA
CONSTRAINT_NAME

adSchemaCollations COLLATION_CATALOG
COLLATION_SCHEMA
COLLATION_NAME

Sun Chili!Soft ASP 3.6.2 Product Documentation 241

adSchemaColumnDomainUsage DOMAIN_CATALOG
DOMAIN_SCHEMA
DOMAIN_NAME
COLUMN_NAME

adSchemaColumnPrivileges TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
COLUMN_NAME
GRANTOR
GRANTEE

adSchemaColumns TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME

adSchemaConstraintTableUsage TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
COLUMN_NAME

adSchemaForeignKeys PK_TABLE_CATALOG
PK_TABLE_SCHEMA
PK_TABLE_NAME
FK_TABLE_CATALOG
FK_TABLE_SCHEMA
FK_TABLE_NAME

adSchemaIndexes TABLE_CATALOG
TABLE_SCHEMA
INDEX_NAME
TYPE
TABLE_NAME

adSchemaKeyColumnUsage CONSTRAINT_CATALOG
CONSTRAINT_SCHEMA
CONSTRAINT_NAME
TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
COLUMN_NAME

adSchemaPrimaryKeys PK_TABLE_CATALOG
PK_TABLE_SCHEMA
PK_TABLE_NAME

adSchemaProcedureColumns PROCEDURE_CATALOG
PROCEDURE_SCHEMA
PROCEDURE_NAME
COLUMN_NAME

Sun Chili!Soft ASP 3.6.2 Product Documentation 242

adSchemaProcedures PROCEDURE_CATALOG
PROCEDURE_SCHEMA
PROCEDURE_NAME
PARAMETER_TYPE

adSchemaProviderSpecific see Remarks

adSchemaProviderTypes DATA_TYPE
BEST_MATCH

adSchemaReferentialConstraints CONSTRAINT_CATALOG
CONSTRAINT_SCHEMA
CONSTRAINT_NAME

adSchemaSchemata CATALOG_NAME
SCHEMA_NAME
SCHEMA_OWNER

adSchemaSQLLanguages <none>

adSchemaStatistics TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME

adSchemaTableConstraints CONSTRAINT_CATALOG
CONSTRAINT_SCHEMA
CONSTRAINT_NAME
TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
CONSTRAINT_TYPE

adSchemaTablePrivileges TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME

adSchemaTables TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
TABLE_TYPE

adSchemaTranslations TRANSLATION_CATALOG
TRANSLATION_SCHEMA
TRANSLATION_NAME

adSchemaUsagePrivileges OBJECT_CATALOG
OBJECT_SCHEMA
OBJECT_NAME
OBJECT_TYPE
GRANTOR
GRANTEE

Sun Chili!Soft ASP 3.6.2 Product Documentation 243

adSchemaViewColumnUsage VIEW_CATALOG
VIEW_SCHEMA
VIEW_NAME

adSchemaViewTableUsage VIEW_CATALOG
VIEW_SCHEMA
VIEW_NAME

adSchemaViews TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME

SchemaID

The GUID for a provider-schema schema query is not defined by the OLE DB 1.1 specification.
This parameter is required if QueryType is set to adSchemaProviderSpecific; otherwise, it is not
used.

OpenSchema Method Return Values
Returns an ADO Recordset Object that contains schema information.

OpenSchema Method Remarks
The OpenSchema method returns information about the data source, such as information about
the tables on the server and the columns in the tables.

The Criteria argument is an array of values that can be used to limit the results of a schema
query. Each schema query has a different set of parameters that it supports. The actual schemas
are defined by the OLE DB specification under the "IDBSchemaRowset" interface. The ones
supported in ADO 1.5 are listed above.

The constant adSchemaProviderSpecific is used for the QueryType argument if the provider
defines its own non-standard schema queries outside those listed above. When this constant is
used, the SchemaID argument is required to pass the GUID of the schema query to execute. If
QueryType is set to adSchemaProviderSpecific but SchemaID is not provided, an error will
result.

Providers are not required to support all of the OLE DB standard schema queries. Specifically,
only adSchemaTables, adSchemaColumns and adSchemaProviderTypes are required by the
OLE DB specification. However, the provider is not required to support the Criteria constraints
listed above for those schema queries.

OpenSchema Method Example
This Visual Basic example uses the OpenSchema method to display the name and type of each
table in the Pubs database.

Public Sub OpenSchemaX()

Dim cnn1 As ADODB.Connection

Dim rstSchema As ADODB.Recordset

Dim strCnn As String

Sun Chili!Soft ASP 3.6.2 Product Documentation 244

Set cnn1 = New ADODB.Connection

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

cnn1.Open strCnn

Set rstSchema = cnn1.OpenSchema(adSchemaTables)

Do Until rstSchema.EOF

Debug.Print "Table name: " & _

rstSchema!TABLE_NAME & vbCr & _

"Table type: " & rstSchema!TABLE_TYPE & vbCr

rstSchema.MoveNext

Loop

rstSchema.Close

cnn1.Close

End Sub

 ADO Connection Object Open Method
Opens a connection to a data source.

Open Method Syntax (ADO Connection Object)
connection.Open ConnectionString, UserID, Password

Open Method Parameters (ADO Connection Object)
ConnectionString

An optional String containing connection information. See the ConnectionString property for
details on valid settings.

UserID

An optional String containing a user name to use when establishing the connection.

Password

An optional String containing a password to use when establishing the connection.

Open Method Remarks (ADO Connection Object)
Using the Open method on a Connection object establishes the physical connection to a data
source. After this method successfully completes, the connection is live and you can issue
commands against it and process results.

Use the optional ConnectionString argument to specify a connection string containing a series of
argument = value statements separated by semicolons. The ConnectionString property

Sun Chili!Soft ASP 3.6.2 Product Documentation 245

automatically inherits the value used for the ConnectionString argument. Therefore, you can
either set the ConnectionString property of the Connection object before opening it, or use the
ConnectionString argument to set or override the current connection parameters during the Open
method call.

If you pass user and password information both in the ConnectionString argument and in the
optional UserID and Password arguments, the results may be unpredictable; you should only pass
such information in either the ConnectionString argument or the UserID and Password
arguments.

When you have concluded your operations over an open Connection, use the ADO Connection
Object Close Method to free any associated system resources. Closing an object does not remove
it from memory; you may change its property settings and use the Open method to open it again
later. To completely eliminate an object from memory, set the object variable to Nothing.

Open Method Examples (ADO Connection Object)
See the ADO Connection Object Close Method.

 ADO Connection Object BeginTrans, CommitTrans, and RollbackTrans Methods
The transaction methods manage transaction processing within a Connection object.

These transaction methods are summarized as follows:

Method Description

BeginTrans Begins a new transaction

CommitTrans Saves any changes and ends the current transaction. It may also start a
new transaction.

RollbackTrans Cancels any changes made during the current transaction and ends the
transaction. It may also start a new transaction.

BeginTrans, CommitTrans, and RollbackTrans Methods Syntax
level = connection.BeginTrans()

connection.BeginTrans

connection.CommitTrans

connection.RollbackTrans

BeginTrans, CommitTrans, and RollbackTrans Methods Remarks
Use these methods with a Connection object when you want to save or cancel a series of changes
made to the source data as a single unit. For example, to transfer money between accounts, you
subtract an amount from one and add the same amount to the other. If either update fails, the
accounts no longer balance. Making these changes within an open transaction ensures either all or
none of the changes goes through.

Not all providers support transactions. Check that the provider-defined property "Transaction
DDL" appears in the Connection object's ADO Properties Collection, indicating that the provider

Sun Chili!Soft ASP 3.6.2 Product Documentation 246

supports transactions. If the provider does not support transactions, calling one of these methods
will return an error.

Once you call the BeginTrans method, the provider will no longer instantaneously commit any
changes you make until you call CommitTrans or RollbackTrans to end the transaction.

For providers that support nested transactions, calling the BeginTrans method within an open
transaction starts a new, nested transaction. The return value indicates the level of nesting: a
return value of "1" indicates you have opened a top-level transaction (that is, the transaction is not
nested within another transaction), "2" indicates that you have opened a second-level transaction
(a transaction nested within a top-level transaction), and so forth. Calling CommitTrans or
RollbackTrans affects only the most recently opened transaction; you must close or rollback the
current transaction before you can resolve any higher-level transactions.

Calling the CommitTrans method saves changes made within an open transaction on the
connection and ends the transaction. Calling the RollbackTrans method reverses any changes
made within an open transaction and ends the transaction. Calling either method when there is no
open transaction generates an error.

Depending on the Connection object's ADO Connection Object Attributes Property, calling
either the CommitTrans or RollbackTrans methods may automatically start a new transaction.
If the Attributes property is set to adXactCommitRetaining, the provider automatically starts a
new transaction after a CommitTrans call. If the Attributes property is set to
adXactAbortRetaining, the provider automatically starts a new transaction after a
RollbackTrans call.

BeginTrans, CommitTrans, and RollbackTrans Methods Return Value
BeginTrans can be called as a function that returns a Long variable indicating the nesting level
of the transaction.

BeginTrans, CommitTrans, and RollbackTrans Methods Examples
This Visual Basic example changes the book type of all psychology books in the Titles table of
the database. After the BeginTrans method starts a transaction that isolates all the changes made
to the Titles table, the CommitTrans method saves the changes. Notice that you can use the
RollbackTrans method to undo changes that you saved using the ADO Recordset Object Update
Method.

Public Sub BeginTransX()

Dim cnn1 As ADODB.Connection

Dim rstTitles As ADODB.Recordset

Dim strCnn As String

Dim strTitle As String

Dim strMessage As String

` Open connection.

strCnn = "driver={SQL Server};server=srv;" & _

Sun Chili!Soft ASP 3.6.2 Product Documentation 247

"uid=sa;pwd=;database=pubs"

Set cnn1 = New ADODB.Connection

cnn1.Open strCnn

` Open titles table.

Set rstTitles = New ADODB.Recordset

rstTitles.CursorType = adOpenDynamic

rstTitles.LockType = adLockPessimistic

rstTitles.Open "titles", cnn1, , , adCmdTable

rstTitles.MoveFirst

cnn1.BeginTrans

` Loop through recordset and ask user if she wants

` to change the type for a specified title.

Do Until rstTitles.EOF

If Trim(rstTitles!Type) = "psychology" Then

strTitle = rstTitles!Title

strMessage = "Title: " & strTitle & vbCr & _

"Change type to self help?"

` Change the title for the specified employee.

If MsgBox(strMessage, vbYesNo) = vbYes Then

rstTitles!Type = "self_help"

rstTitles.Update

End If

End If

rstTitles.MoveNext

Loop

` Ask if the user wants to commit to all the

` changes made above.

If MsgBox("Save all changes?", vbYesNo) = vbYes Then

cnn1.CommitTrans

Else

cnn1.RollbackTrans

End If

Sun Chili!Soft ASP 3.6.2 Product Documentation 248

` Print current data in recordset.

rstTitles.Requery

rstTitles.MoveFirst

Do While Not rstTitles.EOF

Debug.Print rstTitles!Title & " - " & rstTitles!Type

rstTitles.MoveNext

Loop

' Restore original data

rstTitles.MoveFirst

Do Until rstTitles.EOF

If Trim(rstTitles!Type) = "self_help" Then

rstTitles!Type = "psychology"

rstTitles.Update

End If

rstTitles.MoveNext

Loop

rstTitles.Close

cnn1.Close

End Sub

ADO Connection Object Properties

 ADO Connection Object Attributes Property
One or more characteristics of an object. This property is read-only on UNIX.

Attributes Property Return Values (ADO Connection Object)
Sets or returns a Long value.

For a Connection object, the Attributes property is read/write, and its value can be the sum of
any one or more of these XactAttributeEnum values (default is zero):

Value Description

adXactCommitRetaining Performs retaining commits, that is, calling the
CommitTrans method automatically starts a new transaction.
Not all providers support this, and it is always zero under
UNIX.

adXactAbortRetaining Performs retaining aborts, that is, calling the BeginTrans,
CommitTrans, and RollbackTrans methods automatically

Sun Chili!Soft ASP 3.6.2 Product Documentation 249

starts a new transaction. Not all providers support this, and it
is always zero under UNIX.

Attributes Property Remarks (ADO Connection Object)
Use the Attributes property to set or return characteristics of Connection objects.

When you set multiple attributes, you can sum the appropriate constants. If you set the property
value to a sum including incompatible constants, an error occurs.

Attributes Property Examples (ADO Connection Object)
This Visual Basic example displays the value of the Attributes property for Connection objects.
It uses the ADO Field Object Name Property to display the name of each Field and Property
object.

Public Sub AttributesX

Dim cnn1 As ADODB.Connection

Dim strCnn As String

' Open connection

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set cnn1 = New ADODB.Connection

cnn1.Open strCnn

' Display the attributes of the connection.

Debug.Print "Connection attributes = " & _

cnn1.Attributes

cnn1.Close

End Sub

 ADO Connection Object CommandTimeout Property
How long to wait while executing a command before terminating the attempt and generating an
error.

CommandTimeout Property Return Values (ADO Connection Object)
Sets or returns a Long value that specifies, in seconds, how long to wait for a command to
execute. Default is 30.

CommandTimeout Property Remarks (ADO Connection Object)
Use the CommandTimeout property on a Connection object to allow the cancellation of an
ADO Connection Object Execute Method call, due to delays from network traffic or heavy server
use. If the interval set in the CommandTimeout property elapses before the command completes

Sun Chili!Soft ASP 3.6.2 Product Documentation 250

execution, an error occurs and ADO cancels the command. If you set the property to zero, ADO
will wait indefinitely until the execution is complete. Make sure the provider and data source to
which you are writing code supports the CommandTimeout functionality.

The CommandTimeout setting on a Connection object has no effect on the CommandTimeout
setting on a Command object on the same Connection; that is, the Command object's
CommandTimeout property does not inherit the value of the Connection object's
CommandTimeout value.

On a Connection object, the CommandTimeout property remains read/write after the
Connection is opened.

CommandTimeout Property Examples (ADO Connection Object)
See the ActiveConnection property.

 ADO Connection Object ConnectionString Property
Contains the information used to establish a connection to a data source.

ConnectionString Property Return Values (ADO Connection Object)
Sets or returns a String value.

ConnectionString Property Remarks (ADO Connection Object)
Use the ConnectionString property to specify a data source by passing a detailed connection
string containing a series of argument = value statements separated by semicolons.

ADO supports seven arguments for the ConnectionString property; any other arguments pass
directly to the provider without any processing by ADO. The arguments ADO supports are as
follows:

Argument Description
Provider Specifies the name of the provider to use for the connection.

DataSource Specifies the name of a data source for the connection, for
example, an Oracle database registered as an ODBC data
source.

UserID Specifies the user name to use when opening the connection.

Password Specifies the password to use when opening the connection.

FileName Specifies the name of a provider-specific file (for example, a
persisted data source object) containing preset connection
information.

RemoteProvider Specifies the name of a provider to use when opening a client-
side connection (Remote Data Service only).

RemoteServer Specifies the path name of the server to use when opening a
client-side connection (Remote Data Service only).

Sun Chili!Soft ASP 3.6.2 Product Documentation 251

After you set the ConnectionString property and open the Connection object, the provider may
alter the contents of the property, for example, by mapping the ADO-defined argument names to
their provider equivalents.

The ConnectionString property automatically inherits the value used for the ConnectionString
argument of the ADO Connection Object Open Method, so you can override the current
ConnectionString property during the Open method call.

Because the File Name argument causes ADO to load the associated provider, you cannot pass
both the Provider and File Name arguments.

The ConnectionString property is read/write when the connection is closed and read-only when
it is open.

Remote Data Service Usage: When used on a client-side Connection object, the
ConnectionString property can only include the Remote Provider and Remote Server parameters.

ConnectionString Property Example (ADO Connection Object)
This Visual Basic example demonstrates different ways of using the ConnectionString property
to open a Connection object. It also uses the ConnectionTimeout property to set a connection
timeout period, and the ADO Connection Object State Property to check the state of the
connections. The GetState function is required for this procedure to run.

Public Sub ConnectionStringX()

Dim cnn1 As ADODB.Connection

Dim cnn2 As ADODB.Connection

Dim cnn3 As ADODB.Connection

Dim cnn4 As ADODB.Connection

' Open a connection without using a Data Source Name (DSN).

Set cnn1 = New ADODB.Connection

cnn1.ConnectionString = "driver={SQL Server};" & _

"server=bigsmile;uid=sa;pwd=pwd;database=pubs"

cnn1.ConnectionTimeout = 30

cnn1.Open

' Open a connection using a DSN and ODBC tags.

Set cnn2 = New ADODB.Connection

cnn2.ConnectionString = "DSN=Pubs;UID=sa;PWD=pwd;"

cnn2.Open

' Open a connection using a DSN and OLE DB tags.

Set cnn3 = New ADODB.Connection

cnn3.ConnectionString = "Data Source=Pubs;User ID=sa;Password=pwd;"

Sun Chili!Soft ASP 3.6.2 Product Documentation 252

cnn3.Open

' Open a connection using a DSN and individual

' arguments instead of a connection string.

Set cnn4 = New ADODB.Connection

cnn4.Open "Pubs", "sa", "pwd"

' Display the state of the connections.

MsgBox "cnn1 state: " & GetState(cnn1.State) & vbCr & _

"cnn2 state: " & GetState(cnn1.State) & vbCr & _

"cnn3 state: " & GetState(cnn1.State) & vbCr & _

"cnn4 state: " & GetState(cnn1.State)

cnn4.Close

cnn3.Close

cnn2.Close

cnn1.Close

End Sub

Public Function GetState(intState As Integer) As String

Select Case intState

Case adStateClosed

GetState = "adStateClosed"

Case adStateOpen

GetState = "adStateOpen"

End Select

End Function

 ADO Connection Object ConnectionTimeout Property
Sets how long to wait while establishing a connection before terminating the attempt and
generating an error.

ConnectionTimeout Property Return Values (ADO Connection Object)
Sets or returns a Long value that specifies, in seconds, how long to wait for the connection to
open. Default is 15.

ConnectionTimeout Property Remarks (ADO Connection Object)
Use the ConnectionTimeout property on a Connection object if delays from network traffic or
heavy server use make it necessary to abandon a connection attempt. If the time from the

Sun Chili!Soft ASP 3.6.2 Product Documentation 253

ConnectionTimeout property setting elapses prior to the opening of the connection, an error
occurs and ADO cancels the attempt. If you set the property to zero, ADO will wait indefinitely
until the connection is opened. Make sure the provider to which you are writing code supports the
ConnectionTimeout functionality.

The ConnectionTimeout property is read/write when the connection is closed and read-only
when it is open.

ConnectionTimeout Property Example (ADO Connection Object)
See the ConnectionString property.

 ADO Connection Object CursorLocation Property
Sets or returns the location of the cursor engine.

CursorLocation Property Return Values (ADO Connection Object)
Sets or returns a Long value that can be set to one of the following constants:

Constant Description

adUseClient Uses client-side cursors supplied by a local cursor library. Local
cursor engines will often allow many features that driver-supplied
cursors may not, so using this setting may provide an advantage
with respect to features that will be enabled. For backward-
compatibility, the synonym adUseClientBatch is also supported.

Note: With the Sun Chili!Soft ASP implementation of ADO,
adUseClient has a value of 1, and adUseClientBatch has a value of
3.

adUseServer Default. Uses data provider or driver-supplied cursors. These
cursors are sometimes very flexible and allow for some additional
sensitivity to reflecting changes that others make to the actual data
source. However, some features of the Microsoft Client Cursor
Provider (such as disassociated recordsets) cannot be simulated.

Note: With the Sun Chili!Soft ASP implementation of ADO,
adUseServer has a value of 2.

CursorLocation Property Remarks (ADO Connection Object)
This property allows you to choose between various cursor libraries accessible to the provider.
Usually, you can choose between using a client-side cursor library or one that is located on the
server.

This property setting only affects connections established after the property has been set.
Changing the CursorLocation property has no effect on existing connections.

This property is read/write on a Connection.

CursorLocation Property Example (ADO Connection Object)

Sun Chili!Soft ASP 3.6.2 Product Documentation 254

See the AbsolutePosition property example.

 ADO Connection Object DefaultDatabase Property
The default database for a Connection object.

DefaultDatabase Property Return Values
Sets or returns a String that evaluates to the name of a database available from the provider.

DefaultDatabase Property Remarks
Use the DefaultDatabase property to set or return the name of the default database on a specific
Connection object.

If there is a default database, SQL strings may use an unqualified syntax to access objects in that
database. To access objects in a database other than the one specified in the DefaultDatabase
property, you must qualify object names with the desired database name. Upon connection, the
provider will write default database information to the DefaultDatabase property. Some
providers allow only one database per connection, in which case you cannot change the
DefaultDatabase property.

Some data sources and providers may not support this feature, and may return an error or an
empty string.

Remote Data Service Usage: This property is not available on a client-side Connection object.

DefaultDatabase Property Example
See ADO Connection Object Provider Property

 ADO Connection Object IsolationLevel Property
The level of transaction isolation for a Connection object. Transactions are not currently
supported on UNIX.

IsolationLevel Property Return Values
Sets or returns one of the following IsolationLevelEnum values:

Constant Description

adXactUnspecified The provider is using a different IsolationLevel than
specified, but the level cannot be determined.

adXactChaos You cannot overwrite pending changes from more
highly isolated transactions.

adXactBrowse You can view uncommitted changes from one
transaction in other transactions.

adXactReadUncommitted Same as adXactBrowse.

adXactCursorStability Default. You can view changes in other transactions

Sun Chili!Soft ASP 3.6.2 Product Documentation 255

only after they have been committed.

adXactReadCommitted Same as adXactCursorStability.

adXactRepeatableRead You cannot see changes in other transactions, but
requerying can bring new Recordset objects.

adXactIsolated Transactions are conducted in isolation of other
transactions.

adXactSerializable Same as adXactIsolated.

IsolationLevel Property Remarks
Use the IsolationLevel property to set the isolation level of a Connection object. The
IsolationLevel property is read/write. The setting does not take effect until the next time you call
the BeginTrans method. If the level of isolation you request is unavailable, the provider may
return the next greater level of isolation.

IsolationLevel Property Example
This example uses the ADO Connection Object Mode Property to open an exclusive connection,
and the IsolationLevel property to open a transaction that is conducted in isolation of other
transactions.

Public Sub IsolationLevelX()

Dim cnn1 As ADODB.Connection

Dim rstTitles As ADODB.Recordset

Dim strCnn As String

` Assign connection string to variable.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

` Open connection and titles table.

Set cnn1 = New ADODB.Connection

cnn1.Mode = adModeShareExclusive

cnn1.IsolationLevel = adXactIsolated

cnn1.Open strCnn

Set rstTitles = New ADODB.Recordset

rstTitles.CursorType = adOpenDynamic

rstTitles.LockType = adLockPessimistic

rstTitles.Open "titles", cnn1, , , adCmdTable

cnn1.BeginTrans

` Display connection mode.

Sun Chili!Soft ASP 3.6.2 Product Documentation 256

If cnn1.Mode = adModeShareExclusive Then

MsgBox "Connection mode is exclusive."

Else

MsgBox "Connection mode is not exclusive."

End If

` Display isolation level.

If cnn1.IsolationLevel = adXactIsolated Then

MsgBox "Transaction is isolated."

Else

MsgBox "Transaction is not isolated."

End If

` Change the type of psychology titles.

Do Until rstTitles.EOF

If Trim(rstTitles!Type) = "psychology" Then

rstTitles!Type = "self_help"

rstTitles.Update

End If

rstTitles.MoveNext

Loop

` Print current data in recordset.

rstTitles.Requery

Do While Not rstTitles.EOF

Debug.Print rstTitles!Title & " - " & rstTitles!Type

rstTitles.MoveNext

Loop

` Restore original data.

cnn1.RollbackTrans

rstTitles.Close

cnn1.Close

End Sub

 ADO Connection Object Mode Property

Sun Chili!Soft ASP 3.6.2 Product Documentation 257

The available permissions for modifying data in a Connection.

Mode Property Return Values (ADO Connection Object)
Sets or returns one of the following ConnectModeEnum values:

Constant Description

adModeUnknown Default. The permissions have not been set or cannot be
determined.

adModeRead Read-only permission.

adModeWrite Write-only permission.

adModeReadWrite Read/write permission.

adModeShareDenyRead Prevents others from opening a connection with read
permission.

adModeShareDenyWrite Prevents others from opening a connection with write
permission.

adModeShareExclusive Prevents others from opening a connection.

adModeShareDenyNone Allows others to open a connection with any
permissions. Neither read nor write access can be denied
to others.

Mode Property Remarks (ADO Connection Object)
Use the Mode property to set or return the access permissions in use by the provider on the
current connection. You can set the Mode property only when the Connection object is closed.

Mode Property Example (ADO Connection Object)
See the IsolationLevel property example.

 ADO Connection Object Provider Property
The name of the provider for a Connection object. This property is not available on UNIX.

Provider Property Return Values
Sets or returns a String value.

Provider Property Remarks
Use the Provider property to set or return the name of the provider for a connection. This
property can also be set by the contents of the ConnectionString property or the
ConnectionString argument of the ADO Connection Object Open Method; however, specifying a
provider in more than one place while calling the Open method can have unpredictable results. If
no provider is specified, the property will default to MSDASQL (Microsoft OLE DB Provider for
ODBC).

Sun Chili!Soft ASP 3.6.2 Product Documentation 258

The Provider property is read/write when the connection is closed and read-only when it is open.
The setting does not take effect until you either open the Connection object or access the ADO
Properties Collection of the Connection object. If the setting is invalid, an error occurs.

Provider Property Example
This Visual Basic example demonstrates the Provider property by opening two Connection
objects using different providers. It also uses the DefaultDatabase property to set the default
database for the Microsoft ODBC Provider.

Public Sub ProviderX()

Dim cnn1 As ADODB.Connection

Dim cnn2 As ADODB.Connection

` Open a connection using the Microsoft ODBC provider.

Set cnn1 = New ADODB.Connection

cnn1.ConnectionString = "driver={SQL Server};" & _

"server=bigsmile;uid=sa;pwd=pwd"

cnn1.Open strCnn

cnn1.DefaultDatabase = "pubs"

` Display the provider.

MsgBox "Cnn1 provider: " & cnn1.Provider

` Open a connection using the Microsoft Jet provider.

Set cnn2 = New ADODB.Connection

cnn2.Provider = "Microsoft.Jet.OLEDB.3.51"

cnn2.Open "C:\Samples\northwind.mdb", "admin", ""

` Display the provider.

MsgBox "Cnn2 provider: " & cnn2.Provider

cnn1.Close

cnn2.Close

End Sub

 ADO Connection Object State Property
Describes the current state of an object.

State Property Return Values (ADO Connection Object)
Sets or returns a Long value that can be one of the following constants:

Sun Chili!Soft ASP 3.6.2 Product Documentation 259

Constant Description

adStateClosed Default. The object is closed.

adStateOpen The object is open.

State Property Remarks (ADO Connection Object)
You can use the State property to determine the current state of a given object at any time.

State Property Examples (ADO Connection Object)
This Visual Basic example demonstrates different ways of using the ConnectionString property
to open a Connection object. It also uses the ConnectionTimeout property to set a connection
timeout period, and the State property to check the state of the connections. The GetState
function is required for this procedure to run.

Public Sub ConnectionStringX()

Dim cnn1 As ADODB.Connection

Dim cnn2 As ADODB.Connection

Dim cnn3 As ADODB.Connection

Dim cnn4 As ADODB.Connection

` Open a connection without using a DSN.

Set cnn1 = New ADODB.Connection

cnn1.ConnectionString = "driver={SQL Server};" & _

"server=bigsmile;uid=sa;pwd=pwd;database=pubs"

cnn1.ConnectionTimeout = 30

cnn1.Open

` Open a connection using a DSN and ODBC tags.

Set cnn2 = New ADODB.Connection

cnn2.ConnectionString = "DSN=Pubs;UID=sa;PWD=pwd;"

cnn2.Open

` Open a connection using a DSN and OLE DB tags.

Set cnn3 = New ADODB.Connection

cnn3.ConnectionString = "Data Source=Pubs;User ID=sa;Password=pwd;"

cnn3.Open

` Open a connection using a DSN and individual

` arguments instead of a connection string.

Set cnn4 = New ADODB.Connection

cnn4.Open "Pubs", "sa", "pwd"

Sun Chili!Soft ASP 3.6.2 Product Documentation 260

` Display the state of the connections.

MsgBox "cnn1 state: " & GetState(cnn1.State) & vbCr &_

"cnn2 state: " & GetState(cnn1.State) & vbCr & _

"cnn3 state: " & GetState(cnn1.State) & vbCr & _

"cnn4 state: " & GetState(cnn1.State)

cnn4.Close

cnn3.Close

cnn2.Close

cnn1.Close

End Sub

Public Function GetState(intState As Integer) As String

Select Case intState

Case adStateClosed

GetState = "adStateClosed"

Case adStateOpen

GetState = "adStateOpen"

End Select

End Function

 ADO Connection Object Version Property
The ADO version number.

Version Property Return Values
Returns a String value.

Version Property Remarks
Use the Version property to return the version number of the ADO implementation. The version
of the provider will be available on Windows servers as a dynamic property in the ADO
Properties Collection. The Properties collection is not currently supported on UNIX.

Version Property Example
This Visual Basic example uses the Version property of a Connection object to display the
current ADO version. It also uses several dynamic properties to show the current DBMS name
and version, OLE DB version, provider name and version, driver name and version, and driver
ODBC version.

Public Sub VersionX()

Sun Chili!Soft ASP 3.6.2 Product Documentation 261

Dim cnn1 As ADODB.Connection

' Open connection.

Set cnn1 = New ADODB.Connection

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

cnn1.Open strCnn

strVersionInfo = "ADO Version: " & cnn1.Version & vbCr & _

"DBMS Name: " & cnn1.Properties("DBMS Name") & vbCr & _

"DBMS Version: " & cnn1.Properties("DBMS Version") & vbCr & _

"OLE DB Version: " & cnn1.Properties("OLE DB Version") & vbCr & _

"Provider Name: " & cnn1.Properties("Provider Name") & vbCr & _

"Provider Version: " & cnn1.Properties("Provider Version") & vbCr &
_

"Driver Name: " & cnn1.Properties("Driver Name") & vbCr & _

"Driver Version: " & cnn1.Properties("Driver Version") & vbCr & _

"Driver ODBC Version: " & cnn1.Properties("Driver ODBC Version")

MsgBox strVersionInfo

cnn1.Close

End Sub

ADO Error Object

 ADO Error Object
The ADO Error object provides specific details about each ADO error.

ADO Error Object Properties
ADO Error Object Description Property A descriptive string associated with an

error.

ADO Error Object HelpContext, HelpFile
Property

The help file topic associated with an
error.

ADO Error Object HelpContext, HelpFile
Property

The help file associated with an error.

ADO Error Object NativeError Property The provider-specific error code for an
error.

ADO Error Object Number Property The number that uniquely identifies an

Sun Chili!Soft ASP 3.6.2 Product Documentation 262

error.

ADO Error Object Source Property The name of the object or application that
originally generated the error.

ADO Error Object SQLState Property The SQL state for a given error.

ADO Error Object Remarks
Any operation involving ADO objects can generate one or more provider errors. As each error
occurs, one or more Error objects are placed in the ADO Errors Collection of the ADO
Connection Object. When another ADO operation generates an error, the Errors collection is
cleared, and the new set of Error objects are placed in the Errors collection.

Note
Each Error object represents a specific provider error, not an ADO error. ADO errors are
exposed to the run-time exception handling mechanism. For example, in Microsoft
Visual Basic, the occurrence of an ADO-specific error will trigger an On Error event
and appear in the Err object. For a complete list of ADO errors, see Appendix B.

Read the Error object's properties to obtain specific details about each error:

� The ADO Error Object Description Property contains the text of the error.

� The ADO Error Object Number Property contains the Long integer value of the error
constant.

� The ADO Error Object Source Property identifies the object that raised the error. This is
particularly useful when you have several Error objects in the Errors collection
following a request to a data source.

� The ADO Error Object HelpContext, and HelpFile Properties indicate the appropriate
Microsoft Windows Help file and Help topic, respectively (if any exist), for the error.

� The ADO Error Object SQLState Property and ADO Error Object NativeError Property
properties provide information from SQL data sources.

ADO supports the return of multiple errors by a single ADO operation to allow for error
information specific to the provider. To obtain this error information in an error handler, use the
appropriate error-trapping features of the language or environment you are working with, then use
nested loops to enumerate the properties of each Error object in the Errors collection.

ADO clears the OLE Error Info object before making a call that could potentially generate a
new provider error. However, the Errors collection on the Connection object is cleared and
populated only when the provider generates a new error, or when the ADO Collections Clear
Method is called.

Some properties and methods return warnings that appear as Error objects in the Errors
collection but do not halt a program's execution. Before you call the ADO Recordset Object
Resync Method, ADO Recordset Object UpdateBatch Method, or ADO Recordset Object
CancelBatch Method methods on an ADO Recordset Object, or before you set the ADO
Recordset Object Filter Property on a Recordset object, call the ADO Collections Clear Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 263

on the Errors collection so that you can read the Count property of the Errors collection to test
for returned warnings.

If there is no valid Connection object when using Microsoft Visual Basic and VBScript, retrieve
error information from the Err object.

To refer to an Error object in a collection by its ordinal number, use either of the following
syntax forms:

connection.Errors.Item(0)

connection.Errors(0)

ADO Error Object Properties

 ADO Error Object Description Property
A descriptive string associated with an Error object.

Description Property Return Values (ADO Error Object)
Returns a String value.

Description Property Remarks (ADO Error Object)
Use the Description property to obtain a short description of the error. Display this property to
alert the user to an error that you cannot or do not want to handle. The string will come from
either ADO or a provider.

Providers are responsible for passing specific error text to ADO. ADO adds an Error object to
the ADO Errors Collection for each provider error or warning it receives. Enumerate the Errors
collection to trace the errors that the provider passes.

Description Property Example (ADO Error Object)
This Visual Basic example triggers an error, traps it, and displays the ADO Error Object
Description Property, ADO Error Object HelpContext, and HelpFile Properties, ADO Error
Object NativeError Property, ADO Error Object Number Property, ADO Error Object Source
Property, and ADO Error Object SQLState Property properties of the resulting Error object:

Public Sub DescriptionX()

Dim cnn1 As ADODB.Connection

Dim errLoop As ADODB.Error

Dim strError As String

On Error GoTo ErrorHandler

` Intentionally trigger an error.

Set cnn1 = New ADODB.Connection

cnn1.Open "nothing"

Exit Sub

Sun Chili!Soft ASP 3.6.2 Product Documentation 264

ErrorHandler:

` Enumerate Errors collection and display

` properties of each Error object.

For Each errLoop In cnn1.Errors

strError = "Error #" & errLoop.Number & vbCr & _

" " & errLoop.Description & vbCr & _

" (Source: " & errLoop.Source & ")" & vbCr & _

" (SQL State: " & errLoop.SQLState & ")" & vbCr & _

" (NativeError: " & errLoop.NativeError & ")" & vbCr

If errLoop.HelpFile = "" Then

strError = strError & _

" No Help file available" & _

vbCr & vbCr

Else

strError = strError & _

" (HelpFile: " & errLoop.HelpFile & ")" & vbCr & _

" (HelpContext: " & errLoop.HelpContext & ")" & _

vbCr & vbCr

End If

Debug.Print strError

Next

Resume Next

End Sub

 ADO Error Object HelpContext, HelpFile Property
The help file and topic associated with an Error object.

HelpContext, HelpFile Property Return Values
HelpContextID

Returns a context ID, as a Long value, for a topic in a Microsoft Windows Help file.

HelpFile

Returns a String that evaluates to a fully resolved path to a Help file.

HelpContext, HelpFile Property Remarks

Sun Chili!Soft ASP 3.6.2 Product Documentation 265

If a Windows Help (.hlp) file is specified in the HelpFile property, the HelpContext property is
used to automatically display the Help topic it identifies. If there is no relevant help topic
available, the HelpContext property returns zero and the HelpFile property returns a zero-length
string ("").

HelpContext, HelpFile Property Examples
See the ADO Error Object Description Property example.

 ADO Error Object NativeError Property
The provider-specific error code for a given Error object.

NativeError Property Return Values
Returns a Long value.

NativeError Property Remarks
Use the NativeError property to retrieve the database-specific error information for a particular
Error object. For example, when using the Microsoft ODBC Provider for OLE DB with a SQL
Server database, native error codes that originate from SQL Server pass through ODBC and the
ODBC Provider to the ADO NativeError property.

NativeError Property Example
See the ADO Error Object Description Property.

 ADO Error Object Number Property
The number that uniquely identifies an Error object.

Number Property Return Values
Returns a Long value.

Number Property Remarks
Use the Number property to determine which error occurred. The value of the property is a
unique number that corresponds to the error condition.

Number Property Example
See the ADO Error Object Description Property.

 ADO Error Object Source Property
The name of the object or application that originally generated an error.

Source Property Return Values
Returns a String value.

Sun Chili!Soft ASP 3.6.2 Product Documentation 266

Source Property Remarks
Use the Source property on an Error object to determine the name of the object or application
that originally generated an error. This could be the object's class name or programmatic ID. For
errors in ADODB, the property value will be ADODB.ObjectName.

Source Property Parameters (ADO Error Object)
ObjectName

The name of the object that triggered the error. The Source property is read-only for Error
objects.

Based on the error documentation from the Source, ADO Error Object Number Property, and
ADO Error Object Description Property properties of Error objects, you can write code that will
handle the error appropriately.

Source Property Example
See the ADO Error Object Description Property example.

 ADO Error Object SQLState Property
The SQL state for a given Error object.

SQLState Property Return Values
Returns a five-character String that follows the ANSI SQL standard.

SQLState Property Remarks
Use the SQLState property to read the five-character error code that the provider returns when an
error occurs during the processing of a SQL statement. For example, when using the Microsoft
OLE DB Provider for ODBC with a SQL Server database, SQL state error codes originate from
ODBC based either on errors specific to ODBC or on errors that originate from Microsoft SQL
Server, and are then mapped to ODBC errors. These error codes are documented in the ANSI
SQL standard, but may be implemented differently by different data sources.

SQLState Property Example
See the ADO Error Object Description Property example.

ADO Field Object

 ADO Field Object
The ADO Field Object represents a column of data with a common data type.

ADO Field Object Collections
ADO Properties Collection All Property objects for a specific instance of a Field

object. This collection is not currently supported on
UNIX.

Sun Chili!Soft ASP 3.6.2 Product Documentation 267

ADO Field Object Methods
ADO Field Object AppendChunk
Method

Appends data to a large text or binary data field.

ADO Field Object GetChunk
Method

Returns all or a portion of the contents of a large text or
binary data field.

ADO Field Object Properties
ADO Field Object ActualSize
Property

The actual length of a field value.

ADO Field Object Attributes
Property

One or more characteristics of a field. This property is
read-only on UNIX.

ADO Field Object DefinedSize
Property

The defined size of a field.

ADO Field Object Name Property The name of a field.

ADO Field Object NumericScale
Property

The scale of numeric values in a field.

ADO Field Object OriginalValue
Property

The value of a field that existed in the record before any
changes were made.

ADO Field Object Precision
Property

The degree of precision for numeric values in a field.

ADO Field Object Type Property The data type of the field.

ADO Field Object
UnderlyingValue Property

The current value of the field in the database.

ADO Field Object Value Property The value assigned to the field.

ADO Field Object Remarks
A ADO Recordset Object has an ADO Fields Collection made up of Field objects. Each Field
object corresponds to a column in the recordset. You use the ADO Field Object Value Property of
Field objects to set or return data for the current record. Depending on the functionality the
provider exposes, some collections, methods, or properties of a Field object may not be available.

The collections, methods, and properties of a Field object are used to:

� return the name of a field with the ADO Field Object Name Property.

� view or change the data in the field with the ADO Field Object Value Property.

� return the basic characteristics of a field with the ADO Field Object Type Property, ADO
Field Object Precision Property, and ADO Field Object NumericScale Property properties.

� return the declared size of a field with the ADO Field Object DefinedSize Property.

� return the actual size of the data in a given field with the ADO Field Object ActualSize
Property.

Sun Chili!Soft ASP 3.6.2 Product Documentation 268

� determine what types of functionality are supported for a given field with the ADO Field
Object Attributes Property and ADO Properties Collection.

� manipulate the values of fields containing long binary or long character data with the
ADO Field Object AppendChunk Method and ADO Field Object GetChunk Method
methods.

� resolve discrepancies in field values during batch updating with the ADO Field Object
OriginalValue Property and UnderlyingValue properties (if the provider supports batch
updates).

Note
All metadata properties (Name, Type, DefinedSize, Precision, and NumericScale) are
available before opening the Field object's recordset. Setting them at that time is useful
for dynamically constructing forms.

ADO Field Object Methods

 ADO Field Object AppendChunk Method
Appends data to a large text or binary data Field object.

AppendChunk Method Syntax (ADO Field Object)
object.AppendChunk Data

AppendChunk Method Parameters (ADO Field Object)
object

A Field object.

Data

A Variant containing the data you want to append to the object.

AppendChunk Method Remarks (ADO Field Object)
Use the AppendChunk method on a Field object to fill it with long binary or character data. In
situations where system memory is limited, you can use the AppendChunk method to
manipulate long values in portions rather than in their entirety.

If the adFldLong bit in the ADO Field Object Attributes Property of a Field object is set to
True, you can use the AppendChunk method for that field.

The first AppendChunk call on a Field object writes data to the field, overwriting any existing
data. Subsequent AppendChunk calls add to existing data. If you are appending data to one field
and then you set or read the value of another field in the current record, ADO assumes that you
are done appending data to the first field. If you call the AppendChunk method on the first field
again, ADO interprets the call as a new AppendChunk operation and overwrites the existing
data. Accessing fields in other ADO Recordset Object objects (that are not clones of the first
Recordset object) will not disrupt AppendChunk operations.

Sun Chili!Soft ASP 3.6.2 Product Documentation 269

If there is no current record when you call AppendChunk on a Field object, an error occurs.

AppendChunk Method Examples (ADO Field Object)
See the ADO Field Object GetChunk Method example.

 ADO Field Object GetChunk Method
Returns all or a portion of the contents of a large text or binary data Field object.

GetChunk Method Syntax (ADO Field Object)
variable = field.GetChunk(Size)

GetChunk Method Parameters (ADO Field Object)
variable

Variant to hold data returned.

Size

A Long expression equal to the number of bytes or characters you want to retrieve.

GetChunk Method Remarks (ADO Field Object)
Use the GetChunk method on a Field object to retrieve part or all of its long binary or character
data. In situations where system memory is limited, you can use the GetChunk method to
manipulate long values in portions rather than in their entirety.

The data a GetChunk call returns is assigned to variable. If Size is greater than the remaining
data, the GetChunk method returns only the remaining data without padding variable with empty
spaces. If the field is empty, the GetChunk method returns Null.

Each subsequent GetChunk call retrieves data starting from where the previous GetChunk call
left off. However, if you are retrieving data from one field and then you set or read the value of
another field in the current record, ADO assumes you are done retrieving data from the first field.
If you call the GetChunk method on the first field again, ADO interprets the call as a new
GetChunk operation and starts reading from the beginning of the data. Accessing fields in other
ADO Recordset Object objects (that are not clones of the first Recordset object) will not disrupt
GetChunk operations.

If the adFldLong bit in the ADO Field Object Attributes Property of a Field object is set to
True, you can use the GetChunk method for that field.

If there is no current record when you use the GetChunk method on a Field object, error 3021
(no current record) occurs.

GetChunk Method Return Values (ADO Field Object)
Returns a Variant.

GetChunk Method Example (ADO Field Object)
See the ADO Field Object AppendChunk Method.

Sun Chili!Soft ASP 3.6.2 Product Documentation 270

ADO Field Object Properties

 ADO Field Object ActualSize Property
The actual length of a field's value.

ActualSize Property Return Values (ADO Field Object)
Returns a Long value. Some providers may allow this property to be set to reserve space for
BLOB data, in which case the default value is 0.

ActualSize Property Remarks (ADO Field Object)
Use the ActualSize property to return the actual length of a Field object's value. For all fields, the
ActualSize property is read-only. If ADO cannot determine the length of the Field object's value,
the ActualSize property returns adUnknown.

The ActualSize and ADO Field Object DefinedSize Property properties are different as shown in
the following example: a Field object with a declared type of adVarChar and a maximum length
of 50 characters returns a DefinedSize property value of 50, but the ActualSize property value it
returns is the length of the data stored in the field for the current record.

ActualSize Property Example (ADO Field Object)
This Visual Basic example uses the ActualSize and DefinedSize properties to display the defined
size and actual size of a field.

Public Sub ActualSizeX()

Dim rstStores As ADODB.Recordset

Dim strCnn As String

' Open a recordset for the Stores table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstStores = New ADODB.Recordset

rstStores.Open "stores", strCnn, , , adCmdTable

' Loop through the recordset displaying the contents

' of the stor_name field, the field's defined size,

' and its actual size.

rstStores.MoveFirst

Do Until rstStores.EOF

MsgBox "Store name: " & rstStores!stor_name & _

vbCr & "Defined size: " & _

rstStores!stor_name.DefinedSize & _

Sun Chili!Soft ASP 3.6.2 Product Documentation 271

vbCr & "Actual size: " & _

rstStores!stor_name.ActualSize & vbCr

rstStores.MoveNext

Loop

rstStores.Close

End Sub

 ADO Field Object Attributes Property
One or more characteristics of an object. This property is read-only on UNIX.

Attributes Property Return Values (ADO Field Object)
Sets or returns a Long value.

Attributes Property Field (ADO Field Object)
For a Field object, the Attributes property is read-only, and its value can be the sum of any one
or more of these FieldAttributeEnum values:

Value Description

adFldMayDefer The field is deferred; that is, the field values are not retrieved
from the data source with the whole record, but only when
you explicitly access them.

adFldUpdatable The field can be written.

adFldUnknownUpdatable The provider cannot determine if the field can be written.

adFldFixed The field contains fixed-length data.

adFldIsNullable The field accepts Null values.

adFldMayBeNull You can read Null values from the field.

adFldLong The field is a long binary field. Also indicates that you can
use the ADO Field Object AppendChunk Method and ADO
Field Object GetChunk Method methods.

adFldRowID The field contains some kind of record ID (record number,
unique identifier, and so forth).

adFldRowVersion The field contains some kind of time or date stamp used to
track updates.

adFldCacheDeferred The provider caches field values and subsequent reads are
done from the cache.

Attributes Property Remarks (ADO Field Object)
Use the Attributes property to set or return characteristics of Field objects.

Sun Chili!Soft ASP 3.6.2 Product Documentation 272

When you set multiple attributes, you can sum the appropriate constants. If you set the property
value to a sum including incompatible constants, an error occurs.

 ADO Field Object DefinedSize Property
The defined size of a Field object.

DefinedSize Property Return Values (ADO Field Object)
Returns a Long value that reflects the defined size of a field as a number of bytes.

DefinedSize Property Remarks (ADO Field Object)
Use the DefinedSize property to determine the data capacity of a Field object.

The DefinedSize and ADO Field Object ActualSize Property properties are different. For
example, consider a Field object with a declared type of adVarChar and a DefinedSize property
value of 50, containing a single character. The ActualSize property value it returns is the length
in bytes of the single character.

DefinedSize Property Examples (ADO Field Object)
See the ADO Field Object ActualSize Property example.

 ADO Field Object Name Property
The name of an object.

Name Property Return Values (ADO Field Object)
Sets or returns a String value. The value is read-only on a Field object.

Name Property Remarks (ADO Field Object)
Use the Name property to retrieve the name of a Field object.

The Name property is read-only. Names do not have to be unique within a collection.

Name Property Examples (ADO Field Object)
See the ADO Field Object Attributes Property example.

 ADO Field Object NumericScale Property
The scale of Numeric values in a Field object.

NumericScale Property Return Values (ADO Field Object)
Sets or returns a Byte value, indicating the number of decimal places to which numeric values
will be resolved

NumericScale Property Remarks (ADO Field Object)

Sun Chili!Soft ASP 3.6.2 Product Documentation 273

Use the NumericScale property to determine how many digits to the right of the decimal point
will be used to represent values for a numeric Field object.

The NumericScale property is read-only.

 ADO Field Object OriginalValue Property
The value of a Field object that existed in the record before any changes were made.

OriginalValue Property Return Values (ADO Field Object)
Returns a Variant value.

OriginalValue Property Remarks (ADO Field Object)
Use the OriginalValue property to return the original field value for a field from the current
record.

In immediate update mode (the provider writes changes to the underlying data source once you
call the ADO Recordset Object Update Method), the OriginalValue property returns the field
value that existed prior to any changes (that is, since the last Update method call). This is the
same value that the ADO Recordset Object CancelUpdate Method uses to replace the ADO Field
Object Value Property.

In batch update mode (the provider caches multiple changes and writes them to the underlying
data source only when you call the ADO Recordset Object UpdateBatch Method), the
OriginalValue property returns the field value that existed prior to any changes (that is, since the
last UpdateBatch method call). This is the same value that the ADO Recordset Object
CancelBatch Method uses to replace the Value property. When you use this property with the
UnderlyingValue property, you can resolve conflicts that arise from batch updates. Batch
updates are currently not supported on UNIX.

OriginalValue Property Example (ADO Field Object)
This Visual Basic example demonstrates the OriginalValue and UnderlyingValue properties by
displaying a message if a record's underlying data has changed during a ADO Recordset Object
batch update.

Public Sub OriginalValueX()

Dim cnn1 As ADODB.Connection

Dim rstTitles As ADODB.Recordset

Dim fldType As ADODB.Field

Dim strCnn As String

' Open connection.

Set cnn1 = New ADODB.Connection

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Sun Chili!Soft ASP 3.6.2 Product Documentation 274

cnn1.Open strCnn

' Open recordset for batch update.

Set rstTitles = New ADODB.Recordset

Set rstTitles.ActiveConnection = cnn1

rstTitles.CursorType = adOpenKeyset

rstTitles.LockType = adLockBatchOptimistic

rstTitles.Open "titles"

' Set field object variable for Type field.

Set fldType = rstTitles!Type

' Change the type of psychology titles.

Do Until rstTitles.EOF

If Trim(fldType) = "psychology" Then

fldType = "self_help"

End If

rstTitles.MoveNext

Loop

' Similate a change by another user by updating

' data using a command string.

cnn1.Execute "UPDATE titles SET type = 'sociology' " & _

"WHERE type = 'psychology'"

'Check for changes.

rstTitles.MoveFirst

Do Until rstTitles.EOF

If fldType.OriginalValue <> _

fldType.UnderlyingValue Then

MsgBox "Data has changed!" & vbCr & vbCr & _

" Title ID: " & rstTitles!title_id & vbCr & _

" Current value: " & fldType & vbCr & _

" Original value: " & _

fldType.OriginalValue & vbCr & _

" Underlying value: " & _

fldType.UnderlyingValue & vbCr

Sun Chili!Soft ASP 3.6.2 Product Documentation 275

End If

rstTitles.MoveNext

Loop

' Cancel the update because this is a demonstration.

rstTitles.CancelBatch

rstTitles.Close

' Restore original values.

cnn1.Execute "UPDATE titles SET type = 'psychology' " & _

"WHERE type = 'sociology'"

cnn1.Close

End Sub

 ADO Field Object Precision Property
The degree of precision for numeric Field objects.

Precision Property Return Values (ADO Field Object)
Sets or returns a Byte value, indicating the maximum total number of digits used to represent
values. The value is read-only on a Field object.

Precision Property Remarks (ADO Field Object)
Use the Precision property to determine the maximum number of digits used to represent values
for a numeric Field object.

Precision Property Example (ADO Field Object)
See the ADO Field Object NumericScale Property.

 ADO Field Object Type Property
The operational type or data type of a Field object.

Type Property Return Values (ADO Field Object)
Sets or returns one of the following DataTypeEnum values. The corresponding OLE DB type
indicators are as follows:

Constant Description

adArray Or'd together with another type to indicate that the data is a safe-
array of that type (DBTYPE_ARRAY).

adBigInt An 8-byte signed integer (DBTYPE_I8).

adBinary A binary value (DBTYPE_BYTES).

Sun Chili!Soft ASP 3.6.2 Product Documentation 276

adBoolean A Boolean value (DBTYPE_BOOL).

adByRef Or'd together with another type to indicate that the data is a
pointer to data of the other type (DBTYPE_BYREF).

adBSTR A null-terminated character string (Unicode) (DBTYPE_BSTR).

adChar A String value (DBTYPE_STR).

adCurrency A currency value (DBTYPE_CY). Currency is a fixed-point
number with 4 digits to the right of the decimal point. It is stored
in an 8-byte signed integer scaled by 10,000.

adDate A date value (DBTYPE_DATE). A date is stored as a Double,
the whole part of which is the number of days since December
30, 1899, and the fractional part of which is the fraction of a day.

adDBDate A date value (yyyymmdd) (DBTYPE_DBDATE).

adDBTime A time value (hhmmss) (DBTYPE_DBTIME).

adDBTimeStamp A date-time stamp (yyyymmddhhmmss plus a fraction in
billionths) (DBTYPE_DBTIMESTAMP).

adDecimal An exact numeric value with a fixed precision and scale
(DBTYPE_DECIMAL).

adDouble A double-precision floating point value (DBTYPE_R8).

adEmpty No value was specified (DBTYPE_EMPTY).

adError A 32-bit error code (DBTYPE_ERROR).

adGUID A globally unique identifier (GUID) (DBTYPE_GUID).

adIDispatch A pointer to an IDispatch interface on an OLE object
(DBTYPE_IDISPATCH).

adInteger A 4-byte signed integer (DBTYPE_I4).

adIUnknown A pointer to an IUnknown interface on an OLE object
(DBTYPE_IUNKNOWN).

adNumeric An exact numeric value with a fixed precision and scale
(DBTYPE_NUMERIC).

adSingle A single-precision floating point value (DBTYPE_R4).

adSmallInt A 2-byte signed integer (DBTYPE_I2).

adTinyInt A 1-byte signed integer (DBTYPE_I1).

adUnsignedBigInt An 8-byte unsigned integer (DBTYPE_UI8).

adUnsignedInt A 4-byte unsigned integer (DBTYPE_UI4).

adUnsignedSmallInt A 2-byte unsigned integer (DBTYPE_UI2).

adUnsignedTinyInt A 1-byte unsigned integer (DBTYPE_UI1).

Sun Chili!Soft ASP 3.6.2 Product Documentation 277

adUserDefined A user-defined variable (DBTYPE_UDT).

adVariant An Automation Variant (DBTYPE_VARIANT).

adVector OR'd together with another type to indicate that the data is a
DBVECTOR structure, as defined by OLE DB, that contains a
count of elements and a pointer to data of the other type
(DBTYPE_VECTOR).

adWChar A null-terminated Unicode character string (DBTYPE_WSTR).

Type Property Remarks (ADO Field Object)
For Field objects, the Type property is read-only.

Type Property Example (ADO Field Object)
This example demonstrates the Type property by displaying the name of the constant
corresponding to the value of the Type property of all the Field objects in the Employees table.
The FieldType function is required for this procedure to run.

Public Sub TypeX()

Dim rstEmployees As ADODB.Recordset

Dim fldLoop As ADODB.Field

Dim strCnn As String

` Open recordset with data from Employee table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstEmployees = New ADODB.Recordset

rstEmployees.Open "employee", strCnn, , , adCmdTable

Debug.Print "Fields in Employee Table:" & vbCr

` Enumerate Fields collection of Employees table.

For Each fldLoop In rstEmployees.Fields

Debug.Print " Name: " & fldLoop.Name & vbCr & _

" Type: " & FieldType(fldLoop.Type) & vbCr

Next fldLoop

End Sub

Public Function FieldType(intType As Integer) As String

Select Case intType

Case adChar

FieldType = "adChar"

Sun Chili!Soft ASP 3.6.2 Product Documentation 278

Case adVarChar

FieldType = "adVarChar"

Case adSmallInt

FieldType = "adSmallInt"

Case adUnsignedTinyInt

FieldType = "adUnsignedTinyInt"

Case adDBTimeStamp

FieldType = "adDBTimeStamp"

End Select

End Function

 ADO Field Object UnderlyingValue Property
A Field object's current value in the database.

UnderlyingValue Property Return Values (ADO Field Object)
Returns a Variant value.

UnderlyingValue Property Remarks (ADO Field Object)
Use the UnderlyingValue property to return the current field value from the database. The field
value in the UnderlyingValue property is the value that is visible to your transaction and may be
the result of a recent update by another transaction. This may differ from the ADO Field Object
OriginalValue Property, which reflects the value that was originally returned to the ADO
Recordset Object.

This is similar to using the ADO Recordset Object Resync Method, but the UnderlyingValue
property returns only the value for a specific field from the current record. This is the same value
that the Resync method uses to replace the ADO Field Object Value Property.

When you use this property with the OriginalValue property, you can resolve conflicts that arise
from batch updates.

UnderlyingValue Property Example (ADO Field Object)
See the ADO Field Object OriginalValue Property example.

 ADO Field Object Value Property
Indicates the value assigned to a Field object.

Value Property Return Values (ADO Field Object)
Sets or returns a Variant value. Default value depends on the ADO Field Object Type Property.

Value Property Remarks (ADO Field Object)

Sun Chili!Soft ASP 3.6.2 Product Documentation 279

Use the Value property to set or return data from Field objects. ADO allows setting and returning
long binary data with the Value property.

Value Property Example (ADO Field Object)
This Visual Basic example demonstrates the Value property with Field and Property objects by
displaying field and property values for the Employees table.

Public Sub ValueX()

Dim rstEmployees As ADODB.Recordset

Dim fldLoop As ADODB.Field

Dim prpLoop As ADODB.Property

Dim strCnn As String

' Open recordset with data from Employee table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstEmployees = New ADODB.Recordset

rstEmployees.Open "employee", strCnn, , , adCmdTable

Debug.Print "Field values in rstEmployees"

' Enumerate the Fields collection of the Employees

' table.

For Each fldLoop In rstEmployees.Fields

` Because Value is the default property of a

` Field object, the use of the actual keyword

` here is optional.

Debug.Print " " & fldLoop.Name & " = " &

fldLoop.Value

Next fldLoop

Debug.Print "Property values in rstEmployees"

' Enumerate the Properties collection of the

' Recordset object.

For Each prpLoop In rstEmployees.Properties

' Because Value is the default property of a

' Property object, the use of the actual keyword

' here is optional.

Debug.Print " " & prpLoop.Name & " = " &

Sun Chili!Soft ASP 3.6.2 Product Documentation 280

prpLoop.Value

Next prpLoop

rstEmployees.Close

End Sub

ADO Parameter Object

 ADO Parameter Object
The ADO Parameter Object represents a parameter or argument associated with a Command
object based on a parameterized query or stored procedure.

ADO Parameter Object Collections
ADO Properties Collection All the Property objects for a specific instance of a

Parameter object. This collection is not currently
supported on UNIX.

ADO Parameter Object Methods
ADO Parameter Object AppendChunk
Method

Appends data to a large text or binary data parameter.

ADO Parameter Object Properties
ADO Parameter Object Attributes
Property

One or more characteristics of a parameter. This
property is currently read-only on UNIX.

ADO Parameter Object Direction
Property

Indicates if the parameter is an input parameter, an
output parameter, or both; or if the parameter is the
output of a stored procedure.

ADO Parameter Object Name Property The name of the parameter.

ADO Parameter Object NumericScale
Property

The scale of numeric values in the parameter.

ADO Parameter Object Precision
Property

The degree of precision for numeric values in the
parameter.

ADO Parameter Object Size Property The maximum size, in bytes or characters, of a
parameter.

ADO Parameter Object Type Property The data type of the parameter.

ADO Parameter Object Value Property The value assigned to the parameter.

ADO Parameter Object Remarks
The Properties collection is not currently supported on UNIX.

Many providers support parameterized commands. These are commands where the desired action
is defined once, but variables (or parameters) are used to alter some details of the command. For

Sun Chili!Soft ASP 3.6.2 Product Documentation 281

example, an SQL SELECT statement could use a parameter to define the matching criteria of a
WHERE clause, and another to define the column name for a SORT BY clause.

The Parameter objects represent parameters associated with parameterized queries, or the in/out
arguments and the return values of stored procedures. Depending on the functionality of the
provider, some collections, methods, or properties of a Parameter object may not be available.

The collections, methods, and properties of a Parameter object are used to:

� set or return the name of a parameter with the ADO Parameter Object Name Property.

� set or return the value of a parameter with the ADO Parameter Object Value Property.

� set or return parameter characteristics with the ADO Parameter Object Attributes
Property, ADO Parameter Object Direction Property, ADO Parameter Object Precision
Property, ADO Parameter Object NumericScale Property, ADO Parameter Object Size
Property, and ADO Parameter Object Type Property properties.

� pass long binary or character data to a parameter with the ADO Parameter Object
AppendChunk Method.

If you know the names and properties of the parameters associated with the stored procedure or
parameterized query you wish to call, you can use the CreateParameter method to create
Parameter objects with the appropriate property settings and use the ADO Collections Append
Method to add them to the ADO Parameters Collection. This lets you set and return parameter
values without having to call the ADO Collections Refresh Method on the Parameters collection
to retrieve the parameter information from the provider, a potentially resource-intensive
operation.

ADO Parameter Object Methods

 ADO Parameter Object AppendChunk Method
Appends data to a large text or binary data Parameter object.

AppendChunk Method Syntax (ADO Parameter Object)
object.AppendChunk Data

AppendChunk Method Parameters (ADO Parameter Object)
object

A Parameter object.

Data

A Variant containing the data you want to append to the object.

AppendChunk Method Remarks (ADO Parameter Object)
Use the AppendChunk method on a Parameter object to fill it with long binary or character
data. In situations where system memory is limited, you can use the AppendChunk method to
manipulate long values in portions rather than in their entirety.

Sun Chili!Soft ASP 3.6.2 Product Documentation 282

If the adFldLong bit in the ADO Parameter Object Attributes Property of a Parameter object is
set to True, you can use the AppendChunk method for that parameter.

The first AppendChunk call on a Parameter object writes data to the parameter, overwriting
any existing data. Subsequent AppendChunk calls on a Parameter object adds to existing
parameter data. An AppendChunk call that passes a Null value generates an error; you must
manually set the ADO Parameter Object Value Property of the Parameter object to a zero-length
string ("") in order to clear its value.

ADO Parameter Object Properties

 ADO Parameter Object Attributes Property
One or more characteristics of an object. This property is read-only on UNIX.

Attributes Property Return Values (ADO Parameter Object)
Sets or returns a Long value.

Attributes Property Parameters (ADO Parameter Object)
For an ADO Parameter Object, the Attributes property is read/write, and its value can be the sum
of any one or more of these ParameterAttributesEnum values:

Value Description

adParamSigned Default. The parameter accepts signed values.

adParamNullable The parameter accepts Null values.

adParamLong The parameter accepts long binary data.

Attributes Property Remarks (ADO Parameter Object)
Use the Attributes property to set or return characteristics of Parameter objects.

When you set multiple attributes, you can sum the appropriate constants. If you set the property
value to a sum including incompatible constants, an error occurs.

Attributes Property Examples (ADO Parameter Object)
This Visual Basic example displays the value of the Attributes property for Connection, Field,
and Property objects. It uses the ADO Parameter Object Name Property to display the name of
each Field and Property object.

Public Sub AttributesX

Dim cnn1 As ADODB.Connection

Dim rstEmployees As ADODB.Recordset

Dim fldLoop As ADODB.Field

Dim proLoop As ADODB.Property

Dim strCnn As String

Sun Chili!Soft ASP 3.6.2 Product Documentation 283

' Open connection and recordset.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set cnn1 = New ADODB.Connection

cnn1.Open strCnn

Set rstEmployees = New ADODB.Recordset

rstEmployees.Open "employee", cnn1, , ,

adCmdTable

' Display the attributes of the connection.

Debug.Print "Connection attributes = " & _

cnn1.Attributes

' Display attributes of the Employee table fields

Debug.Print "Field attributes:"

For Each fldLoop In rstEmployees.Fields

Debug.Print " " & fldLoop.Name & " = " & _

fldLoop.Attributes

Next fldLoop

' Display attributes of the Employee table properties.

Debug.Print "Property attributes:"

For Each proLoop In rstEmployees.Properties

Debug.Print " " & proLoop.Name & " = " & _

proLoop.Attributes

Next proLoop

rstEmployees.Close

cnn1.Close

End Sub

 ADO Parameter Object Direction Property
Indicates whether the Parameter object represents an input parameter, an output parameter, or
both, or if the parameter is the return value from a stored procedure.

Direction Property Return Values
Sets or returns one of the following ParameterDirectionEnum values

Sun Chili!Soft ASP 3.6.2 Product Documentation 284

Constant Description

AdParamInput Default. Indicates an input parameter.

AdParamOutput Indicates an output parameter.

AdParamInputOutput Indicates a two-way parameter.

AdParamReturnValue Indicates a return value.

Direction Property Remarks
Use the Direction property to specify how a parameter is passed to or from a procedure. The
Direction property is read/write; this allows you to work with providers that do not return this
information, or to set this information when you do not want ADO to make an extra call to the
provider to retrieve parameter information.

Not all providers can determine the direction of parameters in their stored procedures. In these
cases, you must set the Direction property prior to executing the query.

 ADO Parameter Object Name Property
The name of an object.

Name Property Return Values (ADO Parameter Object)
Sets or returns a String value. The value is read/write on a Parameter object.

Name Property Remarks (ADO Parameter Object)
Use the Name property to assign a name to or retrieve the name of a Parameter object.

For Parameter objects not yet appended to the ADO Parameters Collection, the Name property
is read/write. For appended Parameter objects and all other objects, the Name property is read-
only. Names do not have to be unique within a collection.

 ADO Parameter Object NumericScale Property
The scale of Numeric values in a Parameter object.

NumericScale Property Return Values
Sets or returns a Byte value, indicating the number of decimal places to which numeric values
will be resolved.

NumericScale Property Remarks
Use the NumericScale property to determine how many digits to the right of the decimal point
will be used to represent values for a numeric Parameter object.

For Parameter objects, the NumericScale property is read/write.

 ADO Parameter Object Precision Property

Sun Chili!Soft ASP 3.6.2 Product Documentation 285

The degree of precision for Numeric values in a Parameter object.

Precision Property Return Values (ADO Parameter Object)
Sets or returns a Byte value, indicating the maximum total number of digits used to represent
values. The value is read/write on a Parameter object.

Precision Property Remarks (ADO Parameter Object)
Use the Precision property to determine the maximum number of digits used to represent values
for a numeric Parameter object.

 ADO Parameter Object Size Property
The maximum size, in bytes or characters, of a Parameter object.

Size Property Return Values (ADO Parameter Object)
Sets or returns a Long value that indicates the maximum size in bytes or characters of a value in a
Parameter object.

Size Property Remarks (ADO Parameter Object)
Use the Size property to determine the maximum size for values written to or read from the ADO
Parameter Object Value Property of a Parameter object. The Size property is read/write. If you
specify a variable-length data type for a Parameter object, you must set the object's Size
property before appending it to the ADO Parameters Collection; otherwise an error occurs. If you
have already appended the Parameter object to the Parameters collection of an ADO Command
Object and you change its type to a variable-length data type, you must set the Parameter
object's Size property before executing the Command object; otherwise an error occurs.

If you use the ADO Collections Refresh Method to obtain parameter information from the
provider and it returns one or more variable-length data type Parameter objects, ADO may
allocate memory for the parameters based on their maximum potential size, which could cause an
error during execution. To prevent an error, you should explicitly set the Size property for these
parameters before executing the command.

Size Property Example (ADO Parameter Object)
See ActiveConnection property example.

 ADO Parameter Object Type Property
The operational type or data type of a Parameter object.

Type Property Return Values (ADO Parameter Object)
Sets or returns one of the following DataTypeEnum values. The corresponding OLE DB type
indicators are as follows:

Constant Description

adArray OR'd together with another type to indicate that the data is a

Sun Chili!Soft ASP 3.6.2 Product Documentation 286

safe-array of that type (DBTYPE_ARRAY).

adBigInt An 8-byte signed integer (DBTYPE_I8).

adBinary A binary value (DBTYPE_BYTES).

adBoolean A Boolean value (DBTYPE_BOOL).

adByRef Or'd together with another type to indicate that the data is a
pointer to data of the other type (DBTYPE_BYREF).

adBSTR A null-terminated character string (Unicode) (DBTYPE_BSTR).

adChar A String value (DBTYPE_STR).

adCurrency A currency value (DBTYPE_CY). Currency is a fixed-point
number with 4 digits to the right of the decimal point. It is stored
in an 8-byte signed integer scaled by 10,000.

adDate A date value (DBTYPE_DATE). A date is stored as a Double,
the whole part of which is the number of days since December
30, 1899, and the fractional part of which is the fraction of a
day.

adDBDate A date value (yyyymmdd) (DBTYPE_DBDATE).

adDBTime A time value (hhmmss) (DBTYPE_DBTIME).

adDBTimeStamp A date-time stamp (yyyymmddhhmmss plus a fraction in
billionths) (DBTYPE_DBTIMESTAMP).

adDecimal An exact numeric value with a fixed precision and scale
(DBTYPE_DECIMAL).

adDouble A double-precision floating point value (DBTYPE_R8).

adEmpty No value was specified (DBTYPE_EMPTY).

adError A 32-bit error code (DBTYPE_ERROR).

adGUID A globally unique identifier (GUID) (DBTYPE_GUID).

adIDispatch A pointer to an IDispatch interface on an OLE object
(DBTYPE_IDISPATCH).

adInteger A 4-byte signed integer (DBTYPE_I4).

adIUnknown A pointer to an IUnknown interface on an OLE object
(DBTYPE_IUNKNOWN).

adLongVarBinary A long binary value.

adLongVarChar A long String value.

adLongVarWChar A long null-terminated string value.

adNumeric An exact numeric value with a fixed precision and scale
(DBTYPE_NUMERIC).

Sun Chili!Soft ASP 3.6.2 Product Documentation 287

adSingle A single-precision floating point value (DBTYPE_R4).

adSmallInt A 2-byte signed integer (DBTYPE_I2).

adTinyInt A 1-byte signed integer (DBTYPE_I1).

adUnsignedBigInt An 8-byte unsigned integer (DBTYPE_UI8).

adUnsignedInt A 4-byte unsigned integer (DBTYPE_UI4).

adUnsignedSmallInt A 2-byte unsigned integer (DBTYPE_UI2).

adUnsignedTinyInt A 1-byte unsigned integer (DBTYPE_UI1).

adUserDefined A user-defined variable (DBTYPE_UDT).

adVarBinary A binary value.

adVarChar A String value.

adVariant An Automation Variant (DBTYPE_VARIANT).

adVector OR'd together with another type to indicate that the data is a
DBVECTOR structure, as defined by OLE DB, that contains a
count of elements and a pointer to data of the other type
(DBTYPE_VECTOR).

adVarWChar A null-terminated Unicode character string.

adWChar A null-terminated Unicode character string (DBTYPE_WSTR).

Type Property Remarks (ADO Parameter Object)
For Parameter objects, the Type property is read/write.

 ADO Parameter Object Value Property
Indicates the value assigned to a Parameter object.

Value Property Return Values (ADO Parameter Object)
Sets or returns a Variant value. Default value depends on the ADO Parameter Object Type
Property.

Value Property Remarks (ADO Parameter Object)
Use the Value property to set or return parameter values with Parameter objects.

ADO allows setting and returning long binary data with the Value property.

ADO Property Object

 ADO Property Object
The ADO Property object represents a dynamic characteristic of an ADO object that is defined
by the provider. This object is not currently supported on UNIX.[0]

Sun Chili!Soft ASP 3.6.2 Product Documentation 288

ADO Property Object Properties
ADO Property Object Attributes
Property

One or more characteristics of a
property.

ADO Property Object Name
Property

The name of the property.

ADO Property Object Type Property The operational or data type of the
property.

ADO Property Object Value
Property

The value assigned to the property.

ADO Property Object Remarks
ADO objects have two types of properties: built-in and dynamic. Built-in properties are those
properties implemented in ADO and immediately available to any new object, using the familiar
MyObject.Property syntax.

Built-in properties do not appear as Property objects in an object's ADO Properties Collection,
so while you can change their values, you cannot modify their characteristics or delete them.

Dynamic properties are defined by the underlying data provider, and appear in the Properties
collection for the appropriate ADO object. For example, a property specific to the provider may
indicate if an ADO Recordset Object supports transactions or updating. These additional
properties will appear as Property objects in that Recordset object's Properties collection.
Dynamic properties can be referenced only through the collection, using the
MyObject.Properties(0) or MyObject.Properties("Name") syntax.

A dynamic Property object has four built-in properties:

� The ADO Property Object Name Property is a string that identifies the property.

� The ADO Property Object Type Property is an integer that specifies the property data
type.

� The ADO Property Object Value Property is a variant that contains the property setting.

� The ADO Property Object Attributes Property is a long value that indicates characteristics
of the property specific to the provider.

ADO Property Object Properties

 ADO Property Object Attributes Property
One or more characteristics of an object.

Attributes Property Return Values (ADO Property Object)
Sets or returns a Long value.

Attributes Property Property (ADO Property Object)

Sun Chili!Soft ASP 3.6.2 Product Documentation 289

For a Property object, the Attributes property is read-only, and its value can be the sum of any
one or more of these PropertyAttributesEnum values:

Value Description

adPropNotSupported The property is not supported by the provider.

adPropRequired The user must specify a value for this property before the data
source is initialized.

adPropOptional The user does not need to specify a value for this property before
the data source is initialized.

adPropRead The user can read the property.

adPropWrite The user can set the property.

Attributes Property Remarks (ADO Property Object)
Use the Attributes property to set or return characteristics of Property objects.

When you set multiple attributes, you can sum the appropriate constants. If you set the property
value to a sum including incompatible constants, an error occurs.

Attributes Property Examples (ADO Property Object)
This Visual Basic example displays the value of the Attributes property for Property objects. It
uses the ADO Property Object Name Property to display the name of each Property object.

Public Sub AttributesX

Dim cnn1 As ADODB.Connection

Dim rstEmployees As ADODB.Recordset

Dim fldLoop As ADODB.Field

Dim proLoop As ADODB.Property

Dim strCnn As String

' Open connection and recordset.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set cnn1 = New ADODB.Connection

cnn1.Open strCnn

Set rstEmployees = New ADODB.Recordset

rstEmployees.Open "employee", cnn1, , ,

adCmdTable

' Display attributes of the Employee table properties.

Debug.Print "Property attributes:"

Sun Chili!Soft ASP 3.6.2 Product Documentation 290

For Each proLoop In rstEmployees.Properties

Debug.Print " " & proLoop.Name & " = " & _

proLoop.Attributes

Next proLoop

rstEmployees.Close

cnn1.Close

End Sub

 ADO Property Object Name Property
The name of an object.

Name Property Return Values (ADO Property Object)
Sets or returns a String value. The value is read-only on a Property object.

Name Property Remarks (ADO Property Object)
Use the Name property to assign a name to or retrieve the name of a Property object.

You can retrieve the Name property of an object by an ordinal reference, after which the object
can be referred to directly by name. For example, if rstMain.Properties(20).Name
yields Updatability, you can subsequently refer to this property as
rstMain.Properties("Updatability").

Name Property Examples (ADO Property Object)
See the ADO Property Object Attributes Property example.

 ADO Property Object Type Property
The operational type or data type of a Property object.

Type Property Return Values (ADO Property Object)
Sets or returns one of the following DataTypeEnum values. The corresponding OLE DB type
indicators are as follows:

Constant Description

adArray Or'd together with another type to indicate that the data is a safe-
array of that type (DBTYPE_ARRAY).

adBigInt An 8-byte signed integer (DBTYPE_I8).

adBinary A binary value (DBTYPE_BYTES).

adBoolean A Boolean value (DBTYPE_BOOL).

adByRef Or'd together with another type to indicate that the data is a

Sun Chili!Soft ASP 3.6.2 Product Documentation 291

pointer to data of the other type (DBTYPE_BYREF).

adBSTR A null-terminated character string (Unicode) (DBTYPE_BSTR).

adChar A String value (DBTYPE_STR).

adCurrency A currency value (DBTYPE_CY). Currency is a fixed-point
number with 4 digits to the right of the decimal point. It is stored
in an 8-byte signed integer scaled by 10,000.

adDate A date value (DBTYPE_DATE). A date is stored as a Double,
the whole part of which is the number of days since December
30, 1899, and the fractional part of which is the fraction of a day.

adDBDate A date value (yyyymmdd) (DBTYPE_DBDATE).

adDBTime A time value (hhmmss) (DBTYPE_DBTIME).

adDBTimeStamp A date-time stamp (yyyymmddhhmmss plus a fraction in
billionths) (DBTYPE_DBTIMESTAMP).

adDecimal An exact numeric value with a fixed precision and scale
(DBTYPE_DECIMAL).

adDouble A double-precision floating point value (DBTYPE_R8).

adEmpty No value was specified (DBTYPE_EMPTY).

adError A 32-bit error code (DBTYPE_ERROR).

adGUID A globally unique identifier (GUID) (DBTYPE_GUID).

adIDispatch A pointer to an IDispatch interface on an OLE object
(DBTYPE_IDISPATCH).

adInteger A 4-byte signed integer (DBTYPE_I4).

adIUnknown A pointer to an IUnknown interface on an OLE object
(DBTYPE_IUNKNOWN).

adLongVarBinary A long binary value.

adLongVarChar A long String value.

adLongVarWChar A long null-terminated string value.

adNumeric An exact numeric value with a fixed precision and scale
(DBTYPE_NUMERIC).

adSingle A single-precision floating point value (DBTYPE_R4).

adSmallInt A 2-byte signed integer (DBTYPE_I2).

adTinyInt A 1-byte signed integer (DBTYPE_I1).

adUnsignedBigInt An 8-byte unsigned integer (DBTYPE_UI8).

adUnsignedInt A 4-byte unsigned integer (DBTYPE_UI4).

adUnsignedSmallInt A 2-byte unsigned integer (DBTYPE_UI2).

Sun Chili!Soft ASP 3.6.2 Product Documentation 292

adUnsignedTinyInt A 1-byte unsigned integer (DBTYPE_UI1).

adUserDefined A user-defined variable (DBTYPE_UDT).

adVarBinary A binary value.

adVarChar A String value.

adVariant An Automation Variant (DBTYPE_VARIANT).

adVector OR'd together with another type to indicate that the data is a
DBVECTOR structure, as defined by OLE DB, that contains a
count of elements and a pointer to data of the other type
(DBTYPE_VECTOR).

adVarWChar A null-terminated Unicode character string.

adWChar A null-terminated Unicode character string (DBTYPE_WSTR).

Type Property Remarks (ADO Property Object)
The Type property is read-only.

 ADO Property Object Value Property
Indicates the value assigned to a Property object.

Value Property Return Values (ADO Property Object)
Sets or returns a Variant value. Default value depends on the ADO Property Object Type
Property.

Value Property Remarks (ADO Property Object)
Use the Value property to set or return property settings with Property objects.

Value Property Example (ADO Property Object)
This Visual Basic example demonstrates the Value property with Field and Property objects by
displaying field and property values for the Employees table.

Public Sub ValueX()

Dim rstEmployees As ADODB.Recordset

Dim fldLoop As ADODB.Field

Dim prpLoop As ADODB.Property

Dim strCnn As String

' Open recordset with data from Employee table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstEmployees = New ADODB.Recordset

Sun Chili!Soft ASP 3.6.2 Product Documentation 293

rstEmployees.Open "employee", strCnn, , , adCmdTable

Debug.Print "Field values in rstEmployees"

' Enumerate the Fields collection of the Employees

' table.

For Each fldLoop In rstEmployees.Fields

` Because Value is the default property of a

` Field object, the use of the actual keyword

` here is optional.

Debug.Print " " & fldLoop.Name & " = " &

fldLoop.Value

Next fldLoop

Debug.Print "Property values in rstEmployees"

' Enumerate the Properties collection of the

' Recordset object.

For Each prpLoop In rstEmployees.Properties

' Because Value is the default property of a

' Property object, the use of the actual keyword

' here is optional.

Debug.Print " " & prpLoop.Name & " = " &

prpLoop.Value

Next prpLoop

rstEmployees.Close

End Sub

ADO Recordset Object

 ADO Recordset Object
The Recordset object represents the entire set of records from a database table or the results of an
executed command.

ADO Recordset Object Collections
ADO Fields Collection All the stored Field objects of a Recordset object.

ADO Properties Collection All the Property objects for a specific instance of a
Recordset object. This collection is not currently

Sun Chili!Soft ASP 3.6.2 Product Documentation 294

supported on UNIX.

ADO Recordset Object Methods
ADO Recordset Object AddNew
Method

Creates a new record for an updatable Recordset
object.

ADO Recordset Object CancelBatch
Method

Cancels a pending batch update. This method is not
currently supported on UNIX.

ADO Recordset Object CancelUpdate
Method

Cancels any changes made to the current record prior
to calling the Update method.

ADO Recordset Object Clone Method Creates a new Recordset object from an existing
Recordset object. This method is not currently
supported on UNIX.

ADO Recordset Object Close Method Closes an open Recordset object and any dependent
objects.

ADO Recordset Object Delete
Method

Deletes the current record or group of records from a
Recordset object.

ADO Recordset Object GetRows
Method

Retrieves multiple rows from a Recordset object into
an array.

ADO Recordset Object Move Method Moves the position of the current record in a
Recordset object.

ADO Recordset Object MoveFirst
Method

Moves to the first record in a Recordset object and
makes that record the current record.

ADO Recordset Object MoveLast
Method

Moves to the last record in a Recordset object and
makes that record the current record.

ADO Recordset Object MoveNext
Method

Moves to the next record in a Recordset object and
makes that record the current record.

ADO Recordset Object
MovePrevious Method

Moves to the previous record in a Recordset object
and makes that record the current record.

ADO Recordset Object
NextRecordset Method

Clears the current Recordset object and returns the
next recordset by advancing through a series of
commands. This method is not currently supported on
UNIX.

ADO Recordset Object Open Method Opens a cursor.

ADO Recordset Object Requery
Method

Updates the data in a recordset by re-executing the
query on which the object is based.

ADO Recordset Object Resync
Method

Refreshes the data in the Recordset object from the
underlying database.

ADO Recordset Object Supports Determines whether a specified Recordset object

Sun Chili!Soft ASP 3.6.2 Product Documentation 295

Method supports a particular type of functionality.

ADO Recordset Object Update
Method

Saves any changes you make to the current record of a
Recordset object.

ADO Recordset Object UpdateBatch
Method

Writes all pending batch updates. This method is not
currently supported on UNIX.

ADO Recordset Object Properties
ADO Recordset Object AbsolutePage
Property

The page in which the current record resides.

ADO Recordset Object
AbsolutePosition Property

The ordinal position of a Recordset object’s current
position.

ADO Recordset Object
ActiveConnection Property

The Connection object to which the Recordset object
currently belongs.

ADO Recordset Object BOF, EOF
Properties

If True, the current record position is before the first
record in a Recordset object.

ADO Recordset Object Bookmark
Property

A value that uniquely identifies the current record in a
Recordset object. Setting the Bookmark property to a
valid bookmark changes the current record.

ADO Recordset Object CacheSize
Property

The number of records from a Recordset object that
are cached locally in memory. This property is not
currently supported on UNIX.

ADO Recordset Object
CursorLocation Property

The location of the cursor engine.

ADO Recordset Object CursorType
Property

The type of cursor used in a Recordset object.

ADO Recordset Object EditMode
Property

The editing status of the current record.

ADO Recordset Object BOF, EOF
Properties

True if the record position is after the last record in a
Recordset object.

ADO Recordset Object Filter
Property

A filter for data in a Recordset object.

ADO Recordset Object LockType
Property

The type of locks placed on records during editing.

ADO Recordset Object
MarshalOptions Property

Which records are to be marshaled back to the server.

ADO Recordset Object MaxRecords
Property

The maximum number of records to return to a
Recordset object from a query.

ADO Recordset Object PageCount The number of pages of data the Recordset object

Sun Chili!Soft ASP 3.6.2 Product Documentation 296

Property contains.

ADO Recordset Object PageSize
Property

The number of records that make up one page in the
Recordset object.

ADO Recordset Object RecordCount
Property

The current number of records in a Recordset object.

ADO Recordset Object Source
Property

The source for the data in a Recordset object.

ADO Recordset Object State Property Describes the current state of the Recordset object.

ADO Recordset Object Status
Property

The status of the current record with respect to batch
updates or other bulk operations.

ADO Recordset Object Remarks
Use Recordset objects to manipulate data from a provider. In ADO, data is almost entirely
manipulated using Recordset objects. All Recordset objects are constructed using records (rows)
and fields (columns). Depending on the functionality supported by the provider, some Recordset
methods or properties may not be available.

Recordset objects can also be run remotely. For example, in a Web-based application, you can
open a Recordset on the client, using the progID "ADOR." The Remote Data Service provides a
mechanism for local data caching and local cursor movement in remote recordset data. A client-
side recordset can be used in the same way as a server-side recordset, and supports almost all of
the Recordset object's normal methods and properties. Recordset methods and properties that are
not supported on a client-side recordset, or that behave differently, are noted in the topics for
those properties and methods.

There are four different cursor types defined in ADO:

Cursor Description

Dynamic Allows you to view additions, changes and deletions by other users, and
allows all types of movement through the recordset that don’t rely on
bookmarks; allows bookmarks if the provider supports them.

Keyset Behaves like a dynamic cursor, except that it prevents you from seeing
records that other users add, and prevents access to records that other users
delete. Data change by other users will still be visible. It always supports
bookmarks and therefore allows all types of movement through the
recordset.

Static Provides a static copy of a set of records for you to use to find data or
generate reports. Always allows bookmarks and therefore allows all types
of movement through the recordset. Additions, changes, or deletions by
other users will not be visible. This is the only type of cursor allowed when
you open a client-side (ADOR) Recordset object.

Forward-only Behaves identically to a dynamic cursor except that it allows you to scroll
only forward through records. This improves performance in situations

Sun Chili!Soft ASP 3.6.2 Product Documentation 297

where you need to make only a single pass through a recordset.

Set the ADO Recordset Object CursorType Property prior to opening the recordset to choose the
cursor type, or pass a CursorType argument with the ADO Recordset Object Open Method. Some
providers don't support all cursor types. Check the documentation for the provider. If you don't
specify a cursor type, ADO opens a forward-only cursor by default.

When used with some providers (such as the Microsoft ODBC Provider for OLE DB in
conjunction with Microsoft SQL Server), you can create Recordset objects independently of a
previously defined ADO Connection Object by passing a connection string with the Open
method. ADO still creates a Connection object, but it doesn't assign that object to an object
variable. However, if you are opening multiple Recordset objects over the same connection, you
should explicitly create and open a Connection object; this assigns the Connection object to an
object variable. If you do not use this object variable when opening your Recordset objects,
ADO creates a new Connection object for each new recordset, even if you pass the same
connection string.

You can create as many Recordset objects as needed.

When you open a recordset, the current record is positioned to the first record (if any) and the
ADO Recordset Object BOF, EOF Properties are set to False. If there are no records, the BOF
and EOF property settings are True.

Use the ADO Recordset Object MoveFirst, MoveLast, MoveNext, MovePrevious Methods, as
well as the ADO Recordset Object Move Method, and the AbsolutePosition, AbsolutePage, and
ADO Recordset Object Filter Property properties to reposition the current record, assuming the
provider supports the relevant functionality. Forward-only Recordset objects support only the
MoveNext method. When you use the Move methods to visit each record (or enumerate the
recordset), you can use the BOF and EOF properties to see if you've moved beyond the
beginning or end of the recordset.

Recordset objects may support two types of updating: immediate and batched. In immediate
updating, all changes to data are written immediately to the underlying data source once you call
the ADO Recordset Object Update Method. You can also pass arrays of values as parameters
with the ADO Recordset Object AddNew Method and Update methods and simultaneously
update several fields in a record.

If a provider supports batch updating, you can have the provider cache changes to more than one
record and then transmit them in a single call to the database with the ADO Recordset Object
UpdateBatch Method. This applies to changes made with the AddNew, Update, and ADO
Recordset Object Delete Method methods. After you call the UpdateBatch method, you can use
the ADO Recordset Object Status Property to check for any data conflicts in order to resolve
them. Batch updating is not currently supported on UNIX.

Note
To execute a query without using an ADO Command Object, pass a query string to the
ADO Recordset Object Open Method of a Recordset object. However, a Command
object is required when you want to retain the command text and re-execute it, or use
query parameters.

Sun Chili!Soft ASP 3.6.2 Product Documentation 298

ADO Recordset Object Methods

 ADO Recordset Object AddNew Method
Creates a new record for an updateable Recordset object.

AddNew Method Syntax
recordset.AddNew Fields, Values

AddNew Method Parameters
Fields

An optional single name or an array of names or ordinal positions of the fields in the new record.

Values

An optional single value or an array of values for the fields in the new record. If Fields is an
array, Values must also be an array with the same number of members; otherwise, an error
occurs. The order of field names must match the order of field values in each array.

AddNew Method Remarks
Use the AddNew method to create and initialize a new record. Use the ADO Recordset Object
Supports Method with adAddNew to verify whether you can add records to the current
Recordset object.

After you call the AddNew method, the new record becomes the current record and remains
current after you call the ADO Recordset Object Update Method. If the Recordset object does
not support bookmarks, you may not be able to access the new record once you move to another
record. Depending on your cursor type, you may need to call the ADO Recordset Object Requery
Method to make the new record accessible.

If you call AddNew while editing the current record or while adding a new record, ADO calls the
Update method to save any changes and then creates the new record.

The behavior of the AddNew method depends on the updating mode of the Recordset object and
whether or not you pass the Fields and Values arguments.

In immediate update mode (the provider writes changes to the underlying data source once you
call the Update method), calling the AddNew method without arguments sets the ADO
Recordset Object EditMode Property to adEditAdd. The provider caches any field value changes
locally. Calling the Update method posts the new record to the database and resets the EditMode
property to adEditNone. If you pass the Fields and Values arguments, ADO immediately posts
the new record to the database (no Update call is necessary); the EditMode property value does
not change (adEditNone).

In batch update mode (the provider caches multiple changes and writes them to the underlying
data source only when you call the UpdateBatch method), calling the AddNew method without
arguments sets the EditMode property to adEditAdd. The provider caches any field value
changes locally. Calling the Update method adds the new record to the current recordset and
resets the EditMode property to adEditNone, but the provider does not post the changes to the

Sun Chili!Soft ASP 3.6.2 Product Documentation 299

underlying database until you call the ADO Recordset Object UpdateBatch Method. If you pass
the Fields and Values arguments, ADO sends the new record to the provider for storage in a
cache; you need to call the UpdateBatch method to post the new record to the underlying
database. Batch updating is not currently supported on UNIX.

 ADO Recordset Object CancelBatch Method
Cancels a pending batch update. This method is not currently supported on UNIX.

CancelBatch Method Syntax
recordset.CancelBatch AffectRecords

CancelBatch Method Parameters
AffectRecords

An optional AffectEnum value that determines how many records the CancelBatch method will
affect. It can be one of the following constants:

Constant Description

adAffectCurrent Cancels pending updates only for the current record.

adAffectGroup Cancels pending updates for records that satisfy the current ADO
Recordset Object Filter Property setting. You must set the Filter
property to one of the valid predefined constants in order to use this
option.

adAffectAll Default. Cancels pending updates for all the records in the Recordset
object, including any hidden by the current Filter property setting.

CancelBatch Method Remarks
Use the CancelBatch method to cancel any pending updates in a recordset in batch update mode.
If the recordset is in immediate update mode, calling CancelBatch without adAffectCurrent
generates an error.

If you are editing the current record or are adding a new record when you call CancelBatch,
ADO first calls the ADO Recordset Object CancelUpdate Method to cancel any cached changes;
after that, all pending changes in the recordset are canceled.

It's possible that the current record will be indeterminable after a CancelBatch call, especially if
you were in the process of adding a new record. For this reason, it is prudent to set the current
record position to a known location in the recordset after the CancelBatch call. For example, call
the ADO Recordset Object MoveFirst, MoveLast, MoveNext, and MovePrevious Methods.

If the attempt to cancel the pending updates fails because of a conflict with the underlying data
(for example, a record has been deleted by another user), the provider returns warnings to the
ADO Errors Collection but does not halt program execution. A run-time error occurs only if there
are conflicts on all the requested records. Use the Filter property (adFilterAffectedRecords) and
the ADO Recordset Object Status Property to locate records with conflicts.

Sun Chili!Soft ASP 3.6.2 Product Documentation 300

CancelBatch Method Examples
This Visual Basic example demonstrates the ADO Recordset Object UpdateBatch Method in
conjunction with the CancelBatch method.

Public Sub UpdateBatchX()

Dim rstTitles As ADODB.Recordset

Dim strCnn As String

Dim strTitle As String

Dim strMessage As String

` Assign connection string to variable.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstTitles = New ADODB.Recordset

rstTitles.CursorType = adOpenKeyset

rstTitles.LockType = adLockBatchOptimistic

rstTitles.Open "titles", strCnn, , , adCmdTable

rstTitles.MoveFirst

` Loop through recordset and ask user if she wants

` to change the type for a specified title.

Do Until rstTitles.EOF

If Trim(rstTitles!Type) = "psychology" Then

strTitle = rstTitles!Title

strMessage = "Title: " & strTitle & vbCr & _

"Change type to self help?"

If MsgBox(strMessage, vbYesNo) = vbYes Then

rstTitles!Type = "self_help"

End If

End If

rstTitles.MoveNext

Loop

` Ask if the user wants to commit to all the

` changes made above.

If MsgBox("Save all changes?", vbYesNo) = vbYes Then

rstTitles.UpdateBatch

Sun Chili!Soft ASP 3.6.2 Product Documentation 301

Else

rstTitles.CancelBatch

End If

` Print current data in recordset.

rstTitles.Requery

rstTitles.MoveFirst

Do While Not rstTitles.EOF

Debug.Print rstTitles!Title & " - " & rstTitles!Type

rstTitles.MoveNext

Loop

` Restore original values because this is a demonstration.

rstTitles.MoveFirst

Do Until rstTitles.EOF

If Trim(rstTitles!Type) = "self_help" Then

rstTitles!Type = "psychology"

End If

rstTitles.MoveNext

Loop

rstTitles.UpdateBatch

rstTitles.Close

End Sub

 ADO Recordset Object CancelUpdate Method
Cancels any changes made to the current record or to a new record prior to calling the Update
method.

CancelUpdate Method Syntax
recordset.CancelUpdate

CancelUpdate Method Remarks
Use the CancelUpdate method to cancel any changes made to the current record or to discard a
newly added record.

Sun Chili!Soft ASP 3.6.2 Product Documentation 302

Note
You cannot undo changes to the current record or to a new record after you call the ADO
Recordset Object Update Method unless the changes are either part of a transaction that
you can roll back with the RollbackTrans method or part of a batch update that you can
cancel with the ADO Recordset Object CancelBatch Method.

If you are adding a new record when you call the CancelUpdate method, the record that
was current prior to the ADO Recordset Object AddNew Method call becomes the
current record again. If you have not changed the current record or added a new record,
calling the CancelUpdate method generates an error.

CancelUpdate Method Examples
These Visual Basic examples demonstrate the ADO Recordset Object Update Method in
conjunction with the CancelUpdate method.

Public Sub UpdateX()

Dim rstEmployees As ADODB.Recordset

Dim strOldFirst As String

Dim strOldLast As String

Dim strMessage As String

` Open recordset with names from Employee table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstEmployees = New ADODB.Recordset

rstEmployees.CursorType = adOpenKeyset

rstEmployees.LockType = adLockOptimistic

rstEmployees.Open "SELECT fname, lname " & _

"FROM Employee ORDER BY lname", strCnn, , , adCmdText

` Store original data.

strOldFirst = rstEmployees!fname

strOldLast = rstEmployees!lname

` Change data in edit buffer.

rstEmployees!fname = "Linda"

rstEmployees!lname = "Kobara"

` Show contents of buffer and get user input.

strMessage = "Edit in progress:" & vbCr & _

" Original data = " & strOldFirst & " " & _

Sun Chili!Soft ASP 3.6.2 Product Documentation 303

strOldLast & vbCr & " Data in buffer = " & _

rstEmployees!fname & " " & rstEmployees!lname & vbCr & vbCr & _

"Use Update to replace the original data with " & _

"the buffered data in the Recordset?"

If MsgBox(strMessage, vbYesNo) = vbYes Then

rstEmployees.Update

Else

rstEmployees.CancelUpdate

End If

` Show the resulting data.

MsgBox "Data in recordset = " & rstEmployees!fname & " " & _

rstEmployees!lname

` Restore original data because this is a demonstration.

If Not (strOldFirst = rstEmployees!fname And _

strOldLast = rstEmployees!lname) Then

rstEmployees!fname = strOldFirst

rstEmployees!lname = strOldLast

rstEmployees.Update

End If

rstEmployees.Close

End Sub

This example demonstrates the Update method in conjunction with the AddNew method.

Public Sub UpdateX2()

Dim cnn1 As ADODB.Connection

Dim rstEmployees As ADODB.Recordset

Dim strEmpID As String

Dim strOldFirst As String

Dim strOldLast As String

Dim strMessage As String

` Open a connection.

Set cnn1 = New ADODB.Connection

strCnn = "driver={SQL Server};server=srv;" & _

Sun Chili!Soft ASP 3.6.2 Product Documentation 304

"uid=sa;pwd=;database=pubs"

cnn1.Open strCnn

` Open recordset with data from Employee table.

Set rstEmployees = New ADODB.Recordset

rstEmployees.CursorType = adOpenKeyset

rstEmployees.LockType = adLockOptimistic

rstEmployees.Open "employee", cnn1, , , adCmdTable

rstEmployees.AddNew

strEmpID = "B-S55555M"

rstEmployees!emp_id = strEmpID

rstEmployees!fname = "Bill"

rstEmployees!lname = "Sornsin"

` Show contents of buffer and get user input.

strMessage = "AddNew in progress:" & vbCr & _

"Data in buffer = " & rstEmployees!emp_id & ", " & _

rstEmployees!fname & " " & rstEmployees!lname & vbCr & vbCr & _

"Use Update to save buffer to recordset?"

If MsgBox(strMessage, vbYesNoCancel) = vbYes Then

rstEmployees.Update

` Go to the new record and show the resulting data.

MsgBox "Data in recordset = " & rstEmployees!emp_id & ", " & _

rstEmployees!fname & " " & rstEmployees!lname

Else

rstEmployees.CancelUpdate

MsgBox "No new record added."

End If

` Delete new data because this is a demonstration.

cnn1.Execute "DELETE FROM employee WHERE emp_id = '" & strEmpID &
"'"

rstEmployees.Close

End Sub

 ADO Recordset Object Clone Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 305

Creates a duplicate Recordset object from an existing Recordset object. This method is not
currently supported on UNIX.

Clone Method Syntax
Set rstDuplicate = rstOriginal.Clone ()

Clone Method Parameters
rstDuplicate

An object variable identifying the duplicate Recordset object you're creating.

rstOriginal

An object variable identifying the Recordset object you want to duplicate.

Clone Method Remarks
Use the Clone method to create multiple, duplicate Recordset objects, particularly if you want to
be able to maintain more than one current record in a given set of records. Using the Clone
method is more efficient than creating and opening a new Recordset object with the same
definition as the original.

The current record of a newly created clone is set to the first record.

Changes you make to one Recordset object are visible in all of its clones regardless of cursor
type. However, once you execute the ADO Recordset Object Requery Method on the original
Recordset, the clones will no longer be synchronized to the original.

Closing the original recordset does not close its copies; closing a copy does not close the original
or any of the other copies.

You can only clone a Recordset object that supports bookmarks. Bookmark values are
interchangeable; that is, a bookmark reference from one Recordset object refers to the same
record in any of its clones.

Clone Method Return Values
Returns a Recordset object reference.

 ADO Recordset Object Close Method
Closes an open object and any dependent objects.

Close Method Syntax
object.Close

Close Method Remarks
Use the Close method to close a Recordset object to free any associated system resources.
Closing an object does not remove it from memory; you may change its property settings and
open it again later. To completely eliminate an object from memory, set the object variable to
Nothing.

Sun Chili!Soft ASP 3.6.2 Product Documentation 306

Using the Close method to close a Recordset object releases the associated data and any
exclusive access you may have had to the data through this particular Recordset object. You can
later call the ADO Recordset Object Open Method to reopen the Recordset with the same or
modified attributes. While the Recordset object is closed, calling any methods that require a live
cursor generates an error.

If an edit is in progress while in immediate update mode, calling the Close method generates an
error; call the ADO Recordset Object Update Method or ADO Recordset Object CancelUpdate
Method first. If you close the Recordset object during batch updating, all changes since the last
ADO Recordset Object UpdateBatch Method call are lost.

If you use the Clone method to create copies of an open Recordset object, closing the original or
a clone does not affect any of the other copies.

Close Method Examples
This VBScript example uses the Open and Close methods on both Recordset and Connection
objects that have been opened.

<!-- #Include file="ADOVBS.INC" -->

<HTML><HEAD>

<TITLE>ADO 1.5 Open Method</TITLE>

</HEAD><BODY>

<Center><H3>ADO Open Method</H3>

<TABLE WIDTH=600 BORDER=0>

<TD VALIGN=TOP ALIGN=LEFT COLSPAN=3>

<!--- ADO Connection used to create 2 recordsets-->

<%

Set OBJdbConnection = Server.CreateObject("ADODB.Connection")

OBJdbConnection.Open "AdvWorks"

SQLQuery = "SELECT * FROM Customers"

'First Recordset RSCustomerList

Set RSCustomerList = OBJdbConnection.Execute(SQLQuery)

'Second Recordset RsProductist

Set RsProductList = Server.CreateObject("ADODB.Recordset")

RsProductList.CursorType = adOpenDynamic

RsProductList.LockType = adLockOptimistic

RsProductList.Open "Products", OBJdbConnection

%>

Sun Chili!Soft ASP 3.6.2 Product Documentation 307

<TABLE COLSPAN=8 CELLPADDING=5 BORDER=0>

<!-- BEGIN column header row for Customer Table-->

<TR><TD ALIGN=CENTER BGCOLOR="#008080">

Company
Name</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

Contact
Name</TD>

<TD ALIGN=CENTER WIDTH=150 BGCOLOR="#008080">

E-mail
address</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

City</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

<FONT STYLE="ARIAL NARROW" COLOR="#ffffff"
SIZE=1>State/Province</TD></TR>

<!--Display ADO Data from Customer Table-->

<% Do While Not RScustomerList.EOF %>

<TR><TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RSCustomerList("CompanyName")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("ContactLastName") & ", " %>

<%= RScustomerList("ContactFirstName") %>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("ContactLastName")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

Sun Chili!Soft ASP 3.6.2 Product Documentation 308

<%= RScustomerList("City")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("StateOrProvince")%>

</TD></TR>

<!-Next Row = Record Loop and add to html table-->

<%

RScustomerList.MoveNext

Loop

RScustomerList.Close

OBJdbConnection.Close

%>

</TABLE>

<HR>

<TABLE COLSPAN=8 CELLPADDING=5 BORDER=0>

<!-- BEGIN column header row for Product List Table-->

<TR><TD ALIGN=CENTER BGCOLOR="#800000">

Product
Type</TD>

<TD ALIGN=CENTER BGCOLOR="#800000">

Product
Name</TD>

<TD ALIGN=CENTER WIDTH=350 BGCOLOR="#800000">

Product
Description</TD>

<TD ALIGN=CENTER BGCOLOR="#800000">

Unit
Price</TD></TR>

<!-- Display ADO Data Product List-->

<% Do While Not RsProductList.EOF %>

<TR> <TD BGCOLOR="f7efde" ALIGN=CENTER>

Sun Chili!Soft ASP 3.6.2 Product Documentation 309

<%= RsProductList("ProductType")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RsProductList("ProductName")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RsProductList("ProductDescription")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RsProductList("UnitPrice")%>

</TD>

<!-- Next Row = Record -->

<%

RsProductList.MoveNext

Loop

'Remove Objects from Memory Freeing

Set RsProductList = Nothing

Set OBJdbConnection = Nothing

%>

</TABLE></Center></BODY></HTML>

 ADO Recordset Object Delete Method
Deletes the current record or a group of records.

Delete Method Syntax
recordset.Delete AffectRecords

Delete Method Parameters
AffectRecords

An optional AffectEnum value that determines how many records the Delete method will affect.
Can be one of the following constants:

Sun Chili!Soft ASP 3.6.2 Product Documentation 310

Constant Description

adAffectCurrent Default. Delete only the current record.

adAffectGroup Delete the records that satisfy the current ADO Recordset Object Filter
Property setting. You must set the Filter property to one of the valid
predefined constants in order to use this option. The Filter property is
not currently supported on UNIX.

Delete Method Remarks
Using the Delete method marks the current record or a group of records in a Recordset object for
deletion. If the Recordset object doesn't allow record deletion, an error occurs. If you are in
immediate update mode, deletions occur in the database immediately. Otherwise, the records are
marked for deletion from the cache and the actual deletion happens when you call the ADO
Recordset Object UpdateBatch Method. (Use the Filter property to view the deleted records.)

Retrieving field values from the deleted record generates an error. After deleting the current
record, the deleted record remains current until you move to a different record. Once you move
away from the deleted record, it is no longer accessible.

If you nest deletions in a transaction, you can recover deleted records with the RollbackTrans
method. If you are in batch update mode, you can cancel a pending deletion or group of pending
deletions with the ADO Recordset Object CancelBatch Method.

If the attempt to delete records fails because of a conflict with the underlying data (for example, a
record has already been deleted by another user), the provider returns warnings to the ADO
Errors Collection, but does not halt program execution. A run-time error occurs only if there are
conflicts on all the requested records.

Delete Method Examples
This VBScript example uses the Delete method to remove a specified record from a recordset.

<!-- #Include file="ADOVBS.INC" -->

<% Language = VBScript %>

<HTML>

<HEAD><TITLE>ADO 1.5 Delete Method</TITLE>

</HEAD><BODY>

<Center><H3>ADO Delete Method</H3>

<!--- ADO Connection Object used to create recordset-->

<%

'Create and Open Connection Object

Set OBJdbConnection = Server.CreateObject("ADODB.Connection")

OBJdbConnection.Open "AdvWorks"

Sun Chili!Soft ASP 3.6.2 Product Documentation 311

'Create and Open Recordset Object

Set RsCustomerList = Server.CreateObject("ADODB.Recordset")

RsCustomerList.ActiveConnection = OBJdbConnection

RsCustomerList.CursorType = adOpenKeyset

RsCustomerList.LockType = adLockOptimistic

RsCustomerList.Source = "Customers"

RsCustomerList.Open

%>

<!-- Move to designated Record and Delete It -->

<%

If Not IsEmpty(Request.Form("WhichRecord")) Then

`Get value to move from Form Post method

Moves = Request.Form("WhichRecord")

RsCustomerList.Move CInt(Moves)

If Not RsCustomerList.EOF or RsCustomerList.BOF Then

RsCustomerList.Delete 1

RsCustomerList.MoveFirst

Else

Response.Write "Not a Valid Record Number"

RsCustomerList.MoveFirst

End If

End If

%>

<!-- BEGIN column header row for Customer Table-->

<TABLE COLSPAN=8 CELLPADDING=5 BORDER=0><TR>

<TD ALIGN=CENTER BGCOLOR="#008080">

Company
Name

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

Contact
Name

</TD>

Sun Chili!Soft ASP 3.6.2 Product Documentation 312

<TD ALIGN=CENTER WIDTH=150 BGCOLOR="#008080">

Phone
Number

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

City

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

<FONT STYLE="ARIAL NARROW" COLOR="#ffffff"
SIZE=1>State/Province

</TD></TR>

<!--Display ADO Data from Customer Table Loop through Recordset

adding one Row to HTML Table each pass-->

<% Do While Not RsCustomerList.EOF %>

<TR><TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RSCustomerList("CompanyName")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("ContactLastName") & ", " %>

<%= RScustomerList("ContactFirstName") %>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("PhoneNumber")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("City")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

Sun Chili!Soft ASP 3.6.2 Product Documentation 313

<%= RScustomerList("StateOrProvince")%>

</TD>

</TR>

<!-Next Row = Record Loop and add to html table-->

<%

RScustomerList.MoveNext

Loop

%>

</Table></Center>

<!-- Do Client side Input Data Validation Move to named

 record and Delete it -->

<Center>

<H4>Clicking Button Will Remove Designated Record</H4>

<H5>There are <%=RsCustomerList.RecordCount - 1%> Records in this
Set</H5>

<Form Method = Post Action = "Delete.asp" Name = Form>

<Input Type = Text Name = "WhichRecord" Size = 3></Form>

<Input Type = Button Name = cmdDelete Value = "Delete
Record"></Center>

</BODY>

<Script Language = "VBScript">

Sub cmdDelete_OnClick

If IsNumeric(Document.Form.WhichRecord.Value) Then

Document.Form.WhichRecord.Value =
CInt(Document.Form.WhichRecord.Value)

Dim Response

Response = MsgBox("Are You Sure About Deleting This Record?",
vbYesNo, "ADO-ASP Example")

If Response = vbYes Then

Document.Form.Submit

End If

Else

MsgBox "You Must Enter a Valid Record Number",,"ADO-ASP Example"

Sun Chili!Soft ASP 3.6.2 Product Documentation 314

End If

End Sub

</Script>

</HTML>

 ADO Recordset Object GetRows Method
Retrieves multiple records of a recordset into an array.

GetRows Method Syntax
array = recordset.GetRows(Rows, Start, Fields)

GetRows Method Parameters
array

Two-dimensional Array containing records.

Rows

An optional Long expression indicating the number of records to retrieve. Default is
adGetRowsRest (-1).

Start

An optional String or Variant that evaluates to the bookmark for the record from which the
GetRows operation should begin. You can also use one of the following BookmarkEnum
values:

Constant Description

AdBookmarkCurrent Start at the current record.

AdBookmarkFirst Start at the first record.

AdBookmarkLast Start at the last record.

Fields

An optional Variant representing a single field name or ordinal position or an array of field
names or ordinal position numbers. ADO returns only the data in these fields.

GetRows Method Return Values
Returns a two-dimensional array.

GetRows Method Remarks
Use the GetRows method to copy records from a recordset into a two-dimensional array. The
first subscript identifies the field and the second identifies the record number. The array variable
is automatically dimensioned to the correct size when the GetRows method returns the data.

Sun Chili!Soft ASP 3.6.2 Product Documentation 315

If you do not specify a value for the Rows argument, the GetRows method automatically retrieves
all the records in the Recordset object. If you request more records than are available, GetRows
returns only the number of available records.

If the Recordset object supports bookmarks, you can specify at which record the GetRows
method should begin retrieving data by passing the value of that record's ADO Recordset Object
Bookmark Property.

If you want to restrict the fields the GetRows call returns, you can pass either a single field
name/number or an array of field names/numbers in the Fields argument.

After you call GetRows, the next unread record becomes the current record, or the ADO
Recordset Object BOF, EOF Properties property is set to True if there are no more records.

GetRows Method Examples
This Visual Basic example uses the GetRows method to retrieve a specified number of rows from
a recordset and to fill an array with the resulting data. The GetRows method will return fewer
than the desired number of rows in two cases: either if EOF has been reached, or if GetRows
tried to retrieve a record that was deleted by another user. The function returns False only if the
second case occurs. The GetRowsOK function is required for this procedure to run.

Public Sub GetRowsX()

Dim rstEmployees As ADODB.Recordset

Dim strCnn As String

Dim strMessage As String

Dim intRows As Integer

Dim avarRecords As Variant

Dim intRecord As Integer

' Open recordset with names and hire dates from employee table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstEmployees = New ADODB.Recordset

rstEmployees.Open "SELECT fName, lName, hire_date " & _

"FROM Employee ORDER BY lName", strCnn, , , adCmdText

Do While True

` Get user input for number of rows.

strMessage = "Enter number of rows to retrieve."

intRows = Val(InputBox(strMessage))

If intRows <= 0 Then Exit Do

` If GetRowsOK is successful, print the results,

Sun Chili!Soft ASP 3.6.2 Product Documentation 316

` noting if the end of the file was reached.

If GetRowsOK(rstEmployees, intRows, _

avarRecords) Then

If intRows > UBound(avarRecords, 2) + 1 Then

Debug.Print "(Not enough records in " & _

"Recordset to retrieve " & intRows & _

" rows.)"

End If

Debug.Print UBound(avarRecords, 2) + 1 & _

" records found."

` Print the retrieved data.

For intRecord = 0 To UBound(avarRecords, 2)

Debug.Print " " & _

avarRecords(0, intRecord) & " " & _

avarRecords(1, intRecord) & ", " & _

avarRecords(2, intRecord)

Next intRecord

Else

` Assuming the GetRows error was due to data

` changes by another user, use Requery to

` refresh the Recordset and start over.

If MsgBox("GetRows failed--retry?", _

vbYesNo) = vbYes Then

rstEmployees.Requery

Else

Debug.Print "GetRows failed!"

Exit Do

End If

End If

` Because using GetRows leaves the current

` record pointer at the last record accessed,

` move the pointer back to the beginning of the

Sun Chili!Soft ASP 3.6.2 Product Documentation 317

` Recordset before looping back for another search.

rstEmployees.MoveFirst

Loop

rstEmployees.Close

End Sub

Public Function GetRowsOK(rstTemp As ADODB.Recordset, _

intNumber As Integer, avarData As Variant) As Boolean

` Store results of GetRows method in array.

avarData = rstTemp.GetRows(intNumber)

` Return False only if fewer than the desired

` number of rows were returned, but not because the

` end of the Recordset was reached.

If intNumber > UBound(avarData, 2) + 1 And _

Not rstTemp.EOF Then

GetRowsOK = False

Else

GetRowsOK = True

End If

End Function

 ADO Recordset Object Move Method
Moves the position of the current record in a Recordset object.

Move Method Syntax
recordset.Move NumRecords, Start

Move Method Parameters
NumRecords

A signed Long expression specifying the number of records the current record position moves.

Start

An optional String or Variant that evaluates to a bookmark. You can also use one of the
following BookmarkEnum values:

Constant Description

AdBookmarkCurrent Default. Start at the current record.

Sun Chili!Soft ASP 3.6.2 Product Documentation 318

AdBookmarkFirst Start at the first record.

AdBookmarkLast Start at the last record.

Move Method Remarks
The Move method is supported on all Recordset objects.

If the NumRecords argument is greater than zero, the current record position moves forward
(toward the end of the recordset). If NumRecords is less than zero, the current record position
moves backward (toward the beginning of the recordset).

If the Move call would move the current record position to a point before the first record, ADO
sets the current record to the position before the first record in the recordset (BOF is True). An
attempt to move backward when the ADO Recordset Object BOF, EOF Properties property is
already True generates an error.

If the Move call would move the current record position to a point after the last record, ADO sets
the current record to the position after the last record in the recordset (EOF is True). An attempt
to move forward when the ADO Recordset Object BOF, EOF Properties property is already True
generates an error.

Calling the Move method from an empty Recordset object generates an error.

If you pass the Start argument, the move is relative to the record with this bookmark, assuming
the Recordset object supports bookmarks. If not specified, the move is relative to the current
record.

If you are using the ADO Recordset Object CacheSize Property to locally cache records from the
provider, passing a NumRecords that moves the current record position outside of the current
group of cached records forces ADO to retrieve a new group of records starting from the
destination record. The CacheSize property determines the size of the newly retrieved group, and
the destination record is the first record retrieved.

If the Recordset object is forward-only, a user can still pass a NumRecords less than zero as long
as the destination is within the current set of cached records. If the Move call would move the
current record position to a record before the first cached record, an error will occur. Thus, you
can use a record cache that supports full scrolling over a provider that only supports forward
scrolling. Because cached records are loaded into memory, you should avoid caching more
records than is necessary. Even if a forward-only Recordset object supports backward moves in
this way, calling the ADO Recordset Object MoveFirst, MoveLast, MoveNext, MovePrevious
Methods method on any forward-only Recordset object still generates an error.

Move Method Example
This VBScript example uses the Move method to position the record pointer based on user input.
Try entering a letter or non-integer to see the error-handling work.

<!-- #Include file="ADOVBS.INC" -->

<% Language = VBScript %>

<HTML><HEAD>

<TITLE>ADO 1.5 Move Methods</TITLE></HEAD>

Sun Chili!Soft ASP 3.6.2 Product Documentation 319

<BODY>

<Center>

<H3>ADO Move Methods</H3>

<%

'Create and Open Connection Object

Set OBJdbConnection = Server.CreateObject("ADODB.Connection")

OBJdbConnection.Open "AdvWorks"

'Create and Open Recordset Object

Set RsCustomerList = Server.CreateObject("ADODB.Recordset")

RsCustomerList.ActiveConnection = OBJdbConnection

RsCustomerList.CursorType = adOpenKeyset

RsCustomerList.LockType = adLockOptimistic

RsCustomerList.Source = "Customers"

RsCustomerList.Open

'Check number of user moves this session

'Increment by amount in Form

Session("Clicks") = Session("Clicks") + Request.Form("MoveAmount")

Clicks = Session("Clicks")

'Move to last known recordset position plus amount passed by Form
Post method

RsCustomerList.Move CInt(Clicks)

'Error Handling

If RsCustomerList.EOF Then

Session("Clicks") = RsCustomerList.RecordCount

Response.Write "This is the Last Record"

RsCustomerList.MoveLast

Else If RsCustomerList.BOF Then

Session("Clicks") = 1

RsCustomerList.MoveFirst

Response.Write "This is the First Record"

End If

End If

Sun Chili!Soft ASP 3.6.2 Product Documentation 320

%>

<H3>Current Record Number is

<% If Session("Clicks") = 0 Then

Session("Clicks") = 1

End If

Response.Write(Session("Clicks"))%> of
<%=RsCustomerList.RecordCount%></H3>

<HR>

<Center><TABLE COLSPAN=8 CELLPADDING=5 BORDER=0>

<!-- BEGIN column header row for Customer Table-->

<TR>

<TD ALIGN=CENTER BGCOLOR="#008080">

Company
Name

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

Contact
Name

</TD>

<TD ALIGN=CENTER WIDTH=150 BGCOLOR="#008080">

Phone
Number

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

City

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

<FONT STYLE="ARIAL NARROW" COLOR="#ffffff"
SIZE=1>State/Province

</TD>

</TR>

<!--Display ADO Data from Customer Table-->

<TR>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

Sun Chili!Soft ASP 3.6.2 Product Documentation 321

<%= RSCustomerList("CompanyName")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("ContactLastName") & ", " %>

<%= RScustomerList("ContactFirstName") %>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("PhoneNumber")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("City")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("StateOrProvince")%>

</TD>

</TR> </Table>

<HR>

<Input Type = Button Name = cmdDown Value = "< ">

<Input Type = Button Name = cmdUp Value = " >">

<H5>Click Direction Arrows for Previous or Next Record

 Click Move Amount to use Move Method

Enter Number of Records to Move + or - </H5>

<Table>

<Form Method = Post Action="Move.asp" Name=Form>

<TR><TD><Input Type="Button" Name = Move Value="Move Amount
"></TD><TD></TD><TD>

<Input Type="Text" Size="4" Name="MoveAmount" Value = 0></TD><TR>

</Form></Table></Center>

Sun Chili!Soft ASP 3.6.2 Product Documentation 322

</BODY>

<Script Language = "VBScript">

Sub Move_OnClick

' Make sure move value entered is an integer

If IsNumeric(Document.Form.MoveAmount.Value)Then

Document.Form.MoveAmount.Value =
CInt(Document.Form.MoveAmount.Value)

Document.Form.Submit

Else

MsgBox "You Must Enter a Number", ,"ADO-ASP Example"

Document.Form.MoveAmount.Value = 0

End If

End Sub

Sub cmdDown_OnClick

Document.Form.MoveAmount.Value = -1

Document.Form.Submit

End Sub

Sub cmdUp_OnClick

Document.Form.MoveAmount.Value = 1

Document.Form.Submit

End Sub

</Script>

</HTML>

 ADO Recordset Object MoveFirst, MoveLast, MoveNext, MovePrevious Methods
These methods move to the first, last, next, or previous record in a specified Recordset object
and make that record the current record.

MoveFirst, MoveLast, MoveNext, MovePrevious Methods Syntax
recordset.{MoveFirst | MoveLast | MoveNext | MovePrevious}

MoveFirst, MoveLast, MoveNext, MovePrevious Methods Remarks
Use the MoveFirst method to move the current record position to the first record in the recordset.

Sun Chili!Soft ASP 3.6.2 Product Documentation 323

Use the MoveLast method to move the current record position to the last record in the recordset.
The Recordset object must support bookmarks or backward cursor movement; otherwise, the
method call will generate an error.

Use the MoveNext method to move the current record position one record forward (toward the
bottom of the recordset). If the last record is the current record and you call the MoveNext
method, ADO sets the current record to the position after the last record in the recordset (EOF is
True). An attempt to move forward when the ADO Recordset Object BOF, EOF Properties
property is already True generates an error.

Use the MovePrevious method to move the current record position one record backward (toward
the top of the recordset). The Recordset object must support bookmarks or backward cursor
movement; otherwise, the method call will generate an error. If the first record is the current
record and you call the MovePrevious method, ADO sets the current record to the position
before the first record in the recordset (BOF is True). An attempt to move backward when the
ADO Recordset Object BOF, EOF Properties property is already True generates an error. If the
Recordset object does not support either bookmarks or backward cursor movement, the
MovePrevious method will generate an error.

If the recordset is forward-only and you want to support both forward and backward scrolling,
you can use the ADO Recordset Object CacheSize Property to create a record cache that will
support backward cursor movement through the ADO Recordset Object Move Method. Because
cached records are loaded into memory, you should avoid caching more records than is necessary.
You can call the MoveFirst method in a forward-only Recordset object; doing so may cause the
provider to re-execute the command that generated the Recordset object.

MoveFirst, MoveLast, MoveNext, MovePrevious Methods Example
This VBScript example uses the MoveFirst, MoveLast, MoveNext, and MovePrevious methods
to move the record pointer of a recordset based on the supplied command. The MoveAny
function is required for this procedure to run. Try moving beyond the upper or lower limits of the
recordset to see error-handling work.

<!-- #Include file="ADOVBS.INC" -->

<% Language = VBScript %>

<HTML><HEAD>

<TITLE>ADO 1.5 MoveNext MovePrevious MoveLast MoveFirst
Methods</TITLE></HEAD>

<BODY>

<Center>

<H3>ADO Methods
MoveNext MovePrevious MoveLast MoveFirst</H3>

<!-- Create Connection and Recordset Objects on Server -->

<%

'Create and Open Connection Object

Sun Chili!Soft ASP 3.6.2 Product Documentation 324

Set OBJdbConnection = Server.CreateObject("ADODB.Connection")

OBJdbConnection.Open "AdvWorks"

'Create and Open Recordset Object

Set RsCustomerList = Server.CreateObject("ADODB.Recordset")

RsCustomerList.ActiveConnection = OBJdbConnection

RsCustomerList.CursorType = adOpenKeyset

RsCustomerList.LockType = adLockOptimistic

RsCustomerList.Source = "Customers"

RsCustomerList.Open

' Check Request.Form collection to see if any moves are recorded

If Not IsEmpty(Request.Form("MoveAmount")) Then

'Keep track of the number and direction of moves this session

Session("Moves") = Session("Moves") + Request.Form("MoveAmount")

Clicks = Session("Moves")

'Move to last known position

RsCustomerList.Move CInt(Clicks)

'Check if move is + or - and do error checking

If CInt(Request.Form("MoveAmount")) = 1 Then

If RsCustomerList.EOF Then

Session("Moves") = RsCustomerList.RecordCount

RsCustomerList.MoveLast

End If

RsCustomerList.MoveNext

End If

If Request.Form("MoveAmount") < 1 Then

RsCustomerList.MovePrevious

End If

'Check if First Record or Last Record Command Buttons Clicked

If Request.Form("MoveLast") = 3 Then

RsCustomerList.MoveLast

Session("Moves") = RsCustomerList.RecordCount

End If

Sun Chili!Soft ASP 3.6.2 Product Documentation 325

If Request.Form("MoveFirst") = 2 Then

RsCustomerList.MoveFirst

Session("Moves") = 1

End If

End If

' Do Error checking for combination of Move Button clicks

If RsCustomerList.EOF Then

Session("Moves") = RsCustomerList.RecordCount

RsCustomerList.MoveLast

Response.Write "This is the Last Record"

End If

If RsCustomerList.BOF Then

Session("Moves") = 1

RsCustomerList.MoveFirst

Response.Write "This is the First Record"

End If

%>

<H3>Current Record Number is

<!-- Display Current Record Number and Recordset Size -->

<% If IsEmpty(Session("Moves")) Then

Session("Moves") = 1

End If

%>

<%Response.Write(Session("Moves"))%> of
<%=RsCustomerList.RecordCount%></H3>

<HR>

<Center><TABLE COLSPAN=8 CELLPADDING=5 BORDER=0>

<!-- BEGIN column header row for Customer Table-->

<TR><TD ALIGN=CENTER BGCOLOR="#008080">

Company
Name

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

Sun Chili!Soft ASP 3.6.2 Product Documentation 326

Contact
Name

</TD>

<TD ALIGN=CENTER WIDTH=150 BGCOLOR="#008080">

Phone
Number

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

City

</TD>

<TD ALIGN=CENTER BGCOLOR="#008080">

<FONT STYLE="ARIAL NARROW" COLOR="#ffffff"
SIZE=1>State/Province

</TD></TR>

<!--Display ADO Data from Customer Table-->

<TR>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RSCustomerList("CompanyName")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("ContactLastName") & ", " %>

<%= RScustomerList("ContactFirstName") %>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("PhoneNumber")%>

</TD>

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("City")%>

</TD>

Sun Chili!Soft ASP 3.6.2 Product Documentation 327

<TD BGCOLOR="f7efde" ALIGN=CENTER>

<%= RScustomerList("StateOrProvince")%>

</TD>

</TR> </Table>

<HR>

<Input Type = Button Name = cmdDown Value = "< ">

<Input Type = Button Name = cmdUp Value = " >">

<Input Type = Button Name = cmdFirst Value = "First Record">

<Input Type = Button Name = cmdLast Value = "Last Record">

<H5>Click Direction Arrows to Use MovePrevious or MoveNext

 </H5>

<!-- Use Hidden Form Fields to send values to Server -->

<Form Method = Post Action="MoveOne.asp" Name=Form>

<Input Type="Hidden" Size="4" Name="MoveAmount" Value = 0>

<Input Type="Hidden" Size="4" Name="MoveLast" Value = 0>

<Input Type="Hidden" Size="4" Name="MoveFirst" Value = 0>

</Form></BODY>

<Script Language = "VBScript">

Sub cmdDown_OnClick

'Set Values in Form Input Boxes and Submit Form

Document.Form.MoveAmount.Value = -1

Document.Form.Submit

End Sub

Sub cmdUp_OnClick

Document.Form.MoveAmount.Value = 1

Document.Form.Submit

End Sub

Sub cmdFirst_OnClick

Document.Form.MoveFirst.Value = 2

Document.Form.Submit

Sun Chili!Soft ASP 3.6.2 Product Documentation 328

End Sub

Sub cmdLast_OnClick

Document.Form.MoveLast.Value = 3

Document.Form.Submit

End Sub

</Script></HTML>

 ADO Recordset Object NextRecordset Method
Clears the current Recordset object and returns the next recordset by advancing through a series
of commands. This method is not currently supported on UNIX.

NextRecordset Method Syntax
Set recordset2 = recordset1.NextRecordset(RecordsAffected)

NextRecordset Method Parameters
recordset2

Recordset containing results of command.

RecordsAffected

An optional Long variable to which the provider returns the number of records that the current
operation affected.

NextRecordset Method Return Values
Returns a Recordset object. In the syntax model, recordset1 and recordset2 can be the same
Recordset object, or you can use separate objects.

NextRecordset Method Remarks
Use the NextRecordset method to return the results of the next command in a compound
command statement or of a stored procedure that returns multiple results. If you open a
Recordset object based on a compound command statement (for example, "SELECT * FROM
table1;SELECT * FROM table2") using the ADO Command Object Execute Method on
an ADO Command Object or the ADO Recordset Object Open Method on a recordset, ADO
executes only the first command and returns the results to recordset. To access the results of
subsequent commands in the statement, call the NextRecordset method.

As long as there are additional results, the NextRecordset method will continue to return
Recordset objects. If a row-returning command returns no records, the returned Recordset object
will be empty; test for this case by verifying that the ADO Recordset Object BOF, EOF
Properties are both True. If a non row-returning command executes successfully, the returned
Recordset object will be closed, which you can verify by testing the ADO Recordset Object State
Property on the recordset. When there are no more results, recordset will be set to Nothing.

Sun Chili!Soft ASP 3.6.2 Product Documentation 329

If an edit is in progress while in immediate update mode, calling the NextRecordset method
generates an error; call the ADO Recordset Object Update Method or the ADO Recordset Object
CancelUpdate Method first.

If you need to pass parameters for more than one command in the compound statement by filling
the ADO Parameters Collection or by passing an array with the original Open or Execute call,
the parameters must be in the same order in the collection or array as their respective commands
in the command series. You must finish reading all the results before reading output parameter
values.

When you call the NextRecordset method, ADO executes only the next command in the
statement. If you explicitly close the Recordset object before stepping through the entire
command statement, ADO never executes the remaining commands.

The NextRecordset method is not available on a client-side (ADOR) Recordset object.

NextRecordset Method Example
This Visual Basic example uses the NextRecordset method to view the data in a recordset that
uses a compound command statement made up of three separate SELECT statements.

Public Sub NextRecordsetX()

Dim rstCompound As ADODB.Recordset

Dim strCnn As String

Dim intCount As Integer

` Open compound recordset.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstCompound = New ADODB.Recordset

rstCompound.Open "SELECT * FROM authors; " & _

"SELECT * FROM stores; " & _

"SELECT * FROM jobs", strCnn, , , adCmdText

` Display results from each SELECT statement.

intCount = 1

Do Until rstCompound Is Nothing

Debug.Print "Contents of recordset #" & intCount

Do While Not rstCompound.EOF

Debug.Print , rstCompound.Fields(0), _

rstCompound.Fields(1)

rstCompound.MoveNext

Loop

Sun Chili!Soft ASP 3.6.2 Product Documentation 330

Set rstCompound = rstCompound.NextRecordset

intCount = intCount + 1

Loop

End Sub

 ADO Recordset Object Open Method
Opens a cursor.

Open Method Syntax
recordset.Open Source, ActiveConnection, CursorType, LockType,
Options

Open Method Parameters
Source

An optional Variant that evaluates to a valid Command object variable name, an SQL statement,
a table name, or a stored procedure call.

ActiveConnection

An optional Variant that evaluates to a valid Connection object variable name, or a String
containing ConnectionString parameters.

CursorType

An optional CursorTypeEnum value that determines the type of cursor that the provider should
use when opening the recordset. Can be one of the following constants (See the ADO Recordset
Object CursorType Property for definitions of these settings.):

Constant Description

adOpenForwardOnly Default. Opens a forward-only cursor.

adOpenKeyset Opens a keyset cursor.

adOpenDynamic Opens a dynamic cursor.

adOpenStatic Opens a static cursor.

LockType

An optional LockTypeEnum value that determines what type of locking (concurrency) the
provider should use when opening the recordset. Can be one of the following constants (See the
LockType property for more information.):

Constant Description

adLockReadOnly Default. Read-only; you cannot alter the data.

adLocPessimistic Pessimistic locking, record by record. The provider does what is
necessary to ensure successful editing of the records, usually by

Sun Chili!Soft ASP 3.6.2 Product Documentation 331

locking records at the data source immediately upon editing.

adLockOptimistic Optimistic locking, record by record. The provider uses
optimistic locking, locking records only when you call the
Update method.

adLockBatchOptimistic Optimistic batch updates. Required for batch update mode as
opposed to immediate update mode.

Options

An optional Long value that indicates how the provider should evaluate the Source argument if it
represents something other than a Command object. Can be one of the following constants (See
the CommandType property for a more detailed explanation of these constants.):

Constant Description

adCmdText The provider should evaluate Source as a textual definition of a
command.

adCmdTable The provider should evaluate Source as a table name.

adCmdStoredProc The provider should evaluate Source as a stored procedure.

adCmdUnknown The type of command in the Source argument is not known.

See the ADO Command Object CommandType Property for a more detailed explanation of the
four constants in this list.

Open Method Remarks
Using the Open method on a Recordset object opens a cursor that represents records from a base
table or the results of a query.

Use the optional Source argument to specify a data source using one of the following: an ADO
Command Object variable, an SQL statement, a stored procedure, or a table name.

The ActiveConnection argument corresponds to the ActiveConnection property and specifies in
which connection to open the Recordset object. If you pass a connection definition for this
argument, ADO opens a new connection using the specified parameters. You can change the
value of this property after opening the recordset to send updates to another provider. Or, you can
set this property to Nothing (in Microsoft Visual Basic) to disconnect the recordset from any
provider.

For the other arguments that correspond directly to properties of a Recordset object (Source,
CursorType, and LockType), the relationship of the arguments to the properties is as follows:

� The property is read/write before the Recordset object is opened.

� The property settings are used unless you pass the corresponding arguments when
executing the Open method. If you pass an argument, it overrides the corresponding
property setting, and the property setting is updated with the argument value.

� After you open the Recordset object, these properties become read-only.

Sun Chili!Soft ASP 3.6.2 Product Documentation 332

Note
For Recordset objects whose ADO Recordset Object Source Property is set to a valid
Command object, the ActiveConnection property is read-only, even if the Recordset
object isn't open.

If you pass a Command object in the Source argument and also pass an ActiveConnection
argument, an error occurs. The ActiveConnection property of the Command object must already
be set to a valid ADO Connection Object or connection string.

If you pass something other than a Command object in the Source argument, you can use the
Options argument to optimize evaluation of the Source argument. If the Options argument is not
defined, you may experience diminished performance because ADO must make calls to the
provider to determine if the argument is an SQL statement, a stored procedure, or a table name. If
you know what Source type you're using, setting the Options argument instructs ADO to jump
directly to the relevant code. If the Options argument does not match the Source type, an error
occurs.

If the data source returns no records, the provider sets both the ADO Recordset Object BOF, EOF
Properties to True, and the current record position is undefined. You can still add new data to this
empty Recordset object if the cursor type allows it.

When you have concluded your operations over an open Recordset object, use the ADO
Recordset Object Close Method to free any associated system resources. Closing an object does
not remove it from memory; you may change its property settings and use the Open method to
open it again later. To completely eliminate an object from memory, set the object variable to
Nothing.

Open Method Examples
See the ADO Recordset Object Close Method.

 ADO Recordset Object Requery Method
Updates the data in a Recordset object by re-executing the query on which the object is based.

Requery Method Syntax
recordset.Requery

Requery Method Remarks
Use the Requery method to refresh the entire contents of a Recordset object from the data source
by reissuing the original command and retrieving the data a second time. Calling this method is
equivalent to calling the ADO Recordset Object Close Method and ADO Recordset Object Open
Method methods in succession. If you are editing the current record or adding a new record, an
error occurs.

While the Recordset object is open, the properties that define the nature of the cursor (ADO
Recordset Object CursorType Property, ADO Recordset Object LockType Property, ADO
Recordset Object MaxRecords Property, and so forth) are read-only. Thus, the Requery method
can only refresh the current cursor. To change any of the cursor properties and view the results,

Sun Chili!Soft ASP 3.6.2 Product Documentation 333

you must use the Close method so that the properties become read/write again. You can then
change the property settings and call the Open method to reopen the cursor.

Requery Method Example
See the command ADO Command Object Execute Method.

 ADO Recordset Object Resync Method
Refreshes the data in the current Recordset object from the underlying database.

Resync Method Syntax
recordset.Resync AffectRecords

Resync Method Parameters
AffectRecords

An optional AffectEnum constant that determines how many records the Resync method will
affect. Can be one of the following constants:

Constant Description

adAffectCurrent Refresh only the current record.

adAffectGroup Refresh the records that satisfy the current Filter property setting. You
must set the Filter property to one of the valid predefined constants in
order to use this option. The Filter property is not currently supported
on UNIX.

adAffectAll Default. Refresh all the records in the Recordset object, including any
hidden by the current Filter property setting.

Resync Method Remarks
Use the Resync method to re-synchronize records in the current recordset with the underlying
database. This is useful if you are using either a static or forward-only cursor but you want to see
any changes in the underlying database. Calling the Resync method cancels any pending batch
updates.

Unlike the ADO Recordset Object Requery Method, the Resync method does not re-execute the
Recordset object's underlying command; new records in the underlying database will not be
visible.

If the attempt to resynchronize fails because of a conflict with the underlying data (for example, a
record has been deleted by another user), the provider returns warnings to the ADO Errors
Collection, but does not halt program execution. A run-time error occurs only if there are
conflicts on all the requested records. Use the ADO Recordset Object Filter Property
(adFilterAffectedRecords) and the ADO Recordset Object Status Property to locate records with
conflicts.

Resync Method Examples

Sun Chili!Soft ASP 3.6.2 Product Documentation 334

This Visual Basic example demonstrates using the Resync method to refresh data in a static
recordset.

Public Sub ResyncX()

Dim strCnn As String

Dim rstTitles As ADODB.Recordset

' Open connections.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

' Open recordset for titles table.

Set rstTitles = New ADODB.Recordset

rstTitles.CursorType = adOpenStatic

rstTitles.LockType = adLockBatchOptimistic

rstTitles.Open "titles", strCnn, , , adCmdTable

' Change the type of the first title in the recordset.

rstTitles!Type = "database"

' Display the results of the change.

MsgBox "Before resync: " & vbCr & vbCr & _

"Title - " & rstTitles!Title & vbCr & _

"Type - " & rstTitles!Type

' Resync with database and redisplay results.

rstTitles.Resync

MsgBox "After resync: " & vbCr & vbCr & _

"Title - " & rstTitles!Title & vbCr & _

"Type - " & rstTitles!Type

rstTitles.CancelBatch

rstTitles.Close

End Sub

 ADO Recordset Object Supports Method
Determines whether a specified Recordset object supports a particular type of functionality.

Supports Method Syntax
boolean = recordset.Supports(CursorOptions)

Sun Chili!Soft ASP 3.6.2 Product Documentation 335

Supports Method Parameters
CursorOptions

A Long expression that consists of one or more of the following CursorOptionEnum values:

Value Description

adAddNew The AddNew method adds new records.

adApproxPosition You can read and set the AbsolutePosition and AbsolutePage
properties.

adBookmark The Bookmark property accesses specific records.

adDelete The Delete method deletes records.

adHoldRecords You can retrieve more records or change the next retrieve position
without committing all pending changes.

adMovePrevious The MoveFirst, MovePrevious, Move, and GetRows methods
move the current position backward without requiring bookmarks.

adResync The Resync method modifies existing data.

adUpdate The Update method modifies existing data.

adUpdateBatch The UpdateBatch and CancelBatch methods transmit changes to
the provider in groups.

Supports Method Remarks
Use the Supports method to determine what types of functionality a Recordset object supports.
If the Recordset object supports the features whose corresponding constants are in
CursorOptions, the Supports method returns True. Otherwise, it returns False.

Note
Although the Supports method may return True for a given functionality, it does not
guarantee that the provider can make the feature available under all circumstances. The
Supports method simply returns whether or not the provider can support the specified
functionality assuming certain conditions are met. For example, the Supports method
may indicate that a Recordset object supports updates even though the cursor is based on
a multi-table join, some columns of which are not updatable.

Supports Method Examples
This Visual Basic example uses the Supports method to display the options supported by a
recordset opened with different cursor types. The DisplaySupport function is required for this
procedure to run.

Public Sub SupportsX()

Dim aintCursorType(4) As Integer

Dim rstTitles As ADODB.Recordset

Dim strCnn As String

Sun Chili!Soft ASP 3.6.2 Product Documentation 336

Dim intIndex As Integer

` Open connections.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

` Fill array with CursorType constants.

aintCursorType(0) = adOpenForwardOnly

aintCursorType(1) = adOpenKeyset

aintCursorType(2) = adOpenDynamic

aintCursorType(3) = adOpenStatic

` Open recordset using each CursorType and

` optimitic locking. Then call the DisplaySupport

` procedure to display the supported options.

For intIndex = 0 To 3

Set rstTitles = New ADODB.Recordset

rstTitles.CursorType = aintCursorType(intIndex)

rstTitles.LockType = adLockOptimistic

rstTitles.Open "titles", strCnn, , , adCmdTable

Select Case aintCursorType(intIndex)

Case adOpenForwardOnly

Debug.Print "ForwardOnly cursor supports:"

Case adOpenKeyset

Debug.Print "Keyset cursor supports:"

Case adOpenDynamic

Debug.Print "Dynamic cursor supports:"

Case adOpenStatic

Debug.Print "Static cursor supports:"

End Select

DisplaySupport rstTitles

rstTitles.Close

Next intIndex

End Sub

Public Sub DisplaySupport(rstTemp As ADODB.Recordset)

Sun Chili!Soft ASP 3.6.2 Product Documentation 337

Dim alngConstants(9) As Long

Dim booSupports As Boolean

Dim intIndex As Integer

' Fill array with cursor option constants.

alngConstants(0) = adAddNew

alngConstants(1) = adApproxPosition

alngConstants(2) = adBookmark

alngConstants(3) = adDelete

alngConstants(4) = adHoldRecords

alngConstants(5) = adMovePrevious

alngConstants(6) = adResync

alngConstants(7) = adUpdate

alngConstants(8) = adUpdateBatch

For intIndex = 0 To 8

booSupports = _

rstTemp.Supports(alngConstants(intIndex))

If booSupports Then

Select Case alngConstants(intIndex)

Case adAddNew

Debug.Print " AddNew"

Case adApproxPosition

Debug.Print " AbsolutePosition and AbsolutePage"

Case adBookmark

Debug.Print " Bookmark"

Case adDelete

Debug.Print " Delete"

Case adHoldRecords

Debug.Print " holding records"

Case adMovePrevious

Debug.Print " MovePrevious and Move"

Case adResync

Debug.Print " resyncing data"

Sun Chili!Soft ASP 3.6.2 Product Documentation 338

Case adUpdate

Debug.Print " Update"

Case adUpdateBatch

Debug.Print " batch updating"

End Select

End If

Next intIndex

End Sub

 ADO Recordset Object Update Method
Saves any changes you make to the current record of a Recordset object.

Note
This method is not available for some databases and ODBC drivers.

Update Method Syntax
recordset.Update Fields, Values

Update Method Parameters
Fields

An optional Variant representing a single name or a Variant array representing names or ordinal
positions of the field or fields you wish to modify.

Values

An optional Variant representing a single value or a Variant array representing values for the
field or fields in the new record.

Update Method Remarks
Use the Update method to save any changes you make to the current record of a Recordset
object since calling the ADO Recordset Object AddNew Method or since changing any field
values in an existing record. The Recordset object must support updates.

To set field values, do one of the following:

� Assign values to a ADO Field Object object's ADO Field Object Value Property and call
the ADO Recordset Object Update Method.

� Pass a field name and a value as arguments with the Update call.

� Pass an array of field names and an array of values with the Update call.

Sun Chili!Soft ASP 3.6.2 Product Documentation 339

When you use arrays of fields and values, there must be an equal number of elements in both
arrays. Also, the order of field names must match the order of field values. If the number and
order of fields and values do not match, an error occurs.

If the Recordset object supports batch updating, then you can cache multiple changes to one or
more records locally until you call the ADO Recordset Object UpdateBatch Method. If you are
editing the current record or adding a new record when you call the UpdateBatch method, ADO
will automatically call the Update method to save any pending changes to the current record
before transmitting the batched changes to the provider. Batch updating is not currently
supported on UNIX.

If you move from the record you are adding or editing before calling the Update method, ADO
will automatically call Update to save the changes. You must call the ADO Recordset Object
CancelUpdate Method if you want to cancel any changes made to the current record or to discard
a newly added record.

The current record remains current after you call the Update method.

Update Method Examples
The following Visual Basic examples show how to use the Update method.

The first example demonstrates using the Update method in conjunction with CancelUpdate
method.

Public Sub UpdateX()

Dim rstEmployees As ADODB.Recordset

Dim strOldFirst As String

Dim strOldLast As String

Dim strMessage As String

` Open recordset with names from Employee table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstEmployees = New ADODB.Recordset

rstEmployees.CursorType = adOpenKeyset

rstEmployees.LockType = adLockOptimistic

rstEmployees.Open "SELECT fname, lname " & _

"FROM Employee ORDER BY lname", strCnn, , , adCmdText

` Store original data.

strOldFirst = rstEmployees!fname

strOldLast = rstEmployees!lname

` Change data in edit buffer.

Sun Chili!Soft ASP 3.6.2 Product Documentation 340

rstEmployees!fname = "Linda"

rstEmployees!lname = "Kobara"

` Show contents of buffer and get user input.

strMessage = "Edit in progress:" & vbCr & _

" Original data = " & strOldFirst & " " & _

strOldLast & vbCr & " Data in buffer = " & _

rstEmployees!fname & " " & rstEmployees!lname & vbCr & vbCr & _

"Use Update to replace the original data with " & _

"the buffered data in the Recordset?"

If MsgBox(strMessage, vbYesNo) = vbYes Then

rstEmployees.Update

Else

rstEmployees.CancelUpdate

End If

` Show the resulting data.

MsgBox "Data in recordset = " & rstEmployees!fname & " " & _

rstEmployees!lname

` Restore original data because this is a demonstration.

If Not (strOldFirst = rstEmployees!fname And _

strOldLast = rstEmployees!lname) Then

rstEmployees!fname = strOldFirst

rstEmployees!lname = strOldLast

rstEmployees.Update

End If

rstEmployees.Close

End Sub

The following example demonstrates using the Update method in conjunction with the AddNew
method:

Public Sub UpdateX2()

Dim cnn1 As ADODB.Connection

Dim rstEmployees As ADODB.Recordset

Dim strEmpID As String

Dim strOldFirst As String

Sun Chili!Soft ASP 3.6.2 Product Documentation 341

Dim strOldLast As String

Dim strMessage As String

' Open a connection.

Set cnn1 = New ADODB.Connection

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

cnn1.Open strCnn

' Open recordset with data from Employee table.

Set rstEmployees = New ADODB.Recordset

rstEmployees.CursorType = adOpenKeyset

rstEmployees.LockType = adLockOptimistic

rstEmployees.Open "employee", cnn1, , , adCmdTable

rstEmployees.AddNew

strEmpID = "B-S55555M"

rstEmployees!emp_id = strEmpID

rstEmployees!fname = "Bill"

rstEmployees!lname = "Sornsin"

' Show contents of buffer and get user input.

strMessage = "AddNew in progress:" & vbCr & _

"Data in buffer = " & rstEmployees!emp_id & ", " & _

rstEmployees!fname & " " & rstEmployees!lname & vbCr & vbCr & _

"Use Update to save buffer to recordset?"

If MsgBox(strMessage, vbYesNoCancel) = vbYes Then

rstEmployees.Update

` Go to the new record and show the resulting data.

MsgBox "Data in recordset = " & rstEmployees!emp_id & ", " & _

rstEmployees!fname & " " & rstEmployees!lname

Else

rstEmployees.CancelUpdate

MsgBox "No new record added."

End If

' Delete new data because this is a demonstration.

Sun Chili!Soft ASP 3.6.2 Product Documentation 342

cnn1.Execute "DELETE FROM employee WHERE emp_id = '" & strEmpID &
"'"

rstEmployees.Close

End Sub

 ADO Recordset Object UpdateBatch Method
Writes all pending batch updates to disk. This method is not currently supported on UNIX.

UpdateBatch Method Syntax
recordset.UpdateBatch AffectRecords

UpdateBatch Method Parameters
AffectRecords

An optional AffectEnum value that determines how many records the UpdateBatch method will
affect. Can be one of the following constants:

Constant Description

AdAffectCurrent Write pending changes only for the current record.

AdAffectGroup Write pending changes for the records that satisfy the current
Filter property setting. You must set the Filter property to one of
the valid predefined constants in order to use this option.

adAffectAll Default. Write pending changes for all the records in the
Recordset object, including any hidden by the current Filter
property setting.

UpdateBatch Method Remarks
Use the UpdateBatch method when modifying a Recordset object in batch update mode to
transmit all changes made in a Recordset object to the underlying database.

If the Recordset object supports batch updating, then you can cache multiple changes to one or
more records locally until you call the UpdateBatch method. If you are editing the current record
or adding a new record when you call the UpdateBatch method, ADO will automatically call the
ADO Recordset Object Update Method to save any pending changes to the current record before
transmitting the batched changes to the provider.

Note
You should use batch updating only with either a keyset or static cursor.

If the attempt to transmit changes fails because of a conflict with the underlying data (for
example, a record has already been deleted by another user), the provider returns warnings to the
ADO Errors Collection but does not halt program execution. A run-time error occurs only if there
are conflicts on all the requested records. Use the ADO Recordset Object Filter Property

Sun Chili!Soft ASP 3.6.2 Product Documentation 343

(adFilterAffectedRecords) and the ADO Recordset Object Status Property to locate records with
conflicts.

To cancel all pending batch updates, use the ADO Recordset Object CancelBatch Method.

UpdateBatch Method Example
See the ADO Recordset Object CancelBatch Method example.

ADO Recordset Object Properties

 ADO Recordset Object AbsolutePage Property
Specifies in which page the current record resides.

AbsolutePage Property Return Values
Sets or returns a Long value from 1 to the number of pages in the Recordset object
(PageCount), or returns one of the following constants:

Constant Description

adPosUnknown The recordset is empty, the current position is unknown, or the
provider does not support the AbsolutePage property

adPosBOF The current record pointer is at BOF (that is, the BOF property is
True).

adPosEOF The current record pointer is at EOF (that is, the EOF property is
True).

AbsolutePage Property Remarks
Use the AbsolutePage property to identify the page number on which the current record is
located. Use the ADO Recordset Object PageSize Property to logically divide the Recordset
object into a series of pages, each of which has the number of records equal to PageSize (except
for the last page, which may have fewer records). The provider must support the appropriate
functionality for this property to be available.

Like the AbsolutePosition property, AbsolutePage is 1-based and equals 1 when the current
record is the first record in the recordset. Set this property to move to the first record of a
particular page. Obtain the total number of pages from the ADO Recordset Object PageCount
Property.

AbsolutePage Property Example
This Visual Basic example uses the AbsolutePage, PageCount, and PageSize properties to
display names and hire dates from the Employees table five records at a time.

Public Sub AbsolutePageX()

Dim rstEmployees As ADODB.Recordset

Dim strCnn As String

Dim strMessage As String

Sun Chili!Soft ASP 3.6.2 Product Documentation 344

Dim intPage As Integer

Dim intPageCount As Integer

Dim intRecord As Integer

` Open a recordset using a client cursor

` for the employee table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstEmployees = New ADODB.Recordset

` Use client cursor to enable AbsolutePosition property.

rstEmployees.CursorLocation = adUseClient

rstEmployees.Open "employee", strCnn, , , adCmdTable

` Display names and hire dates, five records

` at a time.

rstEmployees.PageSize = 5

intPageCount = rstEmployees.PageCount

For intPage = 1 To intPageCount

rstEmployees.AbsolutePage = intPage

strMessage = ""

For intRecord = 1 To rstEmployees.PageSize

strMessage = strMessage & _

rstEmployees!fname & " " & _

rstEmployees!lname & " " & _

rstEmployees!hire_date & vbCr

rstEmployees.MoveNext

If rstEmployees.EOF Then Exit For

Next intRecord

MsgBox strMessage

Next intPage

rstEmployees.Close

End Sub

Sun Chili!Soft ASP 3.6.2 Product Documentation 345

 ADO Recordset Object AbsolutePosition Property
Specifies the ordinal position of a Recordset object's current record.

AbsolutePosition Property Return Values
Sets or returns a Long value from 1 to the number of records in the Recordset object
(RecordCount), or returns one of the following constants:

Constant Description

adPosUnknown The recordset is empty, the current position is unknown, or the
provider does not support the AbsolutePosition property.

adPosBOF The current record pointer is at BOF (that is, the BOF property is
True).

adPosEOF The current record pointer is at EOF (that is, the EOF property is
True).

AbsolutePosition Property Remarks
Use the AbsolutePosition property to move to a record based on its ordinal position in the
Recordset object, or to determine the ordinal position of the current record. The provider must
support the appropriate functionality for this property to be available.

Like the AbsolutePage property, AbsolutePosition is 1-based and equals 1 when the current
record is the first record in the recordset. You can obtain the total number of records in the
Recordset object from the RecordCount property.

When you set the AbsolutePosition property, even if it is to a record in the current cache, ADO
reloads the cache with a new group of records starting with the record you specified. The ADO
Recordset Object CacheSize Property determines the size of this group.

Note
You should not use the AbsolutePosition property as a surrogate record number. The
position of a given record changes when you delete a preceding record. There is also no
assurance that a given record will have the same AbsolutePosition if the Recordset
object is requeried or reopened. Bookmarks are still the recommended way of retaining
and returning to a given position, and are the only way of positioning across all types of
Recordset objects.

AbsolutePosition Property Example
This Visual Basic example demonstrates how the AbsolutePosition property can track the
progress of a loop that enumerates all the records of a recordset. It uses the CursorLocation
property to enable the AbsolutePosition property by setting the cursor to a client cursor.

Public Sub AbsolutePositionX()

Dim rstEmployees As ADODB.Recordset

Dim strCnn As String

Dim strMessage As String

Sun Chili!Soft ASP 3.6.2 Product Documentation 346

' Open a recordset for the Employee table

' using a client cursor.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstEmployees = New ADODB.Recordset

' Use client cursor to enable AbsolutePosition property.

rstEmployees.CursorLocation = adUseClient

rstEmployees.Open "employee", strCnn, , , adCmdTable

' Enumerate Recordset.

Do While Not rstEmployees.EOF

' Display current record information.

strMessage = "Employee: " & rstEmployees!lName & vbCr & _

"(record " & rstEmployees.AbsolutePosition & _

" of " & rstEmployees.RecordCount & ")"

If MsgBox(strMessage, vbOKCancel) = vbCancel _

Then Exit Do

rstEmployees.MoveNext

Loop

rstEmployees.Close

End Sub

 ADO Recordset Object ActiveConnection Property
Specifies to which Connection object the Recordset object currently belongs.

ActiveConnection Property Return Values (ADO Recordset Object)
Sets or returns a String containing the definition for a connection or an ADO Connection Object.
Default is a Null object reference.

ActiveConnection Property Remarks (ADO Recordset Object)
Use the ActiveConnection property to determine the Connection object over which the specified
Command object will execute or the specified recordset will be opened.

For open Recordset objects or for Recordset objects whose ADO Recordset Object Source
Property is set to a valid ADO Command Object, the ActiveConnection property is read-only.
Otherwise, it is read/write.

You can set this property to a valid Connection object or to a valid connection string. In this
case, the provider creates a new Connection object using this definition and opens the

Sun Chili!Soft ASP 3.6.2 Product Documentation 347

connection. Additionally, the provider may set this property to the new Connection object to give
you a way to access the Connection object for extended error information or to execute other
commands.

If you use the ActiveConnection argument of the ADO Recordset Object Open Method to open a
Recordset object, the ActiveConnection property will inherit the value of the argument.

If you set the Source property of the Recordset object to a valid Command object variable, the
ActiveConnection property of the recordset inherits the setting of the Command object's
ActiveConnection property.

ActiveConnection Property Example (ADO Recordset Object)
This Visual Basic example uses the ActiveConnection, ADO Command Object CommandText
Property, CommandTimeout, ADO Command Object CommandType Property, ADO Parameter
Object Size Property, and ADO Parameter Object Direction Property properties to execute a
stored procedure:

Public Sub ActiveConnectionX()

Dim cnn1 As ADODB.Connection

Dim cmdByRoyalty As ADODB.Command

Dim prmByRoyalty As ADODB.Parameter

Dim rstByRoyalty As ADODB.Recordset

Dim rstAuthors As ADODB.Recordset

Dim intRoyalty As Integer

Dim strAuthorID As String

Dim strCnn As String

` Define a command object for a stored procedure.

Set cnn1 = New ADODB.Connection

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

cnn1.Open strCnn

Set cmdByRoyalty = New ADODB.Command

Set cmdByRoyalty.ActiveConnection = cnn1

cmdByRoyalty.CommandText = "byroyalty"

cmdByRoyalty.CommandType = adCmdStoredProc

cmdByRoyalty.CommandTimeout = 15

` Define the stored procedure's input parameter.

intRoyalty = Trim(InputBox(_

Sun Chili!Soft ASP 3.6.2 Product Documentation 348

"Enter royalty:"))

Set prmByRoyalty = New ADODB.Parameter

prmByRoyalty.Type = adInteger

prmByRoyalty.Size = 3

prmByRoyalty.Direction = adParamInput

prmByRoyalty.Value = intRoyalty

cmdByRoyalty.Parameters.Append prmByRoyalty

` Create a recordset by executing the command.

Set rstByRoyalty = cmdByRoyalty.Execute()

` Open the Authors table to get author names for display.

Set rstAuthors = New ADODB.Recordset

rstAuthors.Open "authors", strCnn, , , adCmdTable

` Print current data in the recordset, adding

` author names from Authors table.

Debug.Print "Authors with " & intRoyalty & _

" percent royalty"

Do While Not rstByRoyalty.EOF

strAuthorID = rstByRoyalty!au_id

Debug.Print , rstByRoyalty!au_id & ", ";

rstAuthors.Filter = "au_id = '" & strAuthorID & "'"

Debug.Print rstAuthors!au_fname & " " & _

rstAuthors!au_lname

rstByRoyalty.MoveNext

Loop

rstByRoyalty.Close

rstAuthors.Close

cnn1.Close

End Sub

 ADO Recordset Object BOF, EOF Properties
BOF indicates that the current record position is before the first record in a Recordset object.

EOF indicates that the current record position is after the last record in a Recordset object.

Sun Chili!Soft ASP 3.6.2 Product Documentation 349

BOF, EOF Properties Return Values
The BOF and EOF properties return Boolean values.

BOF, EOF Properties Remarks
Use the BOF and EOF properties to determine whether a Recordset object contains records or
whether you've gone beyond the limits of a Recordset object when you move from record to
record.

The BOF property returns True (-1) if the current record position is before the first record and
False (0) if the current record position is on or after the first record.

The EOF property returns True if the current record position is after the last record and False if
the current record position is on or before the last record.

If either the BOF or EOF property is True, there is no current record.

If you open a Recordset object containing no records, the BOF and EOF properties are set to
True, and the Recordset object's RecordCount property setting is zero. When you open a
Recordset object that contains at least one record, the first record is the current record and the
BOF and EOF properties are False.

If you delete the last remaining record in the Recordset object, the BOF and EOF properties may
remain False until you attempt to reposition the current record.

This table shows which ADO Recordset Object Move Method methods are allowed with different
combinations of the BOF and EOF properties:

MoveFirst
MoveLast

MovePreviou
s
Move < 0

Move 0 MoveNext
Move > 0

BOF =
True,
EOF =
False

Allowed Error Error Allowed

BOF=False
EOF=True

Allowed Allowed Error Error

Both True Error Error Error Error

Both False Allowed Allowed Allowed Allowed

Allowing a Move method doesn't guarantee that the method will successfully locate a record; it
only means that calling the specified Move method won't generate an error.

The following table shows what happens to the BOF and EOF property settings when you call
various Move methods but are unable to successfully locate a record.

Sun Chili!Soft ASP 3.6.2 Product Documentation 350

BOF EOF

MoveFirst, MoveLast Set to True Set to True

Move 0 No change No change

MovePrevious, Move < 0 Set to True No change

MoveNext, Move > 0 No change Set to True

BOF, EOF Properties Example
This Visual Basic example uses the BOF and EOF properties to display a message if a user tries
to move past the first or last record of a recordset. It uses the ADO Recordset Object Bookmark
Property to let the user flag a record in a recordset and return to it later.

Public Sub BOFX()

Dim rstPublishers As ADODB.Recordset

Dim strCnn As String

Dim strMessage As String

Dim intCommand As Integer

Dim varBookmark As Variant

` Open recordset with data from Publishers table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstPublishers = New ADODB.Recordset

rstPublishers.CursorType = adOpenStatic

` Use client cursor to enable AbsolutePosition property.

rstPublishers.CursorLocation = adUseClient

rstPublishers.Open "SELECT pub_id, pub_name FROM publishers " & _

"ORDER BY pub_name", strCnn, , , adCmdText

rstPublishers.MoveFirst

Do While True

` Display information about current record

` and get user input.

strMessage = "Publisher: " & rstPublishers!pub_name & _

vbCr & "(record " & rstPublishers.AbsolutePosition & _

" of " & rstPublishers.RecordCount & ")" & vbCr & vbCr & _

"Enter command:" & vbCr & _

"[1 - next / 2 - previous /" & vbCr & _

Sun Chili!Soft ASP 3.6.2 Product Documentation 351

"3 - set bookmark / 4 - go to bookmark]"

intCommand = Val(InputBox(strMessage))

Select Case intCommand

` Move forward or backward, trapping for BOF

` or EOF.

Case 1

rstPublishers.MoveNext

If rstPublishers.EOF Then

MsgBox "Moving past the last record." & _

vbCr & "Try again."

rstPublishers.MoveLast

End If

Case 2

rstPublishers.MovePrevious

If rstPublishers.BOF Then

MsgBox "Moving past the first record." &

_vbCr & "Try again."

rstPublishers.MoveFirst

End If

` Store the bookmark of the current record.

Case 3

varBookmark = rstPublishers.Bookmark

` Go to the record indicated by the stored

` bookmark.

Case 4

If IsEmpty(varBookmark) Then

MsgBox "No Bookmark set!"

Else

rstPublishers.Bookmark = varBookmark

End If

Case Else

Exit Do

Sun Chili!Soft ASP 3.6.2 Product Documentation 352

End Select

Loop

rstPublishers.Close

End Sub

 ADO Recordset Object Bookmark Property
Returns a bookmark that uniquely identifies the current record in a Recordset object or sets the
current record in a Recordset object to the record identified by a valid bookmark.

Bookmark Property Return Values
Sets or returns a Variant expression that evaluates to a valid bookmark.

Bookmark Property Remarks
Use the Bookmark property to save the position of the current record and return to that record at
any time. Bookmarks are available only in Recordset objects that support bookmark
functionality.

When you open a Recordset object, each of its records has a unique bookmark. To save the
bookmark for the current record, assign the value of the Bookmark property to a variable. To
quickly return to that record at any time after moving to a different record, set the Recordset
object's Bookmark property to the value of that variable.

The user may not be able to view the value of the bookmark. Also, users should not expect
bookmarks to be directly comparable—two bookmarks that refer to the same record may have
different values.

If you use the ADO Recordset Object Clone Method to create a copy of a Recordset object, the
Bookmark property settings for the original and the duplicate Recordset objects are identical
and you can use them interchangeably. However, you can't use bookmarks from different
Recordset objects interchangeably, even if they were created from the same source or command.

Bookmark Property Examples
See the ADO Recordset Object BOF, EOF Properties.

 ADO Recordset Object CacheSize Property
The number of records from a Recordset object that are cached locally in memory. This property
is not currently supported on UNIX.

CacheSize Property Return Values
Sets or returns a Long value that must be greater than 0. Default is 1.

CacheSize Property Remarks
Use the CacheSize property to control how many records the provider keeps in its buffer and how
many to retrieve at one time into local memory. For example, if the CacheSize is 10, after first

Sun Chili!Soft ASP 3.6.2 Product Documentation 353

opening the Recordset object, the provider retrieves the first 10 records into local memory. As
you move through the Recordset object, the provider returns the data from the local memory
buffer. As soon as you move past the last record in the cache, the provider retrieves the next 10
records from the data source into the cache.

The value of this property can be adjusted during the life of the Recordset object, but changing
this value only affects the number of records in the cache after subsequent retrievals from the data
source. Changing the property value alone will not change the current contents of the cache.

If there are fewer records to retrieve than CacheSize specifies, the provider returns the remaining
records; no error occurs.

A CacheSize setting of zero is not allowed and returns an error.

Records retrieved from the cache don't reflect concurrent changes that other users made to the
source data. To force an update of all the cached data, use the ADO Recordset Object Resync
Method.

CacheSize Property Example
This Visual Basic example uses the CacheSize property to show the difference in performance
for an operation performed with and without a 30-record cache.

Public Sub CacheSizeX()

Dim rstRoySched As ADODB.Recordset

Dim strCnn As String

Dim sngStart As Single

Dim sngEnd As Single

Dim sngNoCache As Single

Dim sngCache As Single

Dim intLoop As Integer

Dim strTemp As String

` Open the RoySched table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstRoySched = New ADODB.Recordset

rstRoySched.Open "roysched", strCnn, , , adCmdTable

` Enumerate the Recordset object twice and record

` the elapsed time.

sngStart = Timer

For intLoop = 1 To 2

rstRoySched.MoveFirst

Sun Chili!Soft ASP 3.6.2 Product Documentation 354

Do While Not rstRoySched.EOF

' Execute a simple operation for the performance test.

strTemp = rstRoySched!title_id

rstRoySched.MoveNext

Loop

Next intLoop

sngEnd = Timer

sngNoCache = sngEnd - sngStart

' Cache records in groups of 30 records.

rstRoySched.MoveFirst

rstRoySched.CacheSize = 30

sngStart = Timer

` Enumerate the Recordset object twice and record

' the elapsed time.

For intLoop = 1 To 2

rstRoySched.MoveFirst

Do While Not rstRoySched.EOF

` Execute a simple operation for the

` performance test.

strTemp = rstRoySched!title_id

rstRoySched.MoveNext

Loop

Next intLoop

sngEnd = Timer

sngCache = sngEnd - sngStart

' Display performance results.

MsgBox "Caching Performance Results:" & vbCr & _

" No cache: " & Format(sngNoCache, _

"##0.000") & " seconds" & vbCr & _

" 30-record cache: " & Format(sngCache, _

"##0.000") & " seconds"

rstRoySched.Close

Sun Chili!Soft ASP 3.6.2 Product Documentation 355

End Sub

 ADO Recordset Object CursorLocation Property
Sets or returns the location of the cursor engine. This property is read-only on UNIX.

CursorLocation Property Return Values
Sets or returns a Long value that can be set to one of the following constants:

Constant Description

adUseClient Uses client-side cursors supplied by a local cursor library. Local
cursor engines will often allow many features that driver-supplied
cursors may not, so using this setting may provide an advantage
with respect to features that will be enabled. For backward-
compatibility, the synonym adUseClientBatch is also supported.

adUseServer Default. Uses data-provider or driver-supplied cursors. These
cursors are sometimes very flexible and allow for some additional
sensitivity to reflecting changes that others make to the actual data
source. However, some features of the Microsoft Client Cursor
Provider (such as disassociated recordsets) cannot be simulated.

CursorLocation Property Remarks
This property allows you to choose between various cursor libraries accessible to the provider.
Usually, you can choose between using a client-side cursor library or one that is located on the
server.

This property setting only affects connections established after the property has been set.
Changing the CursorLocation property has no effect on existing connections.

This property is read/write on a closed recordset, and read-only on an open recordset.

CursorLocation Property Example
See the AbsolutePosition property example.

 ADO Recordset Object CursorType Property
The type of cursor used in a Recordset object.

CursorType Property Return Values
Sets or returns one of the following CursorTypeEnum values:

Constant Description

adOpenForwardOnly Forward-only cursor. Default. Identical to a static cursor except
that you can only scroll forward through records. This improves
performance in situations when you only need to make a single
pass through a recordset.

Sun Chili!Soft ASP 3.6.2 Product Documentation 356

adOpenKeyset Keyset cursor. Like a dynamic cursor, except that you can't see
records that other users add, although records that other users
delete are inaccessible from your recordset. Data changes by
other users are still visible.

adOpenDynamic Dynamic cursor. Additions, changes, and deletions by other
users are visible, and all types of movement through the
recordset are allowed, except for bookmarks if the provider
doesn't support them.

adOpenStatic Static cursor. A static copy of a set of records that you can use to
find data or generate reports. Additions, changes, or deletions by
other users are not visible.

CursorType Property Remarks
Use the CursorType property to specify the type of cursor that should be used when opening the
Recordset object. The CursorType property is read/write when the recordset is closed and read-
only when it is open.

If a provider does not support the requested cursor type, the provider may return another cursor
type. The CursorType property will change to match the actual cursor type in use when the
recordset object is open. To verify specific functionality of the returned cursor, use the ADO
Recordset Object Supports Method. After you close the recordset, the CursorType property
reverts to its original setting.

The following chart shows the provider functionality (identified by Supports method constants)
required for each cursor type.

CursorType The Supports method must return True for these
constants

adOpenForwardOnly none

adOpenKeyset adBookmark, adHoldRecords, adMovePrevious, adResync

adOpenDynamic adMovePrevious

adOpenStatic adBookmark, adHoldRecords, adMovePrevious, adResync

Note
Although Supports(adUpdateBatch) may be true for dynamic and forward-only cursors,
for batch updates you should use either a keyset or static cursor. Set the ADO Recordset
Object LockType Property to adLockBatchOptimistic, and set the CursorLocation
property to adUseClient (or its synonym, adUseClientBatch) to enable the Microsoft
Client Cursor Engine, which is required for batch updates.

CursorType Property Example
This Visual Basic example demonstrates setting the CursorType and LockType properties
before opening a recordset. It also shows the value of the ADO Recordset Object EditMode

Sun Chili!Soft ASP 3.6.2 Product Documentation 357

Property under various conditions. The EditModeOutput function is required for this procedure
to run.

Public Sub EditModeX()

Dim cnn1 As ADODB.Connection

Dim rstEmployees As ADODB.Recordset

Dim strCnn As String

` Open recordset with data from Employee table.

Set cnn1 = New ADODB.Connection

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

cnn1.Open strCnn

Set rstEmployees = New ADODB.Recordset

Set rstEmployees.ActiveConnection = cnn1

rstEmployees.CursorType = adOpenKeyset

rstEmployees.LockType = adLockBatchOptimistic

rstEmployees.Open "employee", , , , adCmdTable

` Show the EditMode property under different editing

` states.

rstEmployees.AddNew

rstEmployees!emp_id = "T-T55555M"

rstEmployees!fname = "temp_fname"

rstEmployees!lname = "temp_lname"

EditModeOutput "After AddNew:", rstEmployees.EditMode

rstEmployees.UpdateBatch

EditModeOutput "After UpdateBatch:", rstEmployees.EditMode

rstEmployees!fname = "test"

EditModeOutput "After Edit:", rstEmployees.EditMode

rstEmployees.Close

` Delete new record because this is a demonstration.

cnn1.Execute "DELETE FROM employee WHERE emp_id = 'T-T55555M'"

End Sub

Public Function EditModeOutput(strTemp As String, _

intEditMode As Integer)

Sun Chili!Soft ASP 3.6.2 Product Documentation 358

` Print report based on the value of the EditMode

` property.

Debug.Print strTemp

Debug.Print " EditMode = ";

Select Case intEditMode

Case adEditNone

Debug.Print "adEditNone"

Case adEditInProgress

Debug.Print "adEditInProgress"

Case adEditAdd

Debug.Print "adEditAdd"

End Select

End Function

 ADO Recordset Object EditMode Property
The editing status of the current record.

EditMode Property Return Values
Returns one of the following EditModeEnum values:

Constant Description

adEditNone No editing operation is in progress.

adEditInProgress The data in the current record has been modified but not yet
saved.

adEditAdd The AddNew method has been invoked and the current record
in the copy buffer is a new record that hasn’t been saved in the
database.

EditMode Property Remarks
ADO maintains an editing buffer associated with the current record. This property indicates
whether changes have been made to this buffer, or whether a new record has been created. Use
the EditMode property to determine the editing status of the current record. You can test for
pending changes if an editing process has been interrupted and determine whether you need to
use the ADO Recordset Object Update Method or ADO Recordset Object CancelUpdate Method.

See the ADO Recordset Object AddNew Method for a more detailed description of the
EditMode property under different editing conditions.

EditMode Property Example

Sun Chili!Soft ASP 3.6.2 Product Documentation 359

See the ADO Recordset Object CursorType Property example.

 ADO Recordset Object Filter Property
A filter for data in a recordset.

Filter Property Return Values
Sets or returns a Variant value, which can contain one of the following:

Criteria string

A string made up of one or more individual clauses concatenated with AND or OR operators.

Array of bookmarks

An array of unique bookmark values that point to records in the Recordset object. This return
value is not currently supported on UNIX.

One of the following FilterGroupEnum values:

Constant Description

adFilterNone Removes the current filter and restores all records to
view.

adFilterPendingRecords Enables you to view only records that have changed but
have not yet been sent to the server. Only applicable for
batch update mode. Not currently supported on UNIX.

adFilterAffectedRecords Enables you to view only records affected by the last
Delete, Resync, UpdateBatch, or CancelBatch call. Not
currently supported on UNIX.

adFilterFetchedRecords Enables you to view records in the current cache, that is,
the results of the last call to retrieve records from the
database. Not currently supported on UNIX.

Filter Property Remarks
Use the Filter property to selectively screen out records in a Recordset object. The filtered
recordset becomes the current cursor. This affects other properties such as AbsolutePosition,
AbsolutePage, RecordCount, and ADO Recordset Object PageCount Property that return values
based on the current cursor, since setting the Filter property to a specific value will move the
current record to the first record that satisfies the new value.

On UNIX systems the Filter property is implemented for Recordset objects whose source is a
SELECT query. Setting the Filter property will resubmit the query with the criteria string AND’d
with the WHERE clause.

The criteria string is made up of clauses in the form FieldName-Operator-Value (for example,
"LastName = 'Smith'"). You can create compound clauses by concatenating individual
clauses with AND (for example, "LastName = 'Smith' AND FirstName =

Sun Chili!Soft ASP 3.6.2 Product Documentation 360

'John'") or OR (for example, "LastName = 'Smith' OR LastName = 'Jones'").
Use the following guidelines for criteria strings:

FieldName

Must be a valid field name from the recordset. If the field name contains spaces, you must
enclose the name in square brackets.

Operator

Must be one of the following: <, >, <=, >=, <>, =, LIKE.

Value

The value with which you will compare the field values (for example, 'Smith',
#8/24/95#, 12.345 or $50.00). Use single quotes with strings and pound signs (#) with
dates. For numbers, you can use decimal points, dollar signs, and scientific notation. If Operator
is LIKE, Value can use wildcards. Only the asterisk (*) and percent sign (%) wildcards are
allowed, and they must be the last character in the string. Value may not be Null.

There is no precedence between AND and OR. Clauses can be grouped within parentheses.
However, you cannot group clauses joined by an OR and then join the group to another clause
with an AND, like this:

(LastName = 'Smith' OR LastName = 'Jones') AND FirstName = 'John'

Instead, you would construct this filter as:

(LastName = 'Smith' AND FirstName = 'John') OR

(LastName = 'Jones' AND FirstName = 'John')

In a LIKE clause, you can use a wildcard at the beginning and end of the pattern (for example,
LastName Like '*mit*'), or only at the end of the pattern (for example, LastName
Like 'Smit*').

The filter constants make it easier to resolve individual record conflicts during batch update mode
by allowing you to view, for example, only those records that were affected during the last ADO
Recordset Object UpdateBatch Method call.

Setting the Filter property itself may fail because of a conflict with the underlying data (for
example, a record has already been deleted by another user); in such a case, the provider returns
warnings to the ADO Errors Collection but does not halt program execution. A run-time error
occurs only if there are conflicts on all the requested records. Use the ADO Recordset Object
Status Property to locate records with conflicts.

Setting the Filter property to a zero-length string ("") has the same effect as using the
adFilterNone constant.

Whenever the Filter property is set, the current record position moves to the first record in the
filtered subset of records in the recordset. Similarly, when the Filter property is cleared, the
current record position moves to the first record in the recordset.

See the ADO Recordset Object Bookmark Property for an explanation of bookmark values from
which you can build an array to use with the Filter property.

Sun Chili!Soft ASP 3.6.2 Product Documentation 361

Filter Property Example
This Visual Basic example uses the Filter property to open a new recordset based on a specified
condition applied to an existing recordset. It uses the RecordCount property to show the number
of records in the two recordsets. The FilterField function is required for this procedure to run.

Public Sub FilterX()

Dim rstPublishers As ADODB.Recordset

Dim rstPublishersCountry As ADODB.Recordset

Dim strCnn As String

Dim intPublisherCount As Integer

Dim strCountry As String

Dim strMessage As String

` Open recordset with data from Publishers table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstPublishers = New ADODB.Recordset

rstPublishers.CursorType = adOpenStatic

rstPublishers.Open "publishers", strCnn, , , adCmdTable

` Populate the Recordset.

intPublisherCount = rstPublishers.RecordCount

` Get user input.

strCountry = Trim(InputBox(_

"Enter a country to filter on:"))

If strCountry <> "" Then

` Open a filtered Recordset object.

Set rstPublishersCountry = _

FilterField(rstPublishers, "Country", strCountry)

If rstPublishersCountry.RecordCount = 0 Then

MsgBox "No publishers from that country."

Else

` Print number of records for the original

` Recordset object and the filtered Recordset

` object.

strMessage = "Orders in original recordset: " & _

Sun Chili!Soft ASP 3.6.2 Product Documentation 362

vbCr & intPublisherCount & vbCr & _

"Orders in filtered recordset (Country = '" & _

strCountry & "'): " & vbCr & _

rstPublishersCountry.RecordCount

MsgBox strMessage

End If

rstPublishersCountry.Close

End If

End Sub

Public Function FilterField(rstTemp As ADODB.Recordset, _

strField As String, strFilter As String) As ADODB.Recordset

` Set a filter on the specified Recordset object and then

` open a new Recordset object.

rstTemp.Filter = strField & " = '" & strFilter & "'"

Set FilterField = rstTemp

End Function

Note
When you know the data you want to select, it's usually more efficient to open a recordset
with an SQL statement. This example shows how you can create just one recordset and
obtain records from a particular country.

Public Sub FilterX2()

Dim rstPublishers As ADODB.Recordset

Dim strCnn As String

` Open recordset with data from Publishers table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstPublishers = New ADODB.Recordset

rstPublishers.CursorType = adOpenStatic

rstPublishers.Open "SELECT * FROM publishers " & _

"WHERE Country = 'USA'", strCnn, , , adCmdText

` Print current data in recordset.

Sun Chili!Soft ASP 3.6.2 Product Documentation 363

rstPublishers.MoveFirst

Do While Not rstPublishers.EOF

Debug.Print rstPublishers!pub_name & ", " & _

rstPublishers!country

rstPublishers.MoveNext

Loop

rstPublishers.Close

End Sub

 ADO Recordset Object LockType Property
The type of locks placed on records during editing.

LockType Property Return Values
Sets or returns one of the following LockTypeEnum values:

Constant Description

adLockReadOnly Default. Read-only; the data cannot be modified.

adLockPessimistic Pessimistic locking, record by record. The provider does
what is necessary to ensure successful editing of the
records, usually by locking records at the data source
immediately upon editing.

adLockOptimistic Optimistic locking, record by record. The provider uses
optimistic locking, locking records only when you call the
Update method.

adLockBatchOptimistic Optimistic batch updates. Required for batch update mode
as opposed to immediate update mode.

LockType Property Remarks
Set the LockType property before opening a recordset to specify what type of locking the
provider should use when opening it. Read the property to return the type of locking in use on an
open Recordset object. The LockType property is read/write when the recordset is closed and
read-only when it is open.

Providers may not support all lock types. If a provider cannot support the requested LockType
setting, it will substitute another type of locking. To determine the actual locking functionality
available in a Recordset object, use the ADO Recordset Object Supports Method with adUpdate
and adUpdateBatch.

LockType Property Example
See the ADO Recordset Object CursorType Property example.

Sun Chili!Soft ASP 3.6.2 Product Documentation 364

 ADO Recordset Object MarshalOptions Property
Indicates which records are to be marshaled back to the server. This is a client-side only property.

MarshalOptions Property Return Values
Sets or returns a Long value that can be one of the following constants:

Constant Description

adMarshalAll Default. All rows are returned to the server.

adMarshalModifiedOnly Only modified rows are returned to the server.

MarshalOptions Property Remarks
When using a client-side (ADOR) recordset, records that have been modified on the client are
written back to the middle-tier or Web server through a technique called marshaling, the process
of packaging and sending interface method parameters across thread or process boundaries.
Setting the MarshalOptions property can improve performance when modified remote data is
marshaled for updating back to the middle-tier or Web server.

Remote Data Service Usage: This property is only used on a client-side (ADOR) recordset.

MarshalOptions Property Example
This Visual Basic example uses the MarshalOptions property to specify what rows are sent back
to the server—All Rows or only Modified Rows.

Public Sub MarshalOptionsX()

Dim rstEmployees As ADODB.Recordset

Dim strCnn As String

Dim strOldFirst As String

Dim strOldLast As String

Dim strMessage As String

Dim strMarshalAll As String

Dim strMarshalModified As String

` Open recordset with names from Employee table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstEmployees = New ADODB.Recordset

rstEmployees.CursorType = adOpenKeyset

rstEmployees.LockType = adLockOptimistic

rstEmployees.CursorLocation = adUseClient

rstEmployees.Open "SELECT fname, lname " & _

Sun Chili!Soft ASP 3.6.2 Product Documentation 365

"FROM Employee ORDER BY lname", strCnn, , , adCmdText

` Store original data.

strOldFirst = rstEmployees!fname

strOldLast = rstEmployees!lname

` Change data in edit buffer.

rstEmployees!fname = "Linda"

rstEmployees!lname = "Kobara"

` Show contents of buffer and get user input.

strMessage = "Edit in progress:" & vbCr & _

" Original data = " & strOldFirst & " " & _

strOldLast & vbCr & " Data in buffer = " & _

rstEmployees!fname & " " & rstEmployees!lname & vbCr & vbCr & _

"Use Update to replace the original data with " & _

"the buffered data in the Recordset?"

strMarshalAll = "Would you like to send all the rows " & _

"in the recordset back to the server?"

strMarshalModified = "Would you like to send only " & _

"modified rows back to the server?"

If MsgBox(strMessage, vbYesNo) = vbYes Then

If MsgBox(strMarshalAll, vbYesNo) = vbYes Then

rstEmployees.MarshalOptions = adMarshalAll

rstEmployees.Update

ElseIf MsgBox(strMarshalModified, vbYesNo) = vbYes Then

rstEmployees.MarshalOptions = adMarshalModifiedOnly

rstEmployees.Update

End If

End If

` Show the resulting data.

MsgBox "Data in recordset = " & rstEmployees!fname & " " & _

rstEmployees!lname

` Restore original data because this is a demonstration.

If Not (strOldFirst = rstEmployees!fname And _

Sun Chili!Soft ASP 3.6.2 Product Documentation 366

strOldLast = rstEmployees!lname) Then

rstEmployees!fname = strOldFirst

rstEmployees!lname = strOldLast

rstEmployees.Update

End If

rstEmployees.Close

End Sub

 ADO Recordset Object MaxRecords Property
The maximum number of records to return to a recordset from a query.

MaxRecords Property Return Values
Sets or returns a Long value. Default is zero (no limit).

MaxRecords Property Remarks
Use the MaxRecords property to limit the number of records the provider returns from the data
source. The default setting of this property is zero, which means the provider returns all requested
records. The MaxRecords property is read/write when the recordset is closed and read-only when
it is open.

MaxRecords Property Example
This Visual Basic example uses the MaxRecords property to open a recordset containing the 10
most expensive titles in the Titles table.

Public Sub MaxRecordsX()

Dim rstTemp As ADODB.Recordset

Dim strCnn As String

` Open recordset containing the 10 most expensive

` titles in the Titles table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstTemp = New ADODB.Recordset

rstTemp.MaxRecords = 10

rstTemp.Open "SELECT Title, Price FROM Titles " & _

"ORDER BY Price DESC", strCnn, , , adCmdText

` Display the contents of the recordset.

Debug.Print "Top Ten Titles by Price:"

Sun Chili!Soft ASP 3.6.2 Product Documentation 367

Do While Not rstTemp.EOF

Debug.Print " " & rstTemp!Title & " - " & rstTemp!Price

rstTemp.MoveNext

Loop

rstTemp.Close

End Sub

 ADO Recordset Object PageCount Property
The number of pages of data the Recordset object contains.

PageCount Property Return Values
Returns a Long value.

PageCount Property Remarks
Use the PageCount property to determine how many pages of data are in the Recordset object.
Pages are groups of records whose size equals the ADO Recordset Object PageSize Property
setting. Even if the last page is incomplete, because there are fewer records than the PageSize
value, it counts as an additional page in the PageCount value. If the Recordset object does not
support this property, the value will be -1 to indicate that the PageCount is indeterminable.

See the PageSize and AbsolutePage properties for more on page functionality.

PageCount Property Example
See the AbsolutePage example.

 ADO Recordset Object PageSize Property
The number of records that constitute one page in the recordset.

PageSize Property Return Values (ADO Recordset Object)[0]
Sets or returns a Long value, the number of records on a page. Default is 10.

PageSize Property Remarks (ADO Recordset Object)
Use the PageSize property to determine how many records make up a logical page of data.
Establishing a page size allows you to use the AbsolutePage property to move to the first record
of a particular page. This is useful in Web-server scenarios when you want to allow the user to
page through data, viewing a certain number of records at a time.

This property can be set at any time, and its value will be used for calculating where the first
record of a particular page is.

PageSize Property Example (ADO Recordset Object)
See the AbsolutePage property example.

Sun Chili!Soft ASP 3.6.2 Product Documentation 368

 ADO Recordset Object State Property
Describes the current state of an object.

State Property Return Values (ADO Recordset Object)
Sets or returns a Long value that can be one of the following constants:

Constant Description

AdStateClosed Default. The object is closed.

AdStateOpen The object is open.

State Property Remarks (ADO Recordset Object)
You can use the State property to determine the current state of a given object at any time.

 ADO Recordset Object Status Property
Indicates the status of the current record with respect to batch updates or other bulk operations.

Status Property Return Values (ADO Recordset Object)
Returns a sum of one or more of the following RecordStatusEnum values:

Constant Description

adRecOK The record was successfully updated.

adRecNew The record is new.

adRecModified The record was modified.

adRecDeleted The record was deleted.

adRecUnmodified The record was not modified.

adRecInvalid The record was not saved because its bookmark
is invalid.

adRecMultipleChanges The record was not saved because it would have
affected multiple records.

adRecPendingChanges The record was not saved because it refers to a
pending insert.

adRecCanceled The record was not saved because the operation
was canceled.

adRecCantRelease The new record was not saved because of
existing record locks.

adRecConcurrencyViolation The record was not saved because optimistic
concurrency was in use.

adRecIntegrityViolation The record was not saved because the user

Sun Chili!Soft ASP 3.6.2 Product Documentation 369

violated integrity constraints.

adRecMaxChangesExceeded The record was not saved because there were
too many pending changes.

adRecObjectOpen The record was not saved because of a conflict
with an open storage object.

adRecOutOfMemory The record was not saved because the computer
has run out of memory.

adRecPermissionDenied The record was not saved because the user has
insufficient permissions.

adRecSchemaViolation The record was not saved because it violates the
structure of the underlying database.

adRecDBDeleted The record has already been deleted from the
data source.

Status Property Remarks (ADO Recordset Object)
Use the Status property to see what changes are pending for records modified during batch
updating. You can also use the Status property to view the status of records that fail during bulk
operations such as when you call the ADO Recordset Object Resync Method, ADO Recordset
Object UpdateBatch Method, or ADO Recordset Object CancelBatch Method methods on a
Recordset object, or set the ADO Recordset Object Filter Property on a Recordset object to an
array of bookmarks. With this property, you can determine how a given record failed and resolve
it accordingly.

Status Property Example (ADO Recordset Object)
This example uses the Status property to display which records have been modified in a batch
operation before a batch update has occurred.

Public Sub StatusX()

Dim rstTitles As ADODB.Recordset

Dim strCnn As String

` Open recordset for batch update.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstTitles = New ADODB.Recordset

rstTitles.CursorType = adOpenKeyset

rstTitles.LockType = adLockBatchOptimistic

rstTitles.Open "titles", strCnn, , , adCmdTable

` Change the type of psychology titles.

Do Until rstTitles.EOF

Sun Chili!Soft ASP 3.6.2 Product Documentation 370

If Trim(rstTitles!Type) = "psychology" Then

rstTitles!Type = "self_help"

End If

rstTitles.MoveNext

Loop

` Display Title ID and status.

rstTitles.MoveFirst

Do Until rstTitles.EOF

If rstTitles.Status = adRecModified Then

Debug.Print rstTitles!title_id & " - Modified"

Else

Debug.Print rstTitles!title_id

End If

rstTitles.MoveNext

Loop

` Cancel the update because this is a demonstration.

rstTitles.CancelBatch

rstTitles.Close

End Sub

 ADO Recordset Object Source Property
The source for the data in a Recordset object (Command object, SQL statement, table name, or
stored procedure).

Source Property Return Values (ADO Recordset Object)
Sets a String value or Command object reference; returns only a String value.

Source Property Remarks (ADO Recordset Object)
Use the Source property to specify a data source for a Recordset object using one of the
following: an ADO Command Object variable, an SQL statement, a stored procedure, or a table
name. The Source property is read/write for closed Recordset objects and read-only for open
Recordset objects.

If you set the Source property to a Command object, the ActiveConnection property of the
Recordset object will inherit the value of the ActiveConnection property for the specified
Command object. However, reading the Source property does not return a Command object;

Sun Chili!Soft ASP 3.6.2 Product Documentation 371

instead, it returns the CommandText property of the Command object to which you set the
Source property.

If the Source property is an SQL statement, a stored procedure, or a table name, you can optimize
performance by passing the appropriate Options argument with the ADO Recordset Object Open
Method call.

Source Property Example (ADO Recordset Object)
This Visual Basic example demonstrates the Source property by opening three Recordset objects
based on different data sources.

Public Sub SourceX()

Dim cnn1 As ADODB.Connection

Dim rstTitles As ADODB.Recordset

Dim rstPublishers As ADODB.Recordset

Dim rstTitlesPublishers As ADODB.Recordset

Dim cmdSQL As ADODB.Command

Dim strCnn As String

Dim strSQL As String

` Open a connection.

Set cnn1 = New ADODB.Connection

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

cnn1.Open strCnn

` Open a recordset based on a command object.

Set cmdSQL = New ADODB.Command

Set cmdSQL.ActiveConnection = cnn1

cmdSQL.CommandText = "Select title, type, pubdate " & _

"FROM titles ORDER BY title"

Set rstTitles = cmdSQL.Execute()

` Open a recordset based on a table.

Set rstPublishers = New ADODB.Recordset

rstPublishers.Open "publishers", strCnn, , , adCmdTable

` Open a recordset based on an SQL string.

Set rstTitlesPublishers = New ADODB.Recordset

strSQL = "SELECT title_ID AS TitleID, title AS Title, " & _

Sun Chili!Soft ASP 3.6.2 Product Documentation 372

"publishers.pub_id AS PubID, pub_name AS PubName " & _

"FROM publishers INNER JOIN titles " & _

"ON publishers.pub_id = titles.pub_id " & _

"ORDER BY Title"

rstTitlesPublishers.Open strSQL, strCnn, , , adCmdText

` Use the Source property to display the source of each recordset.

MsgBox "rstTitles source: " & vbCr & _

rstTitles.Source & vbCr & vbCr & _

"rstPublishers source: " & vbCr & _

rstPublishers.Source & vbCr & vbCr & _

"rstTitlesPublishers source: " & vbCr & _

rstTitlesPublishers.Source

rstTitles.Close

rstPublishers.Close

rstTitlesPublishers.Close

cnn1.Close

End Sub

 ADO Recordset Object RecordCount Property
The current number of records in a Recordset object.

RecordCount Property Return Values
Returns a Long value.

RecordCount Property Remarks
Use the RecordCount property to find out how many records are in a Recordset object. The
property returns -1 when ADO cannot determine the number of records. Reading the
RecordCount property on a closed recordset causes an error.

If the Recordset object supports approximate positioning or bookmarks—that is, ADO Recordset
Object Supports Method (adApproxPosition) or Supports (adBookmark), respectively, returns
True—this value will be the exact number of records in the recordset regardless of whether it has
been fully populated. If the Recordset object does not support approximate positioning, this
property may be a significant drain on resources because all records will have to be retrieved and
counted to return an accurate RecordCount value.

RecordCount Property Example

Sun Chili!Soft ASP 3.6.2 Product Documentation 373

This Visual Basic example uses the Filter property to open a new recordset based on a specified
condition applied to an existing recordset. It uses the RecordCount property to show the number
of records in the two recordsets. The FilterField function is required for this procedure to run.

Public Sub FilterX()

Dim rstPublishers As ADODB.Recordset

Dim rstPublishersCountry As ADODB.Recordset

Dim strCnn As String

Dim intPublisherCount As Integer

Dim strCountry As String

Dim strMessage As String

` Open recordset with data from Publishers table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstPublishers = New ADODB.Recordset

rstPublishers.CursorType = adOpenStatic

rstPublishers.Open "publishers", strCnn, , , adCmdTable

` Populate the Recordset.

intPublisherCount = rstPublishers.RecordCount

` Get user input.

strCountry = Trim(InputBox(_

"Enter a country to filter on:"))

If strCountry <> "" Then

` Open a filtered Recordset object.

Set rstPublishersCountry = _

FilterField(rstPublishers, "Country", strCountry)

If rstPublishersCountry.RecordCount = 0 Then

MsgBox "No publishers from that country."

Else

` Print number of records for the original

` Recordset object and the filtered Recordset

` object.

strMessage = "Orders in original recordset: " & _

vbCr & intPublisherCount & vbCr & _

Sun Chili!Soft ASP 3.6.2 Product Documentation 374

"Orders in filtered recordset (Country = '" & _

strCountry & "'): " & vbCr & _

rstPublishersCountry.RecordCount

MsgBox strMessage

End If

rstPublishersCountry.Close

End If

End Sub

Public Function FilterField(rstTemp As ADODB.Recordset, _

strField As String, strFilter As String) As ADODB.Recordset

` Set a filter on the specified Recordset object and then

` open a new Recordset object.

rstTemp.Filter = strField & " = '" & strFilter & "'"

Set FilterField = rstTemp

End Function

Note
When you know the data you want to select, it's usually more efficient to open a recordset
with an SQL statement. This example shows how you can create just one recordset and
obtain records from a particular country.

Public Sub FilterX2()

Dim rstPublishers As ADODB.Recordset

Dim strCnn As String

` Open recordset with data from Publishers table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstPublishers = New ADODB.Recordset

rstPublishers.CursorType = adOpenStatic

rstPublishers.Open "SELECT * FROM publishers " & _

"WHERE Country = 'USA'", strCnn, , , adCmdText

` Print current data in recordset.

Sun Chili!Soft ASP 3.6.2 Product Documentation 375

rstPublishers.MoveFirst

Do While Not rstPublishers.EOF

Debug.Print rstPublishers!pub_name & ", " & _

rstPublishers!country

rstPublishers.MoveNext

Loop

rstPublishers.Close

End Sub

ADO Collections

Collections

ADO Errors Collection Contains all stored Error objects, all of which pertain to a
single operation involving ADO.

ADO Fields Collection Contains all stored Field objects of a Recordset object.

ADO Parameters Collection Contains all the Parameter objects of a Command object.

ADO Properties Collection Contains all the Property objects for the specific instance of
an object. This collection is not currently supported on UNIX.

Methods

ADO Collections Append
Method

Appends a new object to the Parameters collection.

ADO Collections Clear
Method

Clears the contents of an Errors collection.

ADO Collections Delete
Method

Deletes an object from the Parameters collection.

ADO Collections Item Method Returns a specific member of a collection by name or ordinal
number.

ADO Collections Refresh
Method

Updates the objects in a collection to reflect objects available
from and specific to the provider.

Properties

ADO Collections Count
Property

The number of objects in a collection.

Sun Chili!Soft ASP 3.6.2 Product Documentation 376

 ADO Errors Collection
The Errors collection contains all stored ADO Error Object objects created in response to a
single failure involving the provider.

ADO Errors Collection Remarks
Any operation involving ADO objects can generate one or more provider errors. As each error
occurs, one or more ADO Error Object objects may be placed in the Errors collection of the
ADO Connection Object. When another ADO operation generates an error, the Errors collection
is cleared, and the new set of Error objects may be placed in the Errors collection.

Each Error object represents a specific provider error, not an ADO error. ADO errors are
exposed to the run-time exception-handling mechanism. For example, in Microsoft Visual Basic,
the occurrence of an ADO-specific error will trigger an On Error event and appear in the Err
object.

ADO operations that don't generate an error have no effect on the Errors collection. Use the
ADO Collections Clear Method to manually clear the Errors collection.

The set of Error objects in the Errors collection describes all errors that occurred in response to
a single statement. Enumerating the specific errors in the Errors collection enables your error-
handling routines to more precisely determine the cause and origin of an error, and take
appropriate steps to recover.

Some properties and methods return warnings that appear as Error objects in the Errors
collection but do not halt a program's execution. Before you call the ADO Recordset Object
Resync Method, ADO Recordset Object UpdateBatch Method, or ADO Recordset Object
CancelBatch Method methods on an ADO Recordset Object, or before you set the ADO
Recordset Object Filter Property on a Recordset object, call the Clear method on the Errors
collection so that you can read the Count Property of the Errors collection to test for returned
warnings.

Note
See the ADO Error Object for a more detailed explanation of the way a single ADO
operation can generate multiple errors.

 ADO Fields Collection
The Fields collection contains all the Field objects of a Recordset object.

ADO Fields Collection Remarks
An ADO Recordset Object has a Fields collection made up of ADO Field Object objects. Each
Field object corresponds to a column in the recordset. You can populate the Fields collection
before opening the recordset by calling the ADO Collections Refresh Method on the collection.

Note
See the ADO Field Object for a more detailed explanation of how to use Field objects.

Sun Chili!Soft ASP 3.6.2 Product Documentation 377

 ADO Parameters Collection
The Parameters collection contains all the Parameter objects of a Command object.

ADO Parameters Collection Remarks
An ADO Command Object has a Parameters collection made up of ADO Parameter Object
objects. Using the ADO Collections Refresh Method on a Command object's Parameters
collection retrieves provider parameter information for the stored procedure or parameterized
query specified in the Command object. Some providers do not support stored procedure calls or
parameterized queries; calling the Refresh method on the Parameters collection when using
such a provider will return an error.

If you have not defined your own Parameter objects and you access the Parameters collection
before calling the Refresh method, ADO will automatically call the method and populate the
collection for you.

You can minimize calls to the provider to improve performance if you know the properties of the
parameters associated with the stored procedure or parameterized query you wish to call. Use the
CreateParameter method to create Parameter objects with the appropriate property settings and
use the ADO Collections Append Method to add them to the Parameters collection. This lets
you set and return parameter values without having to call the provider for the parameter
information. If you are writing to a provider that does not supply parameter information, you
must manually populate the Parameters collection using this method to be able to use parameters
at all. Use the ADO Collections Delete Method to remove Parameter objects from the
Parameters collection if necessary.

 ADO Properties Collection
 The Properties collection contains all the Property objects for a specific instance of an object.
The Property collection is not currently supported on UNIX.

ADO Properties Collection Remarks
Some ADO objects have a Properties collection made up of ADO Property Object objects. Each
Property object corresponds to a characteristic of the ADO object specific to the provider.

Note
See the ADO Property Object topic for a more detailed explanation of how to use
Property objects.

ADO Collections Methods

 ADO Collections Append Method
Appends an object to a collection.

Sun Chili!Soft ASP 3.6.2 Product Documentation 378

Append Method Applies To
ADO Parameters Collection

Append Method Syntax
collection.Append object

Append Method Parameters
object

An object variable representing the object to be appended.

Append Method Remarks
Use the Append method on a collection to add an object to that collection. This method is
available only on the Parameters collection of a ADO Command Object. You must set the ADO
Parameter Object Type Property of an ADO Parameter Object before appending it to the
Parameters collection. If you select a variable-length data type, you must also set the ADO
Parameter Object Size Property to a value greater than zero.

By describing the parameter yourself, you can minimize calls to the provider and consequently
improve performance when using stored procedures or parameterized queries. However, you
must know the properties of the parameters associated with the stored procedure or parameterized
query you wish to call. Use the CreateParameter method to create Parameter objects with the
appropriate property settings and use the Append method to add them to the Parameters
collection. This lets you set and return parameter values without having to call the provider for
the parameter information. If you are writing to a provider that does not supply parameter
information, you must manually populate the Parameters collection using this method to be able
to use parameters at all.

Append Method Examples
This Visual Basic example uses the Append and CreateParameter methods to execute a stored
procedure with an input parameter.

Public Sub AppendX()

Dim cnn1 As ADODB.Connection

Dim cmdByRoyalty As ADODB.Command

Dim prmByRoyalty As ADODB.Parameter

Dim rstByRoyalty As ADODB.Recordset

Dim rstAuthors As ADODB.Recordset

Dim intRoyalty As Integer

Dim strAuthorID As String

Dim strCnn As String

` Open connection.

Set cnn1 = New ADODB.Connection

Sun Chili!Soft ASP 3.6.2 Product Documentation 379

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

cnn1.Open strCnn

cnn1.CursorLocation = adUseClient

` Open command object with one parameter.

Set cmdByRoyalty = New ADODB.Command

cmdByRoyalty.CommandText = "byroyalty"

cmdByRoyalty.CommandType = adCmdStoredProc

` Get parameter value and append parameter.

intRoyalty = Trim(InputBox("Enter royalty:"))

Set prmByRoyalty = cmdByRoyalty.CreateParameter("percentage", _

adInteger, adParamInput)

cmdByRoyalty.Parameters.Append prmByRoyalty

prmByRoyalty.Value = intRoyalty

` Create recordset by executing the command.

Set cmdByRoyalty.ActiveConnection = cnn1

Set rstByRoyalty = cmdByRoyalty.Execute

` Open the Authors table to display author names.

Set rstAuthors = New ADODB.Recordset

rstAuthors.Open "authors", cnn1, , , adCmdTable

` Print current data in the recordset, adding

` author names from Authors table.

Debug.Print "Authors with " & intRoyalty & " percent royalty"

Do While Not rstByRoyalty.EOF

strAuthorID = rstByRoyalty!au_id

Debug.Print " " & rstByRoyalty!au_id & ", ";

rstAuthors.Filter = "au_id = '" & strAuthorID & "'"

Debug.Print rstAuthors!au_fname & " " & rstAuthors!au_lname

rstByRoyalty.MoveNext

Loop

rstByRoyalty.Close

rstAuthors.Close

Sun Chili!Soft ASP 3.6.2 Product Documentation 380

cnn1.Close

End Sub

 ADO Collections Clear Method
Removes all of the objects in a collection.

Clear Method Applies To
ADO Errors Collection

Clear Method Syntax
Errors.Clear

Clear Method Remarks
Use the Clear method on the Errors collection to remove all existing ADO Error Object objects
from the collection. When an error occurs, ADO automatically clears the Errors collection and
fills it with Error objects based on the new error. However, some properties and methods return
warnings that appear as Error objects in the Errors collection but do not halt a program's
execution. Before you call the ADO Recordset Object Resync Method, ADO Recordset Object
UpdateBatch Method, or ADO Recordset Object CancelBatch Method methods on an ADO
Recordset Object or before you set the ADO Recordset Object Filter Property on a Recordset
object, call the Clear method on the Errors collection. Doing so enables you to read the ADO
Collections Count Property of the Errors collection to test for returned warnings as a result of
these specific calls.

Clear Method Examples
See the ADO Command Object Execute Method.

 ADO Collections Delete Method
Deletes an object from the Parameters collection.

Delete Method Applies To
ADO Parameters Collection

Delete Method Syntax
object.Parameters.Delete (Index)

Delete Method Parameters
object

A Command object.

Index

A Variant that evaluates either to the name or to the ordinal number of an object in a collection.

Sun Chili!Soft ASP 3.6.2 Product Documentation 381

Delete Method Remarks
Using the Delete method on a Parameters collection lets you remove one of the objects in the
collection. This method is available only on the Parameters collection of an ADO Command
Object. You must the use ADO Parameter Object object’s ADO Parameter Object Name Property
or its collection index when calling the Delete method; an object variable is not a valid argument.

 ADO Collections Item Method
Returns a specific member of a collection by name or ordinal number.

Item Method Applies To
ADO Errors Collection, ADO Fields Collection, ADO Parameters Collection, ADO Properties
Collection

Item Method Syntax
Set object = collection.Item (Index)

Item Method Parameters
object

Object reference created.

Index

A Variant that evaluates either to the name or to the ordinal number of an object in a collection.

Item Method Return Values
Returns an object reference.

Item Method Remarks
Use the Item method to return a specific object in a collection. If the method cannot find an
object in the collection corresponding to the Index argument, an error occurs. Also, some
collections don't support named objects; for these collections, you must use ordinal number
references.

The Item method is the default method for all collections; therefore, the following syntax forms
are interchangeable:

collection.Item (Index)

collection (Index)

 ADO Collections Refresh Method
Updates the objects in a collection to reflect objects available from and specific to the provider.

Refresh Method Applies To
ADO Fields Collection, ADO Parameters Collection, ADO Properties Collection

Sun Chili!Soft ASP 3.6.2 Product Documentation 382

Refresh Method Syntax
collection.Refresh

Refresh Method Parameters Collection
Using the Refresh method on a ADO Command Object object's Parameters collection retrieves
provider-side parameter information for the stored procedure or parameterized query specified in
the Command object. The collection will be empty for providers that do not support stored
procedure calls or parameterized queries.

You should set the ActiveConnection property of the Command object to a valid ADO
Connection Object, the ADO Command Object CommandText Property to a valid command, and
the ADO Command Object CommandType Property to adCmdStoredProc before calling the
ADO Collections Refresh Method.

If you access the Parameters collection before calling the Refresh method, ADO will
automatically call the method and populate the collection for you.

Note
If you use the Refresh method to obtain parameter information from the provider and it
returns one or more variable-length data type ADO Parameter Object objects, ADO may
allocate memory for the parameters based on their maximum potential size, which will
cause an error during execution. You should explicitly set the ADO Parameter Object
Size Property for these parameters before calling the ADO Command Object Execute
Method to prevent errors.

Refresh Method Fields Collection
Using the Refresh method on the Fields collection has no visible effect. To retrieve changes from
the underlying database structure, you must use either the ADO Recordset Object Requery
Method or, if the Recordset object does not support bookmarks, the ADO Recordset Object
MoveFirst, MoveLast, MoveNext, MovePrevious Methods method.

Refresh Method Properties Collection
Using the Refresh method on a Properties collection of some objects populates the collection
with the dynamic properties the provider exposes. These properties provide information about
functionality specific to the provider beyond the built-in properties ADO supports.

The Refresh method accomplishes different tasks depending on the collection from which you
call it.

Refresh Method Example
This Visual Basic example demonstrates using the Refresh method to refresh the Parameters
collection for a stored procedure Command object.

Public Sub RefreshX()

Dim cnn1 As ADODB.Connection

Dim cmdByRoyalty As ADODB.Command

Sun Chili!Soft ASP 3.6.2 Product Documentation 383

Dim rstByRoyalty As ADODB.Recordset

Dim rstAuthors As ADODB.Recordset

Dim intRoyalty As Integer

Dim strAuthorID As String

Dim strCnn As String

' Open connection.

Set cnn1 = New ADODB.Connection

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

cnn1.Open strCnn

' Open a command object for a stored procedure

' with one parameter.

Set cmdByRoyalty = New ADODB.Command

Set cmdByRoyalty.ActiveConnection = cnn1

cmdByRoyalty.CommandText = "byroyalty"

cmdByRoyalty.CommandType = adCmdStoredProc

cmdByRoyalty.Parameters.Refresh

' Get paramater value and execute the command,

' storing the results in a recordset.

intRoyalty = Trim(InputBox("Enter royalty:"))

cmdByRoyalty.Parameters(1) = intRoyalty

Set rstByRoyalty = cmdByRoyalty.Execute()

` Open the Authors table to get author names for display.

Set rstAuthors = New ADODB.Recordset

rstAuthors.Open "authors", cnn1, , , adCmdTable

' Print current data in the recordset, adding

' author names from Authors table.

Debug.Print "Authors with " & intRoyalty & " percent royalty"

Do While Not rstByRoyalty.EOF

strAuthorID = rstByRoyalty!au_id

Debug.Print " " & rstByRoyalty!au_id & ", ";

rstAuthors.Filter = "au_id = '" & strAuthorID & "'"

Sun Chili!Soft ASP 3.6.2 Product Documentation 384

Debug.Print rstAuthors!au_fname & " " & _

rstAuthors!au_lname

rstByRoyalty.MoveNext

Loop

rstByRoyalty.Close

rstAuthors.Close

cnn1.Close

End Sub

ADO Collections Properties

 ADO Collections Count Property
The number of objects in a collection.

Count Property Applies To
ADO Errors Collection, ADO Fields Collection, ADO Parameters Collection, ADO Properties
Collection

Count Property Return Values
Returns a Long value.

Count Property Remarks
Use the Count property to determine how many objects are in a given collection.

Because numbering for members of a collection begins with zero, you should always code loops
starting with the zero member and ending with the value of the Count property minus one. If you
are using Visual Basic and want to loop through the members of a collection without checking the
Count property, use the For Each...Next command.

If the Count property is zero, there are no objects in the collection.

Count Property Example
This Visual Basic example demonstrates the Count property with two collections in the
Employee database. The property obtains the number of objects in each collection, and sets the
upper limit for loops that enumerate these collections. Another way to enumerate these
collections without using the Count property would be to use For Each...Next statements.

Public Sub CountX()

Dim rstEmployees As ADODB.Recordset

Dim strCnn As String

Dim intloop As Integer

Sun Chili!Soft ASP 3.6.2 Product Documentation 385

' Open recordset with data from Employee table.

strCnn = "driver={SQL Server};server=srv;" & _

"uid=sa;pwd=;database=pubs"

Set rstEmployees = New ADODB.Recordset

rstEmployees.Open "employee", strCnn, , , adCmdTable

' Print information about Fields collection.

Debug.Print rstEmployees.Fields.Count & _

" Fields in Employee"

For intloop = 0 To rstEmployees.Fields.Count - 1

Debug.Print " " & rstEmployees.Fields(intloop).Name

Next intloop

' Print information about Properties collection.

Debug.Print rstEmployees.Properties.Count & _

" Properties in Employee"

For intloop = 0 To rstEmployees.Properties.Count - 1 Debug.Print " "
& rstEmployees.Properties(intloop).Name

Next intloop

rstEmployees.Close

End Sub

ASP Built-in Objects Reference

Sun Chili!Soft ASP provides five built-in or intrinsic objects for the Active Server Pages (ASP)
framework: Request, Response, Application, Server, and Session. Built-in objects are objects
that are included on all ASP pages; they do not need to be created before they can be used. This
section discusses the following ASP built-in objects:

ASP Built-in Object Description

ASP Application Object Stores information (variables and objects) needed for all users of
a particular application. Information stored in the Application
object persists for the lifetime of the application.

ASP Request Object Provides access to values passed to the server by the client.

ASP Response Object Controls the output from an ASP script to the requesting client.

ASP Server Object Provides access to methods and properties on the server. These
methods and properties typically serve as utility functions.

Sun Chili!Soft ASP 3.6.2 Product Documentation 386

ASP Session Object Stores information (variables and objects) needed for a particular
user session. Information stored in the Session object is not
discarded when the user jumps between pages in the application;
instead information persists for the entire user session.

Built-in objects simplify development by solving Web-protocol programming issues. For
example, built-in objects can provide mechanisms to process data sent using the Hypertext
Transfer Protocol (HTTP). HTTP is a stateless technology, and the server cannot track the
location of users in an application or the use of an application. By using the built-in Session
object, an application (or object) can handle session management tasks.

Note
ASP scripts provided in the examples are assumed to be enclosed in script delimiters. The
<%, %>, <SCRIPT>, and </SCRIPT> delimiters are generally not shown.

See also:

Using Sun Chili!Soft ASP Built-in Objects in "Chapter 4: Building a Sun Chili!Soft ASP
Application"

ASP Application Object

The ASP Application object shares information among all users of a given application. An ASP-
based application is defined as all the .asp files in a virtual directory and associated sub-
directories. Because the Application object can be shared by more than one user, Lock and
Unlock methods are provided to ensure that multiple users do not try to alter a property
simultaneously.

Syntax: ASP Application Object
Application.method

ASP Application Object Methods
ASP Application Object Lock Method Prevents script from modifying object properties.

ASP Application Object Unlock MethodEnables script to modify object properties after
execution of the Lock method.

ASP Application Object Events
Application_OnStart Runs when an ASP page belonging to the application is accessed for

the first time.

Application_OnEnd Runs when the Web server is shut down.

Values can be stored in the Application object. These values are available throughout the
application and have application scope.

Sun Chili!Soft ASP 3.6.2 Product Documentation 387

Objects can be created within the Application_OnStart script and assigned to the Application
object. You cannot, however, store a built-in object in the Application object. Each of the
following lines will return an error:

Set Application("var1") = Session

Set Application("var2") = Request

Set Application("var3") = Response

Set Application("var4") = Server

Set Application("var5") = Application

Before you store an object in the Application object, you must know what threading model it
uses. Only objects marked as both free and apartment-threaded can be stored in the Application
object.

The Application object is implemented as a collection. If you store an array in an Application
object, you should not attempt to alter elements of the stored array directly. For example, the
following script does not work:

Application("StoredArray") (3) = "new value"

Instead of storing the value "new value" in StoredArray(3) the value is stored in the
Application collection, overwriting any information stored at Application(3).

Note
It is strongly recommended that if you store an array in the Application object that you
retrieve a copy of the array before retrieving or changing any of the elements of the array.
When you are done making changes to the array, store the array back into the
Application object to save changes. This is demonstrated in the following examples.

ASP Application Object Examples
You can store different types of variables:

Application("greeting") = "Welcome to My Web World"

Application("num") = 25

You must use the Set keyword when storing objects:

Set Application("Obj1") = Server.CreateObject("MyComponent")

You can use methods and properties on subsequent ASP pages by using the following:

Application("Obj1").MyObjMethod

As an alternative, you can extract a local copy of the object:

Set MyLocalObj1 = Application("Obj1")

MyLocalObj.MyObjMethod

The next example demonstrates using an application variable called NumVisits to store the
number of times a particular page has been accessed. The Lock method is called to ensure only

Sun Chili!Soft ASP 3.6.2 Product Documentation 388

the current client can access or alter NumVisits. Calling the Unlock method then enables other
clients to access the application object.

Application.Lock

Application("NumVisits") = Application("NumVisits") + 1

Application.Unlock

This application page has been visited <%= Application("NumVisits")
%> times!

The next three examples demonstrate storing and manipulating an array in the Application
object. The Lock and Unlock methods are used to control access to the Application object.

Application.Lock

Application("StoredArray") = MyArray

Application.Unlock

To retrieve the array from the Application object and modify its elements:

LocalArray = Application("StoredArray")

LocalArray(0) = "Hello"

LocalArray(1) = "there"

Next you need to restore the array in the Application object. This overwrites the values in
StoredArray with new values.

Application.Lock

Application("StoredArray") = LocalArray

Application.Unlock

ASP Application Object Methods

 ASP Application Object Lock Method
The Lock method blocks other clients from modifying variables stored in the Application object,
ensuring that only one client at a time can alter or access the application variables. If you do not
call the Unlock method explicitly, the server unlocks the locked Application object when the
script ends or times out.

Syntax: ASP Application Object Lock Method
Application.Lock

 ASP Application Object Unlock Method
The Unlock method enables other clients (via an ASP page) to modify the variables stored in the
Application object after it has been locked using the Lock method. If you do not call the Unlock

Sun Chili!Soft ASP 3.6.2 Product Documentation 389

method explicitly, the server unlocks the locked Application object when the script ends or times
out.

Syntax: ASP Application Object Unlock Method
Application.Unlock

ASP Request Object

The Request object retrieves the values that the browser passed to the server during an HTTP
request.

Syntax: ASP Request Object
Request.[collection | property | method] (variable)

ASP Request Object Collections
ASP Request Object Cookies Collection The value of cookies sent in the HTTP request.

ASP Request Object Form Collection The values of form elements sent in the HTTP
request body.

ASP Request Object QueryString Collection The value of variables in the HTTP query string.

ASP Request Object ServerVariables Collection The value of predetermined environment variables.

Note
Due to widely differing Web-server support for client-side certificates, Sun Chili!Soft
ASP does not implement the ClientCertificate collection.

ASP Request Object Properties
ASP Request Object TotalBytes
Property

The total number of bytes the client is sending in the body of
the request.

ASP Request Object Methods
ASP Request Object BinaryRead
Method

Retrieves data sent to the server from the client as part of a
POST request.

Variable parameters are strings that identify the item to be retrieved from a collection or a value
to be passed to a property or method. For more information about the variable parameter, see the
individual collection descriptions. If the specified variable is not in one of the collections, the
Request object returns EMPTY.

All variables can be accessed directly by calling Request("variable") without a collection
name. In this case, the Web server searches the collections in the following order:

� QueryString

Sun Chili!Soft ASP 3.6.2 Product Documentation 390

� Form

� Cookies

� ServerVariables

If the same variable exists in more than one collection, the first one encountered will be used. It is
strongly recommended that you use the collection name. For example, instead of
Request.(AUTH_USER) use Request.ServerVariables(AUTH_USER).

ASP Request Object Collections

 ASP Request Object Cookies Collection
The Cookies collection allows you to retrieve the values of the cookies sent in an HTTP request.

Syntax: ASP Request Object Cookies Collection
Request.Cookies(cookie)[(key)|.attribute]

Parameters: ASP Request Object Cookies Collection
cookie

Specifies the cookie whose value should be received.

key

An optional parameter used to retrieve subkey values from cookie dictionaries.

attribute

Specifies information about the cookie itself. The attribute value can be:

Name Value

HasKeys Read-only. Specifies whether the cookie contains keys.

Remarks: ASP Request Object Cookies Collection
Access the subkeys of a cookie dictionary by including a value for key. If a cookie dictionary is
accessed without specifying a key, all of the keys are returned as a single query string. For
example, if MyCookie has two keys, First and Second, and you do not specify either of these
keys in a call to Request.Cookies, the following string is returned.

First=firstkeyvalue&Second=secondkeyvalue

If two cookies with the same name are sent by the client browser, Request.Cookies returns the
one with the deeper path structure. For example, if two cookies had the same name but one had a
path attribute of /www/ and the other of /www/home/, the client browser would send both cookies
to the /www/home/ directory, but Request.Cookies would only return the second cookie.

To determine whether a cookie is a cookie dictionary (whether the cookie has keys), use the
following script.

<%= Request.Cookies("myCookie").HasKeys %>

Sun Chili!Soft ASP 3.6.2 Product Documentation 391

If myCookie is a cookie dictionary, the preceding value evaluates to TRUE; otherwise, it
evaluates to FALSE.

You can use an iterator to cycle through all the cookies in the Cookie collection, or all the keys in
a cookie. However, iterating through keys on a cookie that does not have keys will not produce
any output. You can avoid this situation by first checking to see whether a cookie has keys by
using the HasKeys attribute.

Examples: ASP Request Object Cookies Collection
The first example shows how to print the entire cookie collection:

<%

'Print out the entire cookie collection.

For Each cookie in Request.Cookies

 If Not cookie.HasKeys Then

 'Print out the cookie string

%>

 <%= cookie %> = <%= Request.Cookies(cookie) %>

<%

 Else

 'Print out the cookie collection

 For Each key in Request.Cookies(cookie) %>

 <%= cookie %> (<%= key %>) = <%= Request.Cookies(cookie)(key)
%>

<%

 Next

 End If

Next

%>

The next example prints the value of a cookie variable called "myCookie":

<%= Request.Cookies("myCookie") %>

 ASP Request Object Form Collection
The Form collection retrieves the values of form elements posted to the HTTP request body by a
form using the POST method.

Syntax: ASP Request Object Form Collection
Request.Form(parameter)[(index)|.Count]

Sun Chili!Soft ASP 3.6.2 Product Documentation 392

Parameters: ASP Request Object Form Collection
parameter

Specifies the name of the form element from which the collection is to retrieve values.

index

An optional parameter that enables you to access one of multiple values for a parameter. It can be
any integer in the range 1 to Count.

Remarks: ASP Request Object Form Collection
The Form collection is indexed by the names of the parameters in the request body. The value of
Request.Form(parameter) is an array of all of the values of parameter that occur in the request
body. You can determine the number of values of a parameter by calling
Request.Form(parameter).Count. If a parameter does not have multiple values associated with
it, the count is 1. If the parameter is not bound, the count is 0.

To reference a single value of a form element that has multiple values, you must specify a value
for the index. The index parameter may be any number between 1 and
Request.Form(parameter).Count. If you reference one of multiple form parameters without
specifying a value for index, the data is returned as a comma-delimited string.

When you use parameters with Request.Form, the Web server parses the HTTP request body
and returns the specified data. If your application requires unparsed data from the form, you can
access it by calling Request.Form without any parameters.

Examples: ASP Request Object Form Collection
In this example an iterator is used to loop through all the data values in a form request. Assume
that a user fills out a form by specifying two values (Chocolate and Butterscotch) for the
FavoriteFlavor parameter. The following script will retrieve these values:

For Each item In Request.Form("FavoriteFlavor")

Response.Write item & "
"

Next

This displays the following:

Chocolate

Butterscotch

The same output can be generated with a For…Next loop, as shown in the following script:

For I = 1 To Request.Form("FavoriteFlavor").Count

Response.Write Request.Form("FavoriteFlavor")(I) & "
"

Next

This iterator can display the parameter name, as shown in the following script.

<% For Each x In Request.Form %>

Request.Form(<%= x %>) = <%= Request.Form(x) %>

Sun Chili!Soft ASP 3.6.2 Product Documentation 393

<% Next %>

This displays the following:

FavoriteFlavor = Chocolate

FavoriteFlavor = Butterscotch

The next example uses the following form to solicit information from a user:

<FORM ACTION = "/scripts/submit.asp" METHOD = "post">

<P>Your first name: <INPUT NAME = "firstname" SIZE = 48>

<P>What is your favorite ice cream flavor: <SELECT NAME = "flavor">

<OPTION>Vanilla

<OPTION>Strawberry

<OPTION>Chocolate

<OPTION>Rocky Road</SELECT>

<p><INPUT TYPE = SUBMIT>

</FORM>

From that form, the following request body might be sent to the client:

firstname=James&flavor=Rocky+Road

The following script can then be used:

Welcome, <%= Request.Form("firstname") %>.

Your favorite flavor is <%= Request.Form("flavor") %>.

The unparsed form data is: <%= Request.Form %>

This displays the following:

"Welcome, James. Your favorite flavor is Rocky Road."

The unparsed form data is: firstname=James&flavor=Rocky+Road

 ASP Request Object QueryString Collection
The QueryString collection retrieves the values of the variables in the HTTP query string; that is,
it retrieves the values encoded after the question mark (?) in an HTTP request. For example, it
parses the values sent by a form using the GET method.

Syntax: ASP Request Object QueryString Collection
Request.QueryString(variable)[(index)|.Count]

Parameters: ASP Request Object QueryString Collection
variable

Specifies the name of the variable in the HTTP query string to retrieve.

Sun Chili!Soft ASP 3.6.2 Product Documentation 394

ASP Request Object QueryString Collection Index
An optional parameter that enables you to retrieve one of multiple values for variable. It can be
any integer value in the range 1 to Request.QueryString(variable).Count.

Remarks: ASP Request Object QueryString Collection
The QueryString collection is a parsed version of the QUERY_STRING variable in the
ServerVariables collection. It enables you to retrieve the QUERY_STRING variables by name.
The value of Request.QueryString(parameter) is an array of all of the values of parameter that
occur in QUERY_STRING. You can determine the number of values of a parameter by calling
Request.QueryString(parameter).Count. If a variable does not have multiple data sets
associated with it, the count is 1. If the variable is not found, the count is 0.

To reference a QueryString variable in one of multiple data sets, you specify a value for index.
The index parameter may be any value between 1 and Request.QueryString(variable).Count. If
you reference one of multiple QueryString variables without specifying a value for index, the
data is returned as a comma-delimited string.

When you use parameters with Request.QueryString, the server parses the parameters sent to
the request and returns the specified data. If your application requires unparsed QueryString
data, you can retrieve it by calling Request.QueryString without any parameters.

Examples: ASP Request Object QueryString Collection
You can use an iterator to loop through all the data values in a query string. For example, if the
following request is sent:

http://NAMES.ASP?Q=Fred&Q=Sally

and NAMES.ASP contained the following script:

For Each item In Request.QueryString("Q")

 Response.Write item & "
"

Next

NAMES.ASP would display the following:

Fred

Sally

Instead of using For Each, you can loop through data values in a query string using the Count
variable:

For I = 1 To Request.QueryString("Q").Count

Response.Write Request.QueryString("Q")(I) & "
"

Next

The following client request:

/scripts/directory-lookup.asp?name=fred&age=22

results in the QUERY_STRING value:

Sun Chili!Soft ASP 3.6.2 Product Documentation 395

name=fred&age=22.

The QueryString collection would then contain two members, name and age.

Welcome, <%= Request.QueryString("name") %>.

Your age is <%= Request.QueryString("age") %>.

This script displays:

"Welcome, Fred. Your age is 22."

 ASP Request Object ServerVariables Collection
The ServerVariables collection retrieves the values of environment variables.

Syntax: Request Object ServerVariables Collection
Request.ServerVariables(variable)

Parameters: Request Object ServerVariables Collection
variable

This specifies the name of the server environment variable to retrieve. It can be one of the values
from the following table:

Value Description
ALL_RAW All headers in raw form as sent by the client.

APPL_MD_PATH* Retrieves the metabase path for the application.

APPL_PHYSICAL_PATH Retrieves the physical path corresponding to the metabase
path.

ASP_VERSION Version number of the Sun Chili!Soft ASP server.

ASP_VERSION_MAJOR The major version number of the Sun Chili!Soft ASP server.

ASP_VERSION_MINOR The minor version number of the Sun Chili!Soft ASP server.

ASP_OS The operating system the server is running on.

ASP_LICENSE License information for the Sun Chili!Soft ASP server.

AUTH_PASSWORD The password corresponding to REMOTE_USER as supplied
by the client.

AUTH_TYPE If the server supports user authentication and the script is
protected, this is the protocol-specific authentication method
used to validate the user.

AUTH_USER Raw authenticated user name.

CERT_COOKIE* Unique ID for the client certificate, returned as a string.

CERT_FLAGS* bit0 is set to 1 if the client certificate is present. bit1 is set to 1
if the Certifying Authority of the client certificate is invalid (not
in the list of recognized CA on the server).

CERT_ISSUER* Issuer field of the client certificate.

Sun Chili!Soft ASP 3.6.2 Product Documentation 396

CERT_KEYSIZE* Number of bits in the Secure Sockets Layer connection key
size, for example, 128.

CERT_SECRETKEYSIZE* Number of bits in the server certificate private key, for
example 1024.

CERT_SERIALNUMBER* Serial number field of the client certificate.

CERT_SERVER_ISSUER* Issuer field of the server certificate.

CERT_SERVER_SUBJECT* Subject field of the server certificate.

CERT_SUBJECT* Subject field of the client certificate.

CONTENT_LENGTH The length of content as given by the client.

CONTENT_TYPE The data type of the content in queries that have attached
information, such as HTTP GET, POST, and PUT.

GATEWAY_INTERFACE The revision of the CGI specification used by the server.
Format: CGI/revision.

HTTP_<HeaderName> The value stored in the header HeaderName. Any header
other than those listed in this table must be prefixed by
"HTTP_" for the ServerVariables collection to retrieve its
value. The server interprets any underscore (_) characters in
HeaderName as dashes in the actual header. For example, if
you specify HTTP_MY_HEADER, the server searches for
MY-HEADER.

HTTPS Returns "on" if the request came in through a secure channel
or "off" if the request is for a non-secure channel.

HTTPS_KEYSIZE Number of bits in Secure Sockets Layer key size, for
example, 128.

HTTPS_SECRET_KEYSIZE Number of bits in the server certificate private key, for
example, 1024.

HTTPS_SERVER_ISSUER Issuer field of the server certificate.

HTTPS_SERVER_SUBJECT Subject field of the server certificate.

INSTANCE_ID The ID for the instance in textual format. If the instance ID is
1, it appears as a string. Under IIS you can use this variable
to retrieve the ID of the Web-server instance (in the
metabase) to which the request belongs.

INSTANCE_META_PATH* The metabase path for the instance of IIS that responds to
the request.

LOCAL_ADDR Returns the Server Address on which the request came in.
This is important on multi-homed machines where there can
be multiple IP addresses bound to a machine and you want to
find out which address the request used.

LOGON_USER The Windows account the client user is logged into.

Note
Not supported by Sun Chili!Soft ASP for UNIX.

Sun Chili!Soft ASP 3.6.2 Product Documentation 397

PATH_INFO The extra path information, as given by the client. Scripts can
be accessed by using their virtual path and the PATH_INFO
server variable. If this information comes from a URL, it is
decoded by the server before it is passed to the script.

PATH_TRANSLATED A translated version of PATH_INFO that takes the path and
performs any virtual to physical mapping.

QUERY_STRING Query information in the string following the question mark (?)
in the HTTP request.

REMOTE_ADDR The IP address of the remote host making the request.

REMOTE_HOST The name of the host making the request. If the server does
not have this information, it will set REMOTE_ADDR and
leave this empty.

REMOTE_USER If the server supports user authentication and the script is
protected, this is the username by which the user is
authenticated.

REQUEST_METHOD The method used to make the request. For HTTP, this would
be GET, HEAD, POST, etc.

SCRIPT_NAME A virtual path to the script being executed. This is used for
self-referencing URLs.

SERVER_NAME The server’s host name, DNS alias, or IP address as it would
appear in self-referencing URLs.

SERVER_PORT The port number to which the request was sent.

SERVER_PORT_SECURE A string that contains either 0 or 1. If the request is being
handled on the secure port, then this will be 1; otherwise it
will be 0.

SERVER_PROTOCOL The name and revision of the information protocol. Format:
protocol/revision.

SERVER_SOFTWARE The name and version of the server software answering the
request and running the gateway. Format: name/version.

URL Gives the base portion of the URL.

*These server variables are only valid when running Sun Chili!Soft ASP with Microsoft Internet
Information Server. When using other Web servers they will always be empty.

Remarks: Request Object ServerVariables Collection
If a client sends a header other than those specified in the preceding table, you can retrieve the
value of the header by prefixing the header name with "HTTP_" in the call to
Request.ServerVariables. For example, if the client sent the following header:

SomeNewHeader:SomeNewValue

you could retrieve SomeNewValue by using the following:

<% Request.ServerVariables("HTTP_SomeNewHeader") %>

Examples: Request Object ServerVariables Collection

Sun Chili!Soft ASP 3.6.2 Product Documentation 398

You can use an iterator to loop through each server variable name. For example, the following
script prints all of the server variables in a table:

<TABLE>

<TR><TH>Server Variable</TH><TH>Value</TH></TR>

<% for each name in Request.ServerVariables %>

<TR>

 <TD><%= name %></TD>

 <TD><%= Request.ServerVariables(name) %></TD>

</TR>

<% Next %>

</TABLE>

The following example demonstrates using Request.ServerVariables to insert the name of a
server into a hyperlink:

<A HREF="http://<%= Request.ServerVariables("SERVER_NAME")%>

 /scripts/MyPage.asp">Link to MyPage.asp

ASP Request Object Methods

 ASP Request Object BinaryRead Method
The BinaryRead method reads information sent from the client to the server as part of a POST
request. The data is returned as a SafeArray that contains information about the dimensions of
the array.

Syntax: ASP Request Object BinaryRead Method
variant = Request.BinaryRead(count)

Parameters: ASP Request Object BinaryRead Method
variant

An array of unsigned bytes returned by this method.

count

Before the read, the number of bytes to read from the client. After execution, the actual number of
bytes successfully read from the client. The number of bytes that will be read is less than or equal
to Request.TotalBytes.

Remarks: ASP Request Object BinaryRead Method
The BinaryRead method is used to read the raw data sent by a POST request. This provides low-
level access as opposed to the formatted data provided by the Request.Form collection. Once
you have used the BinaryRead method, any call to a variable in the Request.Form collection

Sun Chili!Soft ASP 3.6.2 Product Documentation 399

will cause an error. Conversely, calling BinaryRead after accessing the Request.Form collection
will also cause an error. Remember, if you access a variable in the Request object without
specifying a collection, the Request.Form collection may be accessed, bringing this rule into
force.

Examples: ASP Request Object BinaryRead Method
The following example uses the BinaryRead method to place the contents of a Request object
into a safe array.

<%

dim bytecount

dim binread

bytecount = Request.TotalBytes

binread = Request.BinaryRead(bytecount)

%>

ASP Request Object Properties

 ASP Request Object TotalBytes Property
The TotalBytes property contains the total number of bytes sent by the client in the body of the
request. The property is read-only.

Syntax: ASP Request Object TotalBytes Property
Counter = Request.TotalBytes

Parameters: ASP Request Object TotalBytes Property
counter

A variable to hold the total number of bytes the client sent in the request.

Examples: ASP Request Object TotalBytes Property
The following example sets a variable equal to the total number of bytes included in a request
object:

<%

dim bytecount

bytecount = Request.TotalBytes

%>

ASP Response Object

The Response object controls sending output to the browser.

Sun Chili!Soft ASP 3.6.2 Product Documentation 400

Syntax: ASP Response Object
Response.collection | property | method

ASP Response Object Collections
ASP Response Object Cookies Collection You can use this collection to set cookie

values to send to the client browser.

ASP Response Object Properties
ASP Response Object Buffer Property Indicates whether to buffer page output.

ASP Response Object CacheControl Property Determines if proxy servers are allowed to
cache the output generated by ASP.

ASP Response Object Charset Property Appends the name of the character set to the
content-type header.

ASP Response Object ContentType Property Specifies the HTTP content type for the
response.

ASP Response Object Expires Property Specifies the length of time until the page
cached on a browser expires.

ASP Response Object ExpiresAbsolute Property Specifies the date and time a page cached on
a browser expires.

ASP Response Object IsClientConnected Property Indicates if the client is still connected to the
server.

ASP Response Object PICS Property Adds the value of a PICS label to the pics-
label field of the response header.

ASP Response Object Status Property The value of the status line returned by the
server.

ASP Response Object Methods
ASP Response Object AddHeader Method Set the HTML header name to value.

ASP Response Object AppendToLog Method Adds a string to the end of the Web server log
entry for this request.

ASP Response Object BinaryWrite Method Writes the given information to the current
HTTP output without any character set
conversion.

ASP Response Object Clear Method Erases any buffered HTML output.

ASP Response Object End Method Stops processing the .asp file and returns the
current results.

ASP Response Object Flush Method Sends any buffered HTML output immediately.

ASP Response Object Redirect Method Sends a redirect message to the browser,
causing it to attempt to connect to a different
URL.

ASP Response Object Write Method Writes a variable to the current HTML output
as a string.

Sun Chili!Soft ASP 3.6.2 Product Documentation 401

ASP Response Object Collections

 ASP Response Object Cookies Collection
The Cookies collection sets the value of a cookie. If a specified cookie does not exist, it is
created. If it does exist, the cookie takes on the new value and the old value is discarded.

Syntax: ASP Response Object Cookies Collection
Response.Cookies(cookie) [(key) | .attribute] = value

Parameters: ASP Response Object Cookies Collection
cookie

The name of the cookie.

key

Optional. If key is specified, the cookie is a dictionary and key is set to value.

attribute

Specific information about the cookie itself. The attribute can be one of the following:

Attribute Description
Expires The date on which the cookie expires. This attribute must be set to a date

later than the current date to store the cookie on the client disk after the
current session ends. Write-only.

HasKeys Indicates that the cookie has keys. Read-only.

Path If set, the cookie is only sent to requests on this path. If the attribute is
not set, the application path is used. Write-only.

Secure Indicates that the cookie is secure. Write-only.

value

Specifies the value to assign to key or attribute.

Remarks: ASP Response Object Cookies Collection
If a cookie with keys is created, as in the following script:

Response.Cookies("myCookie")("type1") = "sugar"

Response.Cookies("myCookie")("type2") = "ginger snap"

the following header is sent:

SET-COOKIE:MYCOOKIE=TYPE1=sugar&TYPE2=ginger+snap

Any subsequent assignment to myCookie that does not include a key would destroy type1 and
type2. The following example discards the values type1 and type2 and replaces them with
the value "chocolate chip":

Sun Chili!Soft ASP 3.6.2 Product Documentation 402

Response.Cookies("myCookie") = "chocolate chip"

Conversely, calling a cookie with a key destroys any non-key values the cookie might contain.
The following code will discard the value "chocolate chip" and insert the key value instead:

Response.Cookies("myCookie") ("NewType") = "peanut butter"

To check to see if a cookie has key values, use the following:

Response.Cookies("myCookie").HasKeys

If myCookie is a dictionary and has keys, the previous script will evaluate to TRUE, otherwise
it will be FALSE.

You can use an iterator to set cookie attributes. The following example sets all the cookies in a
collection to expire on Dec. 31, 1999:

<%

For each cookie in Response.Cookies

 Response.Cookies(cookie).ExpiresAbsolute = #Dec. 31, 1999#

Next

%>

An iterator can also be used to set the values of all the cookies in a collection, or all the keys in a
cookie. However, when using an iterator to retrieve cookie values, the cookies must have keys or
the iterator will not execute. Use the HasKeys property to check to see whether a cookie has any
keys. This is demonstrated in the following example.

<%

If Not cookie.HasKeys Then

 'Set the value of the cookie

 Response.Cookies(cookie) = ""

Else

 'Set the value for each key in the cookie collection

 For Each key in Response.Cookies(cookie)

 Response.Cookies(cookie)(key) = ""

 Next key

%>

Examples: ASP Response Object Cookies Collection
The following example shows how you can set cookie values and their attributes:

<%

Response.Cookies("Type") = "Chocolate Chip"

Response.Cookies("Type").Expires = "July 31, 1997"

Sun Chili!Soft ASP 3.6.2 Product Documentation 403

Response.Cookies("Type").Domain = "msn.com"

Response.Cookies("Type").Path = "/www/home/"

Response.Cookies("Type").Secure = FALSE

%>

ASP Response Object Methods

 ASP Response Object AddHeader Method
The AddHeader method adds an HTML header with a specified value. This method always adds
a new HTTP header to the response. It will not replace an existing header of the same name. Once
a header has been added, it cannot be removed.

This method is for advanced use only. If another Response method will provide the functionality
you require, it is recommended that you use that method instead.

Syntax: ASP Response Object AddHeader Method
Response.AddHeader name, value

Parameters: ASP Response Object AddHeader Method
name

The name of the header variable.

value

The value assigned to the header variable.

Remarks: ASP Response Object AddHeader Method
To avoid any name ambiguity, the name of the header should not contain any underscores (_).
The Request.ServerVariables collection interprets underscores as dashes in the header name.
The following script causes a search for a header named "My-Header":

<% Request.ServerVariables("HTTP_MY_HEADER") %>

Because HTTP protocol requires that all headers be sent before content, you must call the
AddHeader method in your script before any output (such as that generated by HTML code or
the ASP Response Object Write Method) is sent to the client. The exception to this rule is when
the ASP Response Object Buffer Property is set to True. If the output is buffered, you can call
the AddHeader method at any point in the script, as long as it precedes any calls to the ASP
Response Object Flush Method. Otherwise, the call to AddHeader will generate a run-time error.

The following two examples illustrate this. In the first example, the page is not buffered. The
script works, however, because the AddHeader method is called before the server sends the Web
page to the client. If the order were reversed, the call to the AddHeader method would generate a
run-time error.

<% Response.AddHeader "WARNING", "Error Message Text" %>

Sun Chili!Soft ASP 3.6.2 Product Documentation 404

<HTML>

Some text on the Web page.

</HTML>

In the next example, the page is buffered, and as a result, the server will not send output to the
client until all the ASP scripts on the page have been processed or until the Flush method is
called. With buffered output, calls to the AddHeader method can appear anywhere the script, so
long as they precede any calls to the Flush method. If the call to the AddHeader method
appeared below the call to the Flush method in the preceding example, the script would generate
a run-time error.

<% Response.Buffer = TRUE %>

' Here is some text on your Web page.

<% Response.AddHeader "WARNING", "Error Message Text" %> Here's some
more interesting and illuminating text.

<% Response.Flush %>

<%= Response.Write("some string") %>

Examples: ASP Response Object AddHeader Method
The following example uses the AddHeader method to request that the client use BASIC
authentication.

<% Response.Addheader "WWW-Authenticate", "BASIC" %>

Note
The preceding script merely informs the client browser which authentication to use. If
you use this script in your Web applications, you should ensure that the Web server has
BASIC authentication enabled.

 ASP Response Object AppendToLog Method
The AppendToLog method adds a string to the end of the Web log entry for this page request.
You can call it multiple times during the execution of a page; each time the string is appended to
the existing entry.

Syntax: ASP Response Object AppendToLog Method
Response.AppendToLog string

Parameters: ASP Response Object AppendToLog Method
string

The text to append to the log. Because fields in Web server logs are often comma-delimited, this
string cannot contain any commas. The maximum length of the string is 80 characters.

Sun Chili!Soft ASP 3.6.2 Product Documentation 405

 ASP Response Object BinaryWrite Method
The BinaryWrite method writes the specified information to the current HTTP output without
any character conversion. It is useful for sending non-string information, such as binary data
required by custom applications.

Syntax: ASP Response Object BinaryWrite Method
Response.BinaryWrite data

Parameters: ASP Response Object BinaryWrite Method
data

The binary information to be sent.

Examples: ASP Response Object BinaryWrite Method
If you have an object that creates an array of bytes, you can send the results using BinaryWrite:

<%

Set bg = Server.CreateObject(MY.BinaryGenerator)

Pict = bg.MakePicture

Response.BinaryWrite Pict

%>

 ASP Response Object Clear Method
The Clear method erases any buffered HTML output. It only erases the response body, it does
not affect headers. You can use this method to handle error messages. Calling Clear will cause an
error if Response.Buffer is not TRUE.

Syntax: ASP Response Object Clear Method
Response.Clear

 ASP Response Object End Method
The End method stops the Web server from processing any additional script and sends the
current result. The remaining contents of the file are not processed.

Syntax: ASP Response Object End Method
Response.End

Remarks: ASP Response Object End Method
If Response.Buffer is set to TRUE, End flushes the buffer. If you do not want the result sent to
the client, use the following:

Response.Clear

Response.End

Sun Chili!Soft ASP 3.6.2 Product Documentation 406

 ASP Response Object Flush Method
The Flush method sends buffered output immediately. Flush will cause a run-time error if called
when Response.Buffer is not TRUE.

Syntax: ASP Response Object Flush Method
Response.Flush

Remarks: ASP Response Object Flush Method
If Flush is called on an ASP page, the server does not honor Keep-Alive requests for that page.

 ASP Response Object Redirect Method
The Redirect method causes the browser to attempt to connect to a different URL.

Syntax: ASP Response Object Redirect Method
Reponse.Redirect URL

Parameters: ASP Response Object Redirect Method
URL

The Uniform Resource Locator the client is redirected to.

Remarks: ASP Response Object Redirect Method
Any response body content set explicitly in the page is ignored. However, the method does send
to the client other HTTP headers set by this page. An automatic response body containing the
redirect URL as a link is generated.

The Redirect method sends the following explicit header:

HTTP/1.0 302 Object Moved

Location URL

 ASP Response Object Write Method
The Write method writes a specified string to the current output.

Syntax: ASP Response Object Write Method
Response.Write variant

Parameters: ASP Response Object Write Method
variant

The data to write. This parameter can be any data type supported by the Visual Basic VARIANT
data type, including characters, strings, and integers. This value cannot contain the character

Sun Chili!Soft ASP 3.6.2 Product Documentation 407

combination "%>"; instead you should use the escape sequence "%\>". The Web server will
translate the escape sequence when it processes the script.

Remarks: ASP Response Object Write Method
VBScript limits the size of string literals to 1022 bytes, therefore variant cannot be a string literal
of more than 1022 bytes. You can, however, specify variant as the name of a variable containing
more than 1022 bytes.

Examples: ASP Response Object Write Method
The following VBScript, in which a is repeated 1023 times in the string literal will fail:

<% Response.Write "aaaaaaaaaaaa...aaaaaaaaaaaaaaaaaa"

The following VBScript, in which `a' is repeated 4096 times in the string variable will succeed:

AVeryLongString = String(4096, "a")

Response.Write(AVeryLongString)

Using the Response.Write method to send output to the client:

I just want to say <% Response.Write "Hello World." %>

Your name is: <% Response.Write Request.Form("name") %>

The following script demonstrates adding an HTML tag to the Web page output. Because the
string returned by the Write method cannot contain the character combination, "%>", the escape,
"%\>", has been used instead:

<% Response.Write "<TABLE WIDTH = 100%\>" %>

The script outputs:

<TABLE WIDTH = 100%>

ASP Response Object Properties

 ASP Response Object Buffer Property
The Buffer property determines whether to buffer page output. When page output is buffered,
HTML output is not sent to the client until the script on the page has been processed or until the
ASP Response Object Flush or ASP Response Object End methods are called.

The Buffer property cannot be set after the server has sent output to the client. For this reason,
you should set the Buffer property on the first line of the script.

Syntax: ASP Response Object Buffer Property
Response.Buffer = flag

Parameters: ASP Response Object Buffer Property
flag

Specifies whether to buffer page output. It can be one of the following values:

Sun Chili!Soft ASP 3.6.2 Product Documentation 408

Value Description
TRUE Output is buffered. The server does not send output from the script on the page

until all the script has been processes or until the Flush or End method is
called.

FALSE Output is not buffered. The server sends output from the script on the page as
the script is processed.

Remarks: ASP Response Object Buffer Property
If the current ASP script has buffering set to TRUE and does not call the ASP Response Object
Flush Method, the server will honor Keep-Alive requests made by the client. This saves time
because the server does not have to create a new connection for each client request.

However, buffering prevents any of the response from being displayed to the client until the
server has finished all script processing for the current page. For long scripts, this may cause a
perceptible delay.

 ASP Response Object CacheControl Property
The CacheControl property overrides the default Private value. Setting this property to Public
allows proxy servers to cache the output generated by ASP.

Syntax: ASP Response Object CacheControl Property
Response.CacheControl = Cache Control Header

Parameters: ASP Response Object CacheControl Property
Cache Control Header

A cache control header that will be either Public or Private.

 ASP Response Object Charset Property
The Charset property appends the name of the character set (for example, ISO-LATIN-7) to the
content-type header in the response object.

Syntax: ASP Response Object Charset Property
Response.Charset(CharsetName)

Parameters: ASP Response Object Charset Property
CharsetName

A string that specifies a character set for the page. The character set name will be appended to the
content-type header in the Response object.

Examples: ASP Response Object Charset Property
For an ASP page that did not include the Response.Charset property, the content-type header
would be:

Sun Chili!Soft ASP 3.6.2 Product Documentation 409

content-type:text/html

If the same .asp file included:

<% Response.Charset("ISO-LATIN-7") %>

the content-type header would be:

content-type:text/html; charset=ISO-LATIN-7

Remarks: ASP Response Object Charset Property
This function inserts any string in the header, whether it represents a valid character set or not.

If a single page contains multiple tags containing Response.Charset, each Response.Charset
will replace the previous CharsetName. As a result, the character set will be set to the value
specified by the last instance of Response.Charset in the page.

 ASP Response Object ContentType Property
The ContentType property specifies the HTTP content type for the response. If not specified, the
default is "text/HTML."

Syntax: ASP Response Object ContentType Property
Response.ContentType = ContentType

Parameters: ASP Response Object ContentType Property
ContentType

A string describing the content type. This string is usually formatted type/subtype, where type is
the general content category and subtype is the specific content type. For a full list of supported
content types, see your Web browser documentation or the current HTTP specification.

Examples: ASP Response Object ContentType Property
The following example sets the content type to non-HTML encoded text. This means the client
will not interpret any HTML tags in the text:

<% Response.ContentType="text/plain"

The following example shows some other common content types:

<% Response.ContentType = "text/html" %>

<% Response.ContentType = "image/GIF" %>

<% Response.ContentType = "image/JPEG" %>

 ASP Response Object Expires Property
The Expires property sets the length of time a page will be cached on a client browser. If the user
returns to the page before it expires, the cached version will be displayed.

Syntax: ASP Response Object Expires Property

Sun Chili!Soft ASP 3.6.2 Product Documentation 410

Response.Expires = number

Parameters: ASP Response Object Expires Property
number

The number of minutes until the page expires. Set this to 0 to have the cached page expire
immediately.

Remarks: ASP Response Object Expires Property
If the property is set more than once on a page, the shortest time is used.

 ASP Response Object ExpiresAbsolute Property
The ExpiresAbsolute property specifies the date and time at which a page cached on a browser
expires. If the user returns to the same page before that date and time, the cached version is
displayed. If a time is not specified, the page expires at midnight of that day. If a date is not
specified, the page expires at the given time on the day that the script is run.

Syntax: ASP Response Object ExpiresAbsolute Property
Reponse.ExpiresAbsolute = [date] [time]

Parameters: ASP Response Object ExpiresAbsolute Property
date

Specifies the date on which the page will expire. The value sent in the Expires header conforms to
the RFC-1123 date format.

time

Specifies the time at which the page will expire. This value is converted to GMT before the
header is sent.

Remarks: ASP Response Object ExpiresAbsolute Property
If this property is set more than once on a page, the earliest time is used.

Examples: ASP Response Object ExpiresAbsolute Property
The following example sets the page to expire 15 seconds after 1:30 p.m. on May 31, 1996:

Response.ExpiresAbsolute = #May 31, 1996 13:30:15#

 ASP Response Object IsClientConnected Property
The IsClientConnected property is a read-only property that indicates if the client has
disconnected since the last call to Response.Write.

Syntax: ASP Response Object IsClientConnected Property
Response.IsClientConnected

Sun Chili!Soft ASP 3.6.2 Product Documentation 411

Remarks: ASP Response Object IsClientConnected Property
This property allows you greater control over circumstances where the client may have
disconnected from the server. For example, if a long period of time has elapsed between a client
request and the server response, it may be beneficial to make sure the client is still connected
before continuing to process the script.

Examples: ASP Response Object IsClientConnected Property
<%

'check to see if the client is connected

If Not Response.IsClientConnected Then

 'get the sessionid to send to the shutdown function

 Shutdownid = Session.SessionID

'perform shutdown processing

 Shutdown(Shutdownid)

 End If

%>

 ASP Response Object PICS Property
The PICS property adds a value to the pics-label field of the response header.

Syntax: ASP Response Object PICS Property
Response.PICS(PICSLabel)

Parameters: ASP Response Object PICS Property
PICSLabel

A string that is a properly formatted PICS label. The value will be appended to the PICS-Label
field in the response header.

Remarks: ASP Response Object PICS Property
The Response.PICS property inserts any string into the response header, whether or not it is a
valid PICS label.

If a single page sets Response.PICS multiple times, each setting will replace the previous one.
As a result, the PICS label will be set to the last Response.PICS instance on the page.

Because PICS labels contain quotes, you must replace quotes with " & chr(34) & ".

Examples: ASP Response Object PICS Property
For an .asp file that includes:

<%

Response.PICS("(PICS-1.1 <http://www.rsac.org/ratingv01.html>

Sun Chili!Soft ASP 3.6.2 Product Documentation 412

labels on " & chr(34) & "1997.01.05T08:15-0500" & chr(34) &

" until" & chr(34) & "1999.12.31T23:59-0000" & chr(34) &

" ratings (v 0 s 0 l 0 n 0))")

%>

the following header would be added:

PICS-label:(PICS-1.1 <http://www.rsac.org/ratingv01.html>

labels on "1997.01.05T08:15-0500"

until "1999.12.31T23:59-0000"

ratings (v 0 s 0 l 0 n 0))

 ASP Response Object Status Property
The Status property sets the value of the status line returned by the server. Status values are
defined in the HTTP specification.

Syntax: ASP Response Object Status Property
Response.Status = StatusDescription

Parameters: ASP Response Object Status Property
StatusDescription

A string that contains a three-digit status code and a brief explanation of that status. For example,
"310 Move Permanently".

Remarks: ASP Response Object Status Property
Use this property to modify the status line returned by the server.

Examples: ASP Response Object Status Property
The following example sets the response status:

Response.Status = "401 Unauthorized"

ASP Server Object

The Server object provides access to methods and properties on the server. Most of its methods
and properties serve as utility functions.

Syntax: ASP Server Object
Server.method | property

Sun Chili!Soft ASP 3.6.2 Product Documentation 413

ASP Server Object Properties
ASP Server Object ScriptTimeout Property The length of time a script runs before it is

terminated.

ASP Server Object Methods
ASP Server Object CreateObject Method Creates an instance of a server component.

ASP Server Object HTMLEncode Method Applies HTML encoding to a specified string.

ASP Server Object MapPath Method Maps the specified virtual path, either the absolute
path on the current server or the path relative to the
current page, into a physical path.

ASP Server Object URLEncode Method Applies URL encoding rules, including escape
characters, to a string.

ASP Server Object Methods

 ASP Server Object CreateObject Method
The CreateObject method creates an instance of a server component. If the component has
implemented the OnStartPage and OnEndPage methods, the OnStartPage method is called at
this time.

Syntax: ASP Server Object CreateObject Method
Obj = Server.CreateObject(progID)

Parameters: ASP Server Object CreateObject Method
Obj

A variable name for the object

progID

Specifies the type of object to create. The format for progID is [vendor.]component[.version].

Remarks: ASP Server Object CreateObject Method
By default, objects created by the Server.CreateObject method have page scope. This means
that they are automatically destroyed by the server when it finishes processing the current ASP
page.

To create an object with session or application scope, you can either use the <OBJECT> tag and
set the SCOPE parameter to SESSION or APPLICATION, or store the object in a session or
application variable.

Examples: ASP Server Object CreateObject Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 414

You can destroy an object by setting the variable to NOTHING or setting the variable to a new
value, as shown below. The first example releases the object ad. The second replaces ad with a
string:

<% Session("ad") = Nothing %>

<% Session("ad") = "some other value" %>

You cannot create an object with the same name as a built-in object. The following example will
cause an error:

<% Set Response = Server.CreateObject("Response") %>

The following example creates an instance of the MSWC.BrowserType component. This
component can be used to determine the capabilities of the browser requesting the page.

<% Set MyB = Server.CreateObject("MSWC.BrowserType") %>

 ASP Server Object HTMLEncode Method
The HTMLEncode method applies HTML encoding to a specified string.

Syntax: ASP Server Object HTMLEncode Method
Server.HTMLEncode(string)

Parameters: ASP Server Object HTMLEncode Method
string

Specifies the string to encode.

Examples: ASP Server Object HTMLEncode Method
The following script:

<% Server.HTMLEncode("The paragraph tag <P>" %>

produces the following output:

The paragraph tag <P>

The preceding text will be displayed on a Web browser as:

The paragraph tag <P>

You can view the source to see the encoded HTML.

 ASP Server Object MapPath Method
The MapPath method maps the specified relative or virtual path to the corresponding physical
directory on the server.

Syntax: ASP Server Object MapPath Method
Server.MapPath(path)

Sun Chili!Soft ASP 3.6.2 Product Documentation 415

Parameters: ASP Server Object MapPath Method
path

Specifies the relative or virtual path to map to a physical directory. If path starts with either a
forward or backward slash, either (/) or (\), the MapPath method returns a path as if path is a full
virtual path. If path doesn't start with a slash, the MapPath method returns a path relative to the
directory of the .ASP file being processed.

Note
The path parameter can contain relative paths (../../Scripts/, for example).

Remarks: ASP Server Object MapPath Method
The MapPath method does not check whether the path it returns is valid or exists on the server.
Because the MapPath method maps a path regardless of whether the specified directories
currently exist, you can use the MapPath method to map a path to a physical directory structure,
and then pass that path to a component that creates the specified directory or file on the server.

Examples: ASP Server Object MapPath Method
For the examples below, the DATA.TXT and TEST.ASP files are located in the
C:\Inetpub\Wwwroot\Script directory. The TEST.ASP file contains scripts. The
C:\Inetpub\Wwwroot directory is set as the server's home directory.

The following example uses the server variable PATH_INFO to map the physical path to the
current file:

<%= server.mappath(Request.ServerVariables("PATH_INFO"))%>

This script produces the following:

c:\inetpub\wwwroot\script\test.asp

Because the path parameters in the following examples do not start with a slash character, they
are mapped relative to the current directory, in this case C:\Inetpub\Wwwroot\Script.

<%= server.mappath("data.txt")%>

<%= server.mappath("script/data.txt")%>

This script outputs the following:

c:\inetpub\wwwroot\script\data.txt

c:\inetpub\wwwroot\script\script\data.txt

The next two scripts use the slash characters to specify that the paths returned should be looked
up as complete virtual paths on the server:

<%= server.mappath("/script/data.txt")%>

<%= server.mappath("\script")%>

This script outputs the following:

Sun Chili!Soft ASP 3.6.2 Product Documentation 416

c:\inetpub\script\data.txt

c:\inetpub\script

The following examples demonstrate how you can use either a forward slash (/) or a backslash (\)
to return the physical path to the home directory. The following script:

<%= server.mappath("/")%>

<%= server.mappath("\")%>

produces the following output:

c:\inetpub\wwwroot

c:\inetpub\wwwroot

 ASP Server Object URLEncode Method
The URLEncode method applies URL encoding rules, including escape characters, to a specified
string.

Syntax: ASP Server Object URLEncode Method
Server.URLEncode(string)

Parameters: ASP Server Object URLEncode Method
string

Specifies the string to encode.

Examples: ASP Server Object URLEncode Method
The following example encodes the paragraph tag:

<%= Server.URLEncode("The paragraph tag: <P>") %>

The script produces the following:

The+paragraph+tag%3A+%3CP%3E

ASP Server Object Properties

 ASP Server Object ScriptTimeout Property
The ScriptTimeout property specifies the maximum amount of time a script can run before it is
terminated. The delay before scripts are ended is by default 90 seconds. This will not take effect
while a server component is processing.

Syntax: ASP Server Object ScriptTimeout Property
Server.ScriptTimeout = NumSeconds

Parameters: ASP Server Object ScriptTimeout Property
NumSeconds

Sun Chili!Soft ASP 3.6.2 Product Documentation 417

Specifies the maximum number of seconds that a script can run before the server terminates it.
The default value is 90 seconds.

Note
The ScriptTimeout property cannot be set to a value less than that specified in the
registry settings or configuration file. For example, if NumSeconds is set to 10, and the
registry setting or configuration file contains the default value of 90 seconds, scripts will
time out after 90 seconds. However, if NumSeconds were set to 100, the scripts would
time out after 100 seconds.

Examples: ASP Server Object ScriptTimeout Property
The following example causes scripts to time out if the server takes longer than 30 seconds to
process them.

<% Server.ScriptTimeout = 30 %>

The following example retrieves the current value of the ScriptTimeout property and stores it in
the variable TimeOut.

<% TimeOut = Server.ScriptTimeout %>

ASP Session Object

The Session object stores information needed for a particular user-session.

Variables stored in the Session object are not discarded when the user jumps between pages in the
application; instead, they persist for the entire user-session. The Web server automatically creates
a Session object when a Web page (from a server application) is requested by a user who does not
already have a session. The server destroys the Session object when the session expires or is
abandoned.

The AllowSessionState registry or configuration file setting controls the creation of Session
objects. If AllowSessionState is set to False, the Session object cannot be used. The default is to
use Sessions.

Session object event scripts are declared in the Global.asa.

Note
Session state is only maintained for browsers that support cookies.

Syntax: ASP Session Object
Session.collection|property|method

ASP Session Object Collections
ASP Session Object Contents
Collection

Contains the items you have added to the session with script
commands.

Sun Chili!Soft ASP 3.6.2 Product Documentation 418

ASP Session Object StaticObjects
Collection

Contains items created in Global.asa using the <OBJECT>
tag and given session scope.

ASP Session Object Properties
ASP Session Object SessionID
Property

Returns the session identifier for this client. Each session has
a unique identifier.

ASP Session Object Timeout Property The timeout period, in minutes, for session state for this
application.

ASP Session Object LCID Property Sets or gets a Locale Identifier (LCID) that determines how
certain content—such as date, time, and currency—is
formatted.

The CodePage property is not currently implemented in Sun Chili!Soft ASP.

ASP Session Object Methods
ASP Session Object Abandon Method Destroys a Session object and all objects stored in it, and

releases their resources.

ASP Session Object Events
Session_OnStart Occurs when the server creates a new session. It runs before executing the

requested page.

Session_OnEnd Occurs when the session is abandoned or times out.

Session object events are defined in the Global.asa file.

Remarks: ASP Session Object
You can store values in the Session object. Information stored in the Session object is available
for the entire session and has session scope. The following script demonstrates how two types of
variables are stored:

Session("username") = "Janine"

Session("age") = 42

If you are using VBScript as your scripting language, you must use the Set keyword to store an
object in the Session object, as shown in the following example:

<% Set Session("Obj1") = Server.CreateObject("MyComponent") %>

You can then call the methods and properties of Obj1 on subsequent Web pages by using the
following syntax:

<% Session("Obj1").MyObjMethod %>

As an alternative, you can extract a local copy of the object:

Set MyLocalObj = Session("Obj1")

MyLocalObj.MyObjMethod

Sun Chili!Soft ASP 3.6.2 Product Documentation 419

You cannot store a built-in object in a Session object. Each of the following lines will return an
error:

Set Session("var1") = Session

Set Session("var2") = Request

Set Session("var3") = Response

Set Session("var4") = Server

Set Session("var5") = Application

Before you store an object in the Session object, you must know what threading model it uses.
Only objects marked as both free and apartment-threaded can be stored in the Session object.

The Session object is implemented as a collection. If you store an array in an Session object, you
should not attempt to alter elements of the stored array directly. For example, the following script
does not work:

Session("StoredArray") (3) = "new value"

Instead of storing the value "new value" in StoredArray(3), the value is stored in the
Session collection, overwriting any information stored at Session(3).

See the Application object for an example of storing an array.

ASP Session Object Collections

 ASP Session Object Contents Collection
The Contents collection contains all of the items that have been created for a session without
using the <OBJECT> tag. The collection can be used to determine the value of a specific item, or
to iterate over all the items in the session.

Syntax: ASP Session Object Contents Collection
Session.Contents(key)

Parameters: ASP Session Object Contents Collection
key

The name of the item to retrieve.

Remarks: ASP Session Object Contents Collection
You can use an iterating control structure to loop through the keys of the Contents collection.
This is demonstrated in the following example.

<%

Dim sessitem

For Each sessitem in Session.Contents

Sun Chili!Soft ASP 3.6.2 Product Documentation 420

 Response.write(sessitem & " : " & Session.Contents(sessitem) &
"
")

Next

%>

 ASP Session Object StaticObjects Collection
The StaticObjects collection contains all the objects created in Global.asa with the <OBJECT>
tag and given session scope. The collection can be used to retrieve the value of a specific item, or
you can use an iterator to retrieve all the items in the collection.

Syntax: ASP Session Object StaticObjects Collection
Session.StaticObjects(key)

Parameters: ASP Session Object StaticObjects Collection
key

The item to retrieve.

Remarks: ASP Session Object StaticObjects Collection
You can use an iterating control structure to loop through the keys of the StaticObjects
collection. This is demonstrated in the following example.

<%

Dim objprop

For Each objprop in Session.StaticObjects

 Response.write(objproperty & " : " &
Session.StaticObjects(objprop) & "
")

Next

%>

ASP Session Object Methods

 ASP Session Object Abandon Method
The Abandon method destroys all the objects stored in a Session object and releases their
resources. If you do not call the Abandon method explicitly, the server destroys these objects
when the session times out.

Syntax: ASP Session Object Abandon Method
Session.Abandon

Remarks: ASP Session Object Abandon Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 421

When the Abandon method is called, the current Session object is queued for deletion, but is not
actually deleted until all of the script commands on the current page have been processed. This
means that you can access variables stored in the Session object on the same page as the call to
Abandon, but not in any subsequent Web pages.

For example, in the following script, the third line prints the value Mary. This is because the
Session object is not destroyed until the server has finished processing the script.

Session.Abandon

Session("MyName") = "Mary"

Response.Write(Session("MyName"))

If you access the variable MyName on a subsequent Web page, it is empty. This is because
MyName was destroyed with the previous Session object when the page containing the above
example finished processing.

The server creates a new Session object when you open a subsequent Web page after abandoning
a session. You can store variables and objects in this new Session object.

ASP Session Object Properties

 ASP Session Object SessionID Property
The SessionID property returns the session identification for this user. Each session has a unique
identifier that is generated by the server when the session is created. The session ID is returned as
data type LONG.

Syntax: ASP Session Object SessionID Property
Session.SessionID

Remarks: ASP Session Object SessionID Property
Do not use the SessionID property to generate primary key values for a database application. This
is because if the Web server is restarted, some SessionID values may be the same as those
generated before the server was stopped. Instead, you should use an auto-increment column data
type.

 ASP Session Object Timeout Property
The Timeout property specifies the timeout period for the Session object for this application, in
minutes. If the user does not refresh or request a page within the timeout period, the session ends.

Syntax: ASP Session Object Timeout Property
Session.Timeout [= nMinutes]

Parameters: ASP Session Object Timeout Property
nMinutes

Sun Chili!Soft ASP 3.6.2 Product Documentation 422

The number of minutes that a session can remain idle before the server terminates it
automatically. The default is 20 minutes.

Remarks: ASP Session Object Timeout Property
The SessionTimeout registry or configuration file setting controls the default value of the
Timeout property for an ASP application.

 ASP Session Object LCID Property
The SessionID property enables you to set or get a Locale Identifier (LCID) that determines how
certain content—such as date, time, and currency—is formatted.

Syntax: ASP Session Object LCID Property
nCurrentLCID = Session.LCID

SessionLCID = nLCIDnumber

Parameters: ASP Session Object LCID Property
nLCIDnumber

A valid Local Identifier (LCID) number. For a list of valid values, see "Developing International
Applications" in "Chapter 4: Building a Sun Chili!Soft ASP Application."

Remarks: ASP Session Object LCID Property
For usage and limitations, see "Developing International Applications" in "Chapter 4: Building a
Sun Chili!Soft ASP Application."

ASP Component Reference

Sun Chili!Soft ASP automatically installs a number of components that you can use to build
dynamic Web pages. This section provides reference information about these components.

In this section:

� Installed ASP Components

� ASP Ad Rotator Component

� ASP Browser Capabilities Component

� ASP Content Linking Component

� ASP Content Rotator Component

� ASP Counters Component

� ASP MyInfo Component

� ASP Tools Component

Sun Chili!Soft ASP 3.6.2 Product Documentation 423

 Installed ASP Components
The following is a list of ASP components that are installed with Sun Chili!Soft ASP.

Component Description

Ad Rotator Creates an Ad Rotator object that automates the rotation of
advertisement images on a Web page.

Browser
Capabilities

Creates a BrowserType object that determines the type, version, and
capabilities of every browser that visits your site.

Content Linking Creates a NextLink object that manages a list of URLs so that you can
treat the pages in your Web site like the pages in a book.

Content Rotator Creates a ContentRotator object that automatically rotates HTML
content strings on a Web page.

Counters Creates a Counters object that can create, store, increment, and retrieve
any number of individual counters.

MyInfo Creates a MyInfo object that keeps track of personal information, such
as the site administrator's name, address, and display choices.

Tools Creates a Tools object that provides utilities that enable you to easily
add sophisticated functionality to your Web pages.

ASP Ad Rotator Component

The Ad Rotator component creates an Ad Rotator object that automates the rotation of
advertisement images on a Web page. Each time a user opens or reloads the Web page, the Ad
Rotator object displays a new advertisement based on the information you specify in a Rotator
Schedule file.

You can record how many users click each advertisement by setting the URL parameter in the
Rotator Schedule file to direct users to the Redirection file. When you specify this parameter,
each jump to an advertiser’s URL is recorded in the Web server activity logs.

The Ad Rotator object relies on two additional files for parameters and functionality:

Redirection File. An optional file that implements redirection and enables you to record how
many users click on each advertisement and save this information to a file on the server.

Rotator Schedule File. A text file that contains the display schedule and file information for
advertisements. This file must be available on a Web server virtual path.

Registry Settings: ASP Ad Rotator Component
The Ad Rotator Component makes use of no registry settings.

Sun Chili!Soft ASP 3.6.2 Product Documentation 424

Syntax: ASP Ad Rotator Component
The Ad Rotator Control is registered with the ProgId of "MSWC.AdRotator". The following
VBScript excerpt shows creating an instance of the control.

Set adRot = Server.CreateObject("MSWC.AdRotator")

Properties: ASP Ad Rotator Component
� Border

� Clickable

� TargetFrame

 ASP Ad Rotator Component Rotator Schedule File
The Rotator Schedule file contains information that the Ad Rotator component uses to manage
and display the various advertisement images. In it you can specify the details for the
advertisements, such as the size of the advertisement space, the image files to use, and the
percentage of time that each file should be displayed.

The Rotator Schedule file has two sections. The first section sets parameters that apply to all
advertisement images in the rotation schedule. The second section specifies file and location
information for each individual advertisement and the percentage of display time that each
advertisement should receive. The two sections are separated by a line containing only an asterisk
(*).

In the first section there are four global parameters, each consisting of a keyword and a value. All
are optional. If you do not specify values for the global parameters, the Ad Rotator uses default
values. In this case, the first line of the file must contain only an asterisk (*).

Syntax: ASP Ad Rotator Component Rotator Schedule File
[REDIRECT URL]

[WIDTH numWidth]

[HEIGHT numHeight]

[BORDER numBorder]

*

adURL

adHomePageURL

Text

impressions

Parameters: ASP Ad Rotator Component Rotator Schedule File
URL

Sun Chili!Soft ASP 3.6.2 Product Documentation 425

Specifies the path to the dynamic-link library (.dll) or application (.asp) file that implements
redirection. This path can be specified either fully (http://MyServer/MyDir/redirect.asp) or
relative to the virtual directory (/MyDir/redirect.asp).

numWidth

Specifies the width of the advertisement on the page, in pixels. The default is 440 pixels.

numHeight

Specifies the height of the advertisement on the page, in pixels. The default is 60 pixels.

numBorder

Specifies the thickness of the hyperlink border around the advertisement, in pixels. The default is
a 1-pixel border. Set this parameter to 0 for no border.

adURL

The location of the advertisement image file.

adHomePageURL

The location of the advertiser’s home page. If the advertiser does not have a home page, put a
hyphen (-) on this line to indicate that there is no link for this ad.

Text

Alternate text that is displayed if the browser does not support graphics, or has its graphics
capabilities turned off.

impressions

A number between 0 and 10000 that indicates the relative weight of the advertisement.

For example, if a Rotator Schedule file contains three ads with impressions set to 2, 3, and 5, the
first advertisement is displayed 20 percent of the time, the second 30 percent of the time, and the
third 50 percent of the time.

Remarks: ASP Ad Rotator Component Rotator Schedule File
If the sum of the impressions parameters for all items exceeds 10000, an error will be generated
the first time the Rotator Schedule file is accessed by a call to the GetAdvertisement method.

Examples: ASP Ad Rotator Component Rotator Schedule File
The following script demonstrates how you can use a rotator schedule file to display a variety of
advertisements and how to include a redirection file.

---ADROT.TXT---

REDIRECT /scripts/adredir.asp

WIDTH 440

HEIGHT 60

BORDER 1

*

Sun Chili!Soft ASP 3.6.2 Product Documentation 426

http://kabaweb/ads/homepage/chlogolg.gif

http://www.bytecomp.com/

Check out the ByteComp Technology Center

20

http://kabaweb/ads/homepage/gamichlg.gif

-

Sponsored by Flyteworks

20

http://kabaweb/ads/homepage/ismodemlg.gif

http:// www.proelectron.com/

28.8 internal PC modem, only $99

80

http://kabaweb/ads/homepage/spranklg.gif

http://www.clocktower.com/

The #1 Sports site on the net

10

 ASP Ad Rotator Component Redirection File
The Redirection file is a file that you create. It usually includes script to parse the query string
sent by the AdRotator object and to redirect the user to the URL associated with the
advertisement that the user clicked on.

You can also include script in the Redirection file to count the number of users that have clicked
on a particular advertisement, and save this information to a file on the server.

Examples: ASP Ad Rotator Component Redirection File
The following example redirects the user to the advertiser’s home page.

---ADREDIR.ASP---

<% Response.Redirect(Request.QueryString("url")) %>

ASP Ad Rotator Component Properties

 ASP Ad Rotator Component Border Property
The Border property enables you to specify whether to display the advertisements with a
surrounding border.

Syntax: ASP Ad Rotator Component Border Property

Sun Chili!Soft ASP 3.6.2 Product Documentation 427

Border = size

Parameters: ASP Ad Rotator Component Border Property
size

Specifies the thickness of the border that surrounds the displayed advertisement. The default is
the value set in the header of Rotator Schedule file. 0 specifies no border.

 ASP Ad Rotator Component Clickable Property
The Clickable property enables you to specify whether the advertisements are displayed as
hyperlinks.

Syntax: ASP Ad Rotator Component Clickable Property
Clickable = value

Parameters: ASP Ad Rotator Component Clickable Property
value

Specifies whether the advertisement should be a hyperlink. This parameter can set to either
TRUE or FALSE. If FALSE, only the image is displayed without a "click-through" hyperlink.
The default value is TRUE.

 ASP Ad Rotator Component TargetFrame Property
The TargetFrame property specifies the target frame into which the link should be loaded. This
property fulfills the same function as the TARGET parameter in an HTML anchor statement.

Syntax: ASP Ad Rotator Component TargetFrame Property
TargetFrame = frame

Parameters: ASP Ad Rotator Component TargetFrame Property
frame

Specifies the name of the frame in which to display the advertisement. This parameter can also be
one of the HTML frame-keywords, such as _TOP, NEW, CHILD, _SELF, _PARENT, or
_BLANK. The default value is NO FRAME.

ASP Ad Rotator Component Methods

 ASP Ad Rotator Component GetAdvertisement Method
The GetAdvertisement method retrieves the next advertisement from the Rotator Schedule file.
Each time the script is run, such as when a user opens or refreshes a page, the method retrieves
the next scheduled advertisement.

Arguments: ASP Ad Rotator Component GetAdvertisement Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 428

rotationSchedulePath Specifies the location of the Rotator Schedule file relative to the
virtual directory. For example, if the physical path was
C:\Inetpub\Wwwroot\Ads\Adrot.txt (where Wwwroot is the "/"
virtual directory), you would specify the path \Ads\Adrot.txt.

Return Values: ASP Ad Rotator Component GetAdvertisement Method
Returns HTML that displays the advertisement in the current page.

Examples: ASP Ad Rotator Component GetAdvertisement Method
The following example gets an advertisement from the Adrot.txt file in the /Ads/ virtual directory.

<% Set NextAd = Server.CreateObject("MSWC.AdRotator") %>

<%= NextAd.GetAdvertisement("/ads/adrot.txt") %>

Examples: ASP Ad Rotator Component GetAdvertisement Method HTML Output
Assuming the following fragment of a redirection file is chosen by the control:

REDIRECT /foo/bar.asp

WIDTH 300

HEIGHT 40

BORDER 1

*

/ads/picture.gif

http://www.chilisoft.com/info/index.html

Hello from Chilisoft.

90

The HTML that is produced is:

<A HREF=
"/foo/bar.asp?url=http://www.chilisoft.com/info/index.html&image=/ad
s/picture.gif TARGET="_blank">

<IMG SRC="/ads/picture.gif" ALT="Hello from Chilisoft" WIDTH=300
HEIGHT=40 BORDER = 1>

The Redirect script "foo/bar.asp" is invoked and can record click-through information before
redirecting the client browser to the user’s desired location.

ASP Browser Capabilities Component

The Browser Capabilities component determines which features a browser supports. This
component uses two files: Browscap.ini and Browscap.dll (libchilicap.so and libchilicap.ini on
UNIX).

Sun Chili!Soft ASP 3.6.2 Product Documentation 429

Syntax: ASP Browser Capabilities Component
Set BrowserType = Server.CreateObject("MSWC.BrowserType")

Parameters: ASP Browser Capabilities Component
BrowserType

Specifies the name of the object created by the call to Server.CreateObject.

When a client requests a page from the server, the HTTP header includes a user agent ASCII
string that specifies the browser software name and version. The Browser Capabilities component
searches for this string in the Browser Capabilities component Browsecap.ini file. When it finds a
match, the properties of the client browser are read and the server adopts the properties of the
browser.

The following table lists the minimum set of properties that ASP always checks:

Property Description

ActiveXControls Support for Active X Controls.

Backgroundsounds Support for background sounds.

Beta Is browser beta software?

Browser Browser name.

Cookies Support for cookies.

Frames Support for frames.

Javaapplets Support for Java applets.

Javascript Support for JavaScript.

Majorver Major version number of the browser.

Minorver Minor version number of the browser.

Parent Parent browser (as defined in
browscap.ini).

Platform User's operating system.

Tables Support for HTML tables.

Vbscript Support for VBScript.

Version Full version number of the browser.

 Browsecap.ini File: ASP Browser Capabilities Component
The Browscap.ini (called libchilicap.ini on UNIX) file contains information about each known
browser. It is a standard text file that lists features a browser supports. The Browscap.ini file
maps browser capabilities to the HTTP User Agent header.

Sun Chili!Soft ASP 3.6.2 Product Documentation 430

It is important to keep your Browscap.ini or libchilicap.ini file up to date. When new browsers are
released their capabilities are unknown to the current file, and pages that rely on browser
detection may fail. You can obtain updates to Browscap.ini at:

http://www.cyscape.com/browscap/

To use the Browscap.ini file on UNIX, you must convert the text file to UNIX format and rename
it "libchilicap.ini." You should rename your existing libchilicap.ini file "libchilicap.old" before
installing the updated version.

You can also maintain the Browscap.ini file by editing the Browscap.ini file. A default section of
the Browscap.ini file is used when the browser details don't match any of the ones specified. If
the browser in use doesn't match any in the Browscap.ini file, and no default browser settings are
specified, all properties are set "UNKNOWN."

Note
The Browscap.ini (or libchilicap.ini) file must be in the same directory as Browscap.dll or
libchilicap.so.

To use the Browser Capabilities Component, it is necessary to create an instance of it and
refer to its properties. To avoid having the Browscap.ini file accessed every time, read the
value once and assign it to a variable:

Set objBCap = Server.CreateObject("MSWC.BrowserType")

Syntax: Browsecap.ini File HTTPUserAgentHeader Section
The HTTPUserAgentHeader section of Browscap.ini (libchilicap.ini on UNIX) defines the
properties for a particular browser. The syntax is as follows:

[HTTPUserAgentHeader]

parent = browserDefinition

property1 = value 1

property2 = value 2

.

.

.

Parent

Another definition contains more information for that browser

value 1

A number used to map a capability for the first property listed.

value 2

A number used to map a capability for the second property listed.

Browsecap.ini File Default Section

Sun Chili!Soft ASP 3.6.2 Product Documentation 431

The Default section of Browscap.ini (libchilicap.ini on UNIX) lists the properties and values
to be used if the current browser isn't listed in its own section (or, if listed, not all properties are
supplied). The following is the syntax for the default section of the Browscap.ini file:

[Default Browser Capability Settings]

defaultProperty1 = default value 1

defaultProperty2 = default value 2

.

.

.

default value 1

A number used to map a default capability for the first property listed.

default value 2

A number used to map a default capability for the second property listed.

Examples: Browsecap.ini File Default Section[0]
This example shows entries for Internet Explorer (IE) 3.0. Since it has no parent line, the only
properties its has (other than those defined in the default section) are those explicitly defined:

[IE 3.0]

browser=IE

Version =3.0

majorver=#3

minorver=#0

frames=TRUE

tables=TRUE

cookies=TRUE

vbscript=TRUE

javascript=TRUE

ActiveXControls=TRUE

In the following example IE 3.0 is specified as the parent for the browser. The properties
explicitly provided replace, or add to, those values in the parent's definition:

[Mozilla/2.0 (compatible; MSIE 3.01; Windows 95)]

parent=IE 3.0

version = 3.01

minorver=01

Sun Chili!Soft ASP 3.6.2 Product Documentation 432

platform=Win95

[Default Browser Capability Settings]

browser=Default

frames=FALSE

tables=FALSE

cookies=FALSE

backgroundsounds=FALSE

vbscript= FALSE

javascript= FALSE

. . .

To determine if a browser supports JavaScript use the following code:

bc = Server.CreateObject("MSWC.BrowserType")

if bc.javascript = 0 then

Response.Write "This browser does not support JavaScript."

else

REM The browser supports JavaScript so simply continue.

end if

The following example determines if a browser supports tables:

bc = Server.CreateObject("MSWC.BrowserType")

if bc.tables = 0 then

Response.Write "This browser does not support tables."

. . .

The following example uses the Browser Capabilities component to display a table showing some
of the capabilities of the current browser:

<% Set bc = Server.CreateObject("MSWC.BrowserType") %>

<table border=1>

<tr><td>Browser</td><td> <%= bc.browser %>

<tr><td>Version</td><td> <%= bc.version %> </td></TR>

<tr><td>Frames</td><td>

<% if (bc.frames = TRUE) then %> TRUE

<% else %> FALSE

<% end if %> </td></TR>

<tr><td>Tables</td><td>

Sun Chili!Soft ASP 3.6.2 Product Documentation 433

<% if (bc.tables = TRUE) then %> TRUE

<% else %> FALSE

<% end if %> </td></TR>

<tr><td>BackgroundSounds</td><td>

<% if (bc.BackgroundSounds = TRUE) then %> TRUE

<% else %> FALSE

<% end if %> </td></TR>

<tr><td>VBScript</td><td>

<% if (bc.vbscript = TRUE) then %> TRUE

<% else %> FALSE

<% end if %> </td></TR>

<tr><td>JScript</td><td>

<% if (bc.javascript = TRUE) then %> TRUE

<% else %> FALSE

<% end if %> </td></TR>

</table>

ASP Content Linking Component

The Content Linking component creates a NextLink object that manages a list of URLs so that
you can treat the pages in your Web site like the pages in a book. You can use the Content
Linking component to automatically generate and update tables of contents and navigational links
to previous and subsequent Web pages. This is ideal for applications such as online newspapers
and forum message listings.

The Content Linking component references a Content Linking List file that contains the list of the
linked Web pages. This list is stored on the Web server and must be available on a web server
virtual path.

Registry Settings: ASP Content Linking Component
The control makes use of no registry settings.

Syntax: ASP Content Linking Component
The Content Linking component is registered with the ProgId of "MSWC.NextLink." The
following VBScript excerpt shows creating an instance of the control.

Set cLinker = Server.CreateObject("MSWC.NextLink")

Sun Chili!Soft ASP 3.6.2 Product Documentation 434

Properties: ASP Content Linking Component
None.

Methods: ASP Content Linking Component
� GetListCount

� etListIndex

� GetNextDescription

� GetNextURL

� GetNthDescription

� GetNthURL

� GetPreviousDescription

� GetPreviousURL

 Examples: ASP Content Linking Component
The following example builds a table of contents.

<%

 Set NextLink = Server.CreateObject ("MSWC.NextLink")

 count = NextLink.GetListCount ("/data/nextlink.txt")

 I = 1

%>

<% Do While (I <= count) %>

<A HREF=" <%= NextLink.GetNthURL ("/data/nextlink.txt", I) %> ">

<%= NextLink.GetNthDescription ("/data/nextlink.txt", I) %>

<%

 I = (I + 1)

 Loop

%>

The following script adds the next-page and previous-page buttons to an HTML file.

<%

Sun Chili!Soft ASP 3.6.2 Product Documentation 435

 Set NextLink = Server.CreateObject ("MSWC.NextLink")

 If (NextLink.GetListIndex ("/data/nextlink.txt") > 1)

 Then

%>

<A HREF=" <%= NextLink.GetPreviousURL ("/data/nextlink.txt") %> ">

Previous Page

<% End If %>

<A HREF=" <%= NextLink.GetNextURL ("/data/nextlink.txt") %> ">Next
Page

 ASP Content Linking Component Content Linking List File
The Content Linking List file contains one line of text for each URL in the list. Each line ends in
a carriage return and each item on a line is separated by a TAB character.

Syntax: ASP Content Linking Component Content Linking List File
Web-page-URL [text-description [comment]]

Values[0]: ASP Content Linking Component Content Linking List File
Web-page-URL

The virtual or relative URL of the Web page in the format filename or directory\filename.
Absolute URLs, those that start with "http:", "//", or "\\”, are not supported and will not be
processed by methods such as GetNextURL and GetListIndex. When building your content
path, you should ensure that no collisions or infinite loops can occur.

text-description

A value containing text that describes Web-page-URL.

comment

Explanatory text that is not processed by the component.

Examples: ASP Content Linking Component Content Linking List File
The following text file creates a list of URLs that can be used by the Content Linking component.

---NEXTLINK.TXT---

story1.htm Highlights From the Hockey Playoffs

story2.htm Congress Passes New Welfare Initiative

story3.htm Cider Recipes to Warm Long Winter Nights

story4.htm Winter Storm to bring more snow to East

story5.htm Reducing Stress on the Job

Sun Chili!Soft ASP 3.6.2 Product Documentation 436

main.htm Return to the table of contents

ASP Content Linking Component Methods

 ASP Content Linking Component GetListCount Method
The GetListCount method retrieves the total number of Web pages listed in the Content Linking
List file.

Arguments: ASP Content Linking Component GetListCount Method
listURL The location of the Content Linking List file.

Return Values: ASP Content Linking Component GetListCount Method
This method returns an integer.

 ASP Content Linking Component GetListIndex Method
The GetListIndex method retrieves the index number of the current item in the Content Linking
List file.

Arguments: ASP Content Linking Component GetListIndex Method
listURL The location of the Content Linking List file.

Return Values: ASP Content Linking Component GetListIndex Method
The GetListIndex method returns an integer index value specifying the current page’s position
on the file list. The index number of the first item is 1. The method returns 0 if the current page is
not in the Content Linking List file.

 ASP Content Linking Component GetNextDescription Method
The GetNextDescription method retrieves the text description of the next item in the Content
Linking List file.

Arguments: ASP Content Linking Component GetNextDescription Method
listURL The location of the Content Linking List file.

Return Values: ASP Content Linking Component GetNextDescription Method
The GetNextDescription method returns an ASCII string describing the next item in the Content
Linking List file. If the current page is not found in the list file, GetNextDescription returns the
string description of the last page on the list.

 ASP Content Linking Component GetNextURL Method
The GetNextURL method retrieves the URL of the next item in the Content Linking List file.

Sun Chili!Soft ASP 3.6.2 Product Documentation 437

Arguments: ASP Content Linking Component GetNextURL Method
listURL The location of the Content Linking List file.

Return Values: ASP Content Linking Component GetNextURL Method
This method returns the URL of the next page specified in the Content Linking List file. If the
current page is not specified in the Content Linking List file, GetNextURL returns the URL of
the last page on the list.

Examples: ASP Content Linking Component GetNextURL Method
The following example uses the GetNextURL method to embed a link to the next page in the
Content Linking List file. The advantage of using GetNextURL is that when you change the
order or number of the content pages, you only have to update the list in the Content Linking List
file and do not need to update the navigational links on each page.

<% Set NextLink = Server.CreateObject ("MSWC.NextLink") %>

<A HREF="<%= NextLink.GetNextURL ("/data/nextlink.txt") %>">Next
Page

 ASP Content Linking Component GetNthDescription Method
The GetNthDescription method retrieves a text description of the nth item in the Content
Linking List file.

Arguments: ASP Content Linking Component GetNthDescription Method
listURL The location of the Content Linking List file.

index The index number of an item in the Content Linking List
file.

Return Values: ASP Content Linking Component GetNthDescription Method
This method returns a string.

 ASP Content Linking Component GetNthURL Method
The GetNthURL method returns the URL of the Nth item in the Content Linking List file.

Arguments: ASP Content Linking Component GetNthURL Method
listURL The location of the Content Linking List file.

index The index number of an item in the Content Linking List
file.

Return Values: ASP Content Linking Component GetNthURL Method
This method returns a string.

Sun Chili!Soft ASP 3.6.2 Product Documentation 438

 ASP Content Linking Component GetPreviousDescription Method
The GetPreviousDescription method retrieves a text description of the previous item in the
Content Linking List file.

Arguments: ASP Content Linking Component GetPreviousDescription Method
listURL The location of the Content Linking List file.

Return Values: ASP Content Linking Component GetPreviousDescription Method
This method returns a string describing either the previous item in the Content Linking List file
or, if the current page is not in the file, the first item on the list.

 ASP Content Linking Component GetPreviousURL Method
The GetPreviousURL method returns the URL of the previous item in the Content Linking List
file.

Arguments: ASP Content Linking Component GetPreviousURL Method
listURL The location of the Content Linking List file.

Return Values: ASP Content Linking Component GetPreviousURL Method
This method returns a string containing the URL of the previous item in the Content Linking List
file. If the current page is not specified in the Content Linking List file, GetPreviousURL returns
the URL of the first page in the file.

ASP Content Rotator Component

The Content Rotator component creates a ContentRotator object that automatically rotates
HTML content strings on a Web page. Each time a user requests the Web page, the object
displays a new HTML content string based upon information that you specify in a Content
Schedule file.

Because the content strings can contain HTML tags, you can display any type of content that
HTML can represent: text, images, or hyperlinks. For example, you can use this component to
rotate through a list of daily quotations or hyperlinks, or to change text and background colors
each time the Web page is opened.

Because the ContentRotator object uses a random generator to select which of the weighted
content strings is displayed, a string may be repeated. This is most likely to occur if there are few
entries in the Content Schedule file, or if one entry is weighted much higher than the others.

Registry Settings: ASP Content Rotator Component
The ASP Content Rotator component makes use of no registry settings.

Sun Chili!Soft ASP 3.6.2 Product Documentation 439

Syntax: ASP Content Rotator Component
The Content Rotator component is registered with the ProgId of "MSWC.ContentRotator." The
following VBScript excerpt shows creating an instance of the control.

Set NextTip = Server.CreateObject("MSWC.ContentRotator")

Properties: ASP Content Rotator Component
None

Methods: ASP Content Rotator Component
ChooseContent

GetAllContent

 ASP Content Rotator Component Content Schedule File
The Content Schedule file contains information that the ContentRotator object uses to manage
and display the specified content. In this file you include any number of HTML content string
entries. Each entry consists of two parts: a line that begins with double percentage signs (%%)
and contains both the relative weight and any comments, and a second part that contains the
HTML content string itself.

Syntax: ASP Content Rotator Component Content Schedule File
%% [#Weight] [//Comments]

ContentString

Parameters: ASP Content Rotator Component Content Schedule File

ASP Content Rotator Component Content Schedule File Weight Parameter[0]
This optional parameter specifies a number between 0 and 10000 that indicates the relative
weight of the HTML content string. The probability of a particular content string being displayed
by the ContentRotator object can be expressed as the Weight of that content string divided by
the sum of Weight values for all entries in the Content Schedule file.

For example, if a Content Schedule file contained three content strings with respective weights of
1, 3, and 4, the Content Rotator displays the first content string one-eighth of the time, the second
string three-eighths of the time, and the third string half of the time.

A Weight of 0 will cause a content entry to be ignored.

If Weight is not specified, the default value is 1.

If the sum of all weight values exceeds 10000, an error will be generated when the schedule file is
accessed by a call to either the GetAllContent or ChooseContent methods.

ASP Content Rotator Component Content Schedule File Comments Parameter

Sun Chili!Soft ASP 3.6.2 Product Documentation 440

This optional parameter contains comments about the entry. These comments are for
development use only and are not displayed to the user. If you require more than one line of
comments, you must start each additional comment line with a line delimiter (%%) followed by a
comment delimiter (//).

ASP Content Rotator Component Content Schedule File ContentString Parameter
The HTML content that the ContentRotator object displays. For example, you can present a line
of text, an image, or a sound.

ContentString may include one or more lines. The ContentRotator object treats everything
between blocks of double percent signs (%%) as a single HTML content string.

Examples: ASP Content Rotator Component Content Schedule File Parameters[0]
The following is an example of a Content Schedule file.

Note
Because the content strings can contain HTML tags, you can display any type of content
that can be represented with HTML, including text, images, and hyperlinks.

-------------Content.txt--------------------

%% // Because no value is set for Weight, the default value is 1.

Don’t run with scissors.

%% #2 // Content can be more than one line long.

%% // Additional line of comments.

%% // Yet another line of comments.

 Let a

 <H1>smile</H1>

 be your umbrella.

%% #3 // This is our favorite image, so show it most often.

%%

Here’s the secret link.

ASP Content Rotator Component Methods

 ASP Content Rotator Component ChooseContent Method[0]

Sun Chili!Soft ASP 3.6.2 Product Documentation 441

The ChooseContent method retrieves an HTML content string from the Content Schedule file.
The method retrieves a new content string each time the script is run, such as when a user opens
or reloads a page.

Arguments: ASP Content Rotator Component ChooseContent Method
content-schedule-path

Specifies the location of the Content Schedule file.

This parameter can be specified either as a relative or virtual path. For example, if the Content
Schedule file, Content.txt, and the .asp file that called ChooseContent both resided in the
directory /MyApp/Tips/, where MyApp is a virtual directory on the server, then either the full
virtual path (/MyApp/Tips/Content.txt) or the relative path (Content.txt) could be specified for
content-schedule-path.

The ContentRotator object calls the Server.MapPath method to map the specified path to a
physical directory. For more information, see the Server Object reference pages.

Return Value: ASP Content Rotator Component ChooseContent Method
Returns an HTML content string from the Content Schedule file.

Examples: ASP Content Rotator Component ChooseContent Method
The following example gets a new tip from the Content.txt file in the /Tips/ virtual directory.

<%

 Set NextTip = Server.CreateObject("MSWC.ContentRotator")

 Tip = NextTip.ChooseContent("/Tips/Content.txt")

 Response.Write Tip

%>

 ASP Content Rotator Component GetAllContent Method
The GetAllContent method retrieves all of the HTML content strings from the Content Schedule
file and writes them directly to the Web page as a list with an <HR> tag after each entry.

This method is typically used during authoring, to proofread the Content Schedule file.

Arguments: ASP Content Rotator Component GetAllContent Method
content-schedule-path

Specifies the location of the Content Schedule file.

This parameter can be specified either as a relative or virtual path. For example, if the Content
Schedule file, Content.txt, and the .asp file that called GetAllContent both resided in the
directory /MyApp/Tips/, where MyApp is a virtual directory on the server, then either the full
virtual path (/MyApp/Tips/Content.txt) or the relative path (Content.txt) could be specified for
content-schedule-path.

Sun Chili!Soft ASP 3.6.2 Product Documentation 442

The ContentRotator object calls the Server.MapPath method to map the specified path to a
physical directory. For more information, see the Server Object reference pages.

Remarks: ASP Content Rotator Component GetAllContent Method
The Content Rotator component uses the Response.Write method to write output directly to the
.asp page that called the GetAllContent method. For more information, see the Response object
topics.

Examples: ASP Content Rotator Component GetAllContent Method
The following example uses the GetAllContent method to display all of the entries in the
Content Schedule file.

<H1>Tips Stored in the Content Schedule File:</H1>

<%

 Set Tips = Server.CreateObject("MSWC.ContentRotator")

 Tips.GetAllContent("/Tips/Content.txt")

%>

The preceding example produces HTML output such as the following:

<H1>Tips Stored in the Content Schedule File:</H1>

<HR>

Don’t run with scissors.

<HR>

 Let a

 <H1>smile</H1>

 be your umbrella.

<HR>

<HR>

Here’s the secret link.

<HR>

ASP Counters Component

The Counter component creates a Counters object that can create, store, increment, and retrieve
any number of individual counters.

Sun Chili!Soft ASP 3.6.2 Product Documentation 443

A counter is a persistent value that contains an integer. You can manipulate a counter with the
Get, Increment, Set, and Remove methods of the Counters object. Once you create the counter,
it persists until you remove it.

Counters do not automatically increment on an event like a page hit. You must manually set or
increment counters using the Set and Increment methods.

Counters are not limited in scope. Once you create a counter, any page on your site can retrieve or
manipulate its value. For example, if you increment and display a counter named hits in a page
called Page1.asp, and you increment hits in another page called Page2.asp, both pages will
increment the same counter. If you hit Page1.asp, and increment hits to 34, hitting Page2.asp will
increment hits to 35. The next time you hit Page1.asp, hits will increment to 36.

All counters are stored in a single text file, counters.txt.

Only create one Counters object in your site. This single Counters object can create any number
of individual counters.

Registry Settings: ASP Counters Component
The Counters Component makes use of no registry settings.

Syntax: ASP Counters Component
The Counters control is registered with the ProgId of "MSWC.Counters." Create the Counters
object one time on your site by adding the following to the Global.asa file:

<OBJECT

RUNAT=Server

SCOPE=Application

ID=Counter

PROGID="MSWC.Counters">

</OBJECT>

Properties: ASP Counters Component
None.

Methods: ASP Counters Component
� Get

� Increment

� Remove

� Set

ASP Counters Component Methods

Sun Chili!Soft ASP 3.6.2 Product Documentation 444

 ASP Counters Component Get Method
The Get method takes the name of a counter and returns the current value of the counter. If the
counter doesn’t exist, the method creates it and sets it to 0.

Arguments: ASP Counters Component Get Method
CounterName A string containing the name of the counter.

Examples: ASP Counters Component Get Method
Display the value a counter with <%= Counters.Get(CounterName) %>. Assign the
value of the counter to a variable with <% countervar =
Counters.Get(CounterName) %>.

The following script displays the vote tally from a poll about favorite colors.

<%

 If colornumber = "1" Then

 Counters.Increment("greencounter")

 Else

 If colornumber = "2" Then

 Counters.Increment("bluecounter")

 Else

 If colornumber = "0" Then

 Counters.Increment("redcounter")

 End If

 End If

 End If

%>

<P>Current vote tally:

<P>red: <% =Counters.Get("redcounter") %>

<P>green: <% = Counters.Get("greencounter") %>

<P>blue: <% = Counters.Get("bluecounter") %>

 ASP Counters Component Increment Method
The Increment method takes the name of a counter, adds 1 to the current value of the counter,
and returns the counter's new value. If the counter doesn't exist, the method creates it and sets its
value to 1.

Arguments: ASP Counters Component Increment Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 445

CounterName A string containing the name of the counter.

Examples: ASP Counters Component Increment Method
Increment the value of a counter with <% Counters.Increment(CounterName) %>.
Increment and display the value of a counter with <%=
Counters.Increment(CounterName) %>.

To retrieve the value of a counter, use Counters.Get. To set a counter to a specific value, use
Counters.Set.

The following code implements a one-line page-hit counter.

<P>There have been <%= Counters.Increment("hits") %> visits to this
Web page. </P>

In this example, Counters.Increment increases the counter by one each time the client requests
the page from the server.

 ASP Counters Component Remove Method
The Remove method takes the name of a counter, removes the counter from the Counters object,
and deletes the counter from the Counters.txt file.

Arguments: ASP Counters Component Remove Method
CounterName A string containing the name of the counter.

Examples: ASP Counters Component Remove Method
The following code removes the counter hitscounter from the counters.txt file.

<% Counters.Remove(hitscounter) %>

 ASP Counters Component Set Method
The Set method takes the name of a counter and an integer, sets the counter to the value of the
integer, and returns the new value. If the counter doesn’t exist, Counters.Set creates it and sets it
to the value of the integer.

Arguments: ASP Counters Component Set Method
CounterName A string containing the name of the counter.

int The new integer value for CounterName.

Examples: ASP Counters Component Set Method
The following code resets the hit counter pageHits to 0:

<% Counters.Set(pageHits, 0) %>

ASP MyInfo Component

Sun Chili!Soft ASP 3.6.2 Product Documentation 446

The MyInfo component creates a MyInfo object that keeps track of personal information, such as
the site administrator's name, address, and display choices. Typically, the administrator types this
information directly into the Web server interface. However, you can set the values of the
properties directly by using a script in an ASP page.

Note
Sun Chili!Soft ASP does not implement the default properties available under Windows
Personal Web Services.

Each property of a MyInfo object returns a string. If a MyInfo property has no value set, the
property returns an empty string.

Create new MyInfo properties for values that remain consistent throughout a site. You can create
new MyInfo properties by simply assigning a string value to them. The following example
creates the new properties DogName and DogBreed. These new properties are stored persistently
along with the other MyInfo properties.

<%

 MyInfo.DogName = "Snoopy"

 MyInfo.DogBreed = "Beagle"

%>

The values of MyInfo properties are stored in the text file, libmyinfo.ini. On UNIX systems, this
file is located in [C-ASP_INSTALL_DIR]/server/lib/sunos5_optimized, where [C-
ASP_INSTALL_DIR] is the complete directory path of the Sun Chili!Soft ASP installation
directory. On Linux systems, this file is located in [C-ASP_INSTALL_DIR]/lib-chilicom.

The Sun Chili!Soft ASP implementation of the MyInfo component is compatible with the
MyInfo.xml file produced by the Microsoft implementation; however, Microsoft implements the
text file as an XML file, while Sun Chili!Soft ASP does not.

Registry Settings: ASP MyInfo Component
The control makes use of no registry settings.

Syntax: ASP MyInfo Component
The MyInfo component is registered with the ProgID of "MSWC.MyInfo."

The following code in the global.asa file creates one instance of the MyInfo object. In this
example, the object is given Session scope, but a MyInfo object could also be given Application
scope:

<OBJECT

RUNAT=Server

SCOPE=Session

ID=MyInfo

Sun Chili!Soft ASP 3.6.2 Product Documentation 447

PROGID="MSWC.MyInfo">

</OBJECT>

Properties: ASP MyInfo Component
The Chili!Soft implementation does not implement the default properties available under
Windows Personal Web Services. You create your own properties as described in this topic.

Methods: ASP MyInfo Component
None.

ASP Tools Component

The Tools component creates a Tools object that provides utilities that enable you to easily add
sophisticated functionality to your Web pages.

Registry Settings: ASP Tools Component
The control makes use of no registry settings.

Syntax: ASP Tools Component
The Tools component is registered with the ProgId of "MSWC.Tools." The following VBScript
excerpt shows creating an instance of the control.

Set Tools = Server.CreateObject("MSWC.Tools")

The Tools component exposes the following properties and methods.

Properties: ASP Tools Component
None.

Methods: ASP Tools Component
� FileExists

� Owner

� ProcessForm

� PluginExists

� Random

ASP Tools Component Methods

 ASP Tools Component FileExists Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 448

The FileExists method checks the existence of a file. It returns –TRUE if the specified URL
exists within a published directory. If the file does not exist, it returns FALSE.

Arguments: ASP Tools Component FileExists Method
URL A string that specifies the relative URL of the file you are

checking.

Remarks: ASP Tools Component FileExists Method
FileExists only checks the existence of files published on your site. Therefore, it takes a relative
URL rather than an absolute URL.

Examples: ASP Tools Component FileExists Method
The following example demonstrates using the FileExists property to create a link if a particular
file is present.

<%If Tools.FileExists("ie_animated.gif") then %>

 <p>

<% End If %>

 ASP Tools Component Owner Method
The Sun Chili!Soft ASP implementation of this method always returns 0.

 ASP Tools Component PluginExists Method
The Sun Chili!Soft ASP implementation of this method always returns 0.

 ASP Tools Component ProcessForm Method
The ProcessForm method processes the contents of a form that has been submitted by a visitor to
the Web site.

Arguments: ASP Tools Component ProcessForm Method
OutputFileURL A string containing the relative URL of the file to which the

processed data is written.

TemplateURL A string containing the relative URL of the file that contains
the template, or instructions, for processing the data.

InsertionPoint An optional parameter indicating where in the output file to
insert the process data. This parameter has not been
implemented. If you include a value for this parameter it will
be ignored.

Remarks: ASP Tools Component ProcessForm Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 449

The template files can contain ASP scripts. A script between <% and %> delimiters is treated just
like other text in the template and copied into the output file. If the output file is an ASP
document, the script will run when the output file is accessed. Scripts in template files can also be
put between special <%% and %%> delimiters which cause the script to execute while
Tools.ProcessForm is executing. Since these scripts are executed before the template data is
saved in the output file, the results get saved in the output file, usually as standard text.

The scripts can use any of the ASP intrinsics for the page containing the script executing the
ProcessForm method except for the Response objects. Instead, the miniscripts have their own
Response objects with implementations of Write and BinaryWrite that write to the output file
instead of the Web server output stream.

If the specified output file does not exist, the server creates it.

If the InsertionPoint parameter does not exist, Tools.ProcessForm replaces the entire output file.
If the InsertionPoint parameter exists, and does not begin with an asterisk (*),
Tools.ProcessForm finds the InsertionPoint string in the output file and inserts the data
immediately after it. If the InsertionPoint string begins with an asterisk (*), Tools.ProcessForm
finds the InsertionPoint string in the output file and inserts the data immediately before it. If the
InsertionPoint string exists, but is not found in the output file, the data is appended to the end of
the file.

Examples: ASP Tools Component ProcessForm Method
The following code demonstrates calling an .asp file to process a form.

<%

Tools.processform("/$Received
Messages/default.asp","MessageInsert.process","*")

%>

 ASP Tools Component Random Method
The Random method returns an integer between –32768 to 32767.

Arguments: ASP Tools Component Random Method
None.

Remarks: ASP Tools Component Random Method
This method is similar to the Rnd function, but returns an integer.

To get a positive random integer, use the Abs function.

To get a random integer below a specific value, use the Mod function.

Examples: ASP Tools Component Random Method
<% = Tools.Random %> will display a random integer between –32768 to
32767. For example, -13067.

Sun Chili!Soft ASP 3.6.2 Product Documentation 450

<% = (Abs(Tools.Random)) %> will display a positive random
integer. For example, 23054.

<% = (Abs(Tools.Random)) Mod 100 %> will display a random
integer between 0 and 99. For example, 63.

Chili!Beans Component Reference

The Chili!Beans ActiveX control is a wrapper that enables Java objects to be used by Component
Object Model (COM) controllers (such as ActiveX scripting engines like VBScript). The control
is designed to work with Java Virtual Machine versions 1.2 or greater.

To use Chili!Beans, a Java runtime environment (JRE) must be installed on the machine, and
Chili!Beans must be enabled from the Administration Console. JRE 1.3.1 is included with Sun
Chili!Soft ASP and is the recommended version. For more information, see "Enabling Java
Support" in "Chapter 2: Installing and Configuring Sun Chili!Soft ASP," and "Enabling
Chili!Beans" in this section.

Note
When using Chili!Beans with Sun Chili!Soft ASP for Solaris, you must use the JVM
Native Threads.

In rare cases it is necessary to supply startup settings to the Java Virtual Machine. See
"Supplying Java Virtual Machine Settings" in this section.

Chili!Beans is not available for the Cobalt or Windows versions of Sun Chili!Soft ASP.

This section provides information about enabling and disabling Chili!Beans, and reference
information about using the component:

� Enabling Chili!Beans

� Using Null Objects with Chili!Beans

� Iterating a Collection with Chili!Beans

� Accessing Methods and Fields with Chili!Beans

� Limitations of Chili!Beans Objects

� Supplying Java VM Settings

� Constructing Java Objects with Chili!Beans

 Enabling Chili!Beans
On UNIX and Linux platforms, Chili!Beans is enabled or disabled from the Components page in
the Sun Chili!Soft ASP Administration Console. To use Chili!Beans, a Java runtime environment

Sun Chili!Soft ASP 3.6.2 Product Documentation 451

(JRE) must be installed on the machine (see "Enabling Java Support" in "Chapter 2: Installing
and Configuring Sun Chili!Soft ASP"), and Chili!Beans must be enabled.

Note
Chili!Beans is not available on Windows systems.

When Chili!Beans is enabled, you have the option of enabling or disabling the Java Virtual
Machine (VM) Security Manager (the Java VM Security Manager is enabled by default). If the
Java VM Security Manager is enabled, its default behavior is to prevent any access to system
resources other than read-only access to the current directory. If the Java VM Security Manager is
disabled, Java code executed by the Chili!Bean will run with unrestricted access to the File
System and other system resources.

Note
For security reasons, the Java VM Security Manager should be enabled in multi-user
environments in which users supply their own Java classes.

To selectively grant other privileges to Java code running in the Chili!Bean, with Java
VM Security Manager enabled, use policytool to change the Virtual Machine’s security
settings as specified in the Java2 Security documentation.

To enable or disable Chili!Beans

1. If necessary, open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT]

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP Server tab of the Server Management page (the first page to display when you
open the Administration Console), click Components.

The Components page displays.

Sun Chili!Soft ASP 3.6.2 Product Documentation 452

3. On the Components page, click to select or clear the Chili!Beans check box.

If the Chili!Beans box is selected, the Java VM Security Manager check box displays (this
box is selected by default). Select or clear this box to enable or disable the Java VM Security
Manager.

Note: If you did not enable Chili!Beans support during installation (install a Java runtime
environment), Chili!Beans will not be listed on the Components page. See "Enabling Java
Support" in "Chapter 2: Installing and Configuring Sun Chili!Soft ASP."

4. Click Save to save your changes.

– or –

Click Cancel to revert to the last settings that were saved.

The Server Management page displays.

5. To put your changes into effect, restart the ASP Server by clicking Restart.

Note
Restarting the ASP Server resets all Session and Application variables.

 Using Null Objects with Chili!Beans
When a Chili!Beans-wrapped Java method returns a Null object, the Null object is translated to
the special value Nothing when returned to the ASP script. If the special value Nothing is passed
from the ASP script to a Chili!Bean, it is converted to a Null object before being passed to the
Java method.

 Iterating a Collection with Chili!Beans
If the Java object underlying a Chili!Beans control implements the java .util.Enumeration
interface it will function like a COM Collection class, and you can use the For…Each…Next
statement to iterate the Java object.

Sun Chili!Soft ASP 3.6.2 Product Documentation 453

 Accessing Methods and Fields with Chili!Beans
All public methods of a class are accessible from their Chili!Beans wrapper. If a class has
multiple methods with the same name, the control will resolve the correct method at run time
based on the arguments passed. In some cases the mappings of Variant data types in client
scripts to Java data types can result in incorrect resolution between methods with similar
signatures. The Chili!Beans control does not distinguish between methods or fields whose names
differ only by case.

Uncaught exceptions thrown by Java method calls are caught by the control and reported to the
controller as COM exceptions whose Description field is the toString() value of the Java
Exception object thrown. If the CB_STACKTRACE environment variable is set to 1, a full stack
trace for the exception is included in the description field. With Sun Chili!Soft ASP as the
controller, this string is reported as part of the run-time error text and will appear in the browser.

 Limitations of Chili!Beans Objects
The following limitations apply to Chili!Beans objects:

� A Chili!Beans object is accessible to all threads in a Sun Chili!Soft ASP application, and
is thread-safe if the underlying Java class is thread-safe. The Chili!Beans object is marked
in the registry with ThreadingModel=both; this means that Chili!Beans objects
stored as Application or Session variables will be accessed from multiple threads and will
certainly fail if their underlying Java code is not thread-safe.

� There is no support for multiple-dimension arrays as either arguments or return values.

 Supplying Java Virtual Machine Settings
In very rare cases you must supply startup settings to the Java Virtual Machine. In a stand-alone
Java application these settings are passed as command-line arguments.

Note
The mechanism described here is for expert Sun Chili!Soft ASP users only.

The startup settings can be passed to the Java Virtual Machine run by the Chili!Bean by
specifying them in a configuration file. The default path to the file is as follows:

<CASP_INSTALL_DIRECTORY>/bean/bean.properties

This path can be customized by exporting the CB_PROPERTIES environment variable in the
javasetup.sh script to the desired path.

Each line in the configuration file will be passed as an argument to the Java Virtual Machine at
startup. For example, configuring the Chili!Bean with file:

Sun Chili!Soft ASP 3.6.2 Product Documentation 454

#bean.properties

-Dfoo=bar

-Xint

has the same effect as starting the Java Virtual Machine from the command line with the
command:

Java –Dfoo=bar –Xint <classname>

The meanings of individual arguments vary with Virtual Machine versions; consult the Virtual
Machine’s documentation.

Note
Never use this mechanism to change the startup classpath, unless all of the directories and
JAR files set in the CLASSPATH by the javasetup.sh script are included.

Constructing Java Objects with Chili!Beans

The Chili!Beans control is used in client scripts in the same way that Microsoft implements COM
wrappers for Java objects with the Microsoft JVM.

An instance of any Java class located on the path in the local CLASSPATH environment variable
can be constructed, any public methods of the resulting object can be called, and any of its public
fields can be accessed.

There are three ways to create a Java object by using Chili!Beans, as discussed in the following
topics:

� Accessing a Java Class via Chili!Beans

� Registering a Java Class as a COM Component on Linux and UNIX

� Returning a Java Class From a Method Call or Field Access

 Accessing a Java Class via Chili!Beans
You can use the Chili!Beans object Construct method to create instances of Chili!Beans. The
first argument is the fully qualified name of the class to be instantiated, and the remaining
arguments are the arguments to be passed to the desired constructor for that class. For example, if
the package Database contains Table .class, the following script will create a Table object:

Set factory = Server.CreateObject("Chili.Beans")

set table = factory.Construct "Database/Table", "Employees",
CLng(100)

This will create an object named "table," using the constructor whose signature is

 constructor(String, Int)

Sun Chili!Soft ASP 3.6.2 Product Documentation 455

If the class name cannot be found on the CLASSPATH or if there is no public constructor whose
signature matches the arguments passed to Construct, a run-time error occurs in the client script.

To use a Java class with Sun Chili!Soft ASP, the .class file must exist in a directory that is listed
in the Java CLASSPATH environment variable, or it must be registered with Sun Chili!Soft ASP
as described in "Registering a Java Class as a COM Component on Linux and UNIX" in this
chapter.

 Registering a Java Class as a COM Component on Linux and UNIX
The chregclass tool included with Sun Chili!Soft ASP enables you to register a Java class as a
COM component on Linux and UNIX. You register a Java class by using the chregclass tool to
create a registry entry that maps a given ProgID to the Java class. The chregclass tool is similar to
the javareg tool provided for the Microsoft JVM.

Notes
In order to register a Java class to use with Sun Chili!Soft ASP, the .class file must exist
in a directory that is listed in the Java CLASSPATH environment variable.

Any class registered by using chregclass must have a public default constructor to
instantiate the class. This applies to all chregclass calls.

To register a Java class as a COM component

1. Log in as root and change directories to the Sun Chili!Soft ASP installation directory.

2. Stop the ASP Server, as described in "Stopping and Restarting the ASP Server" in "Chapter
3: Managing Sun Chili!Soft ASP."

3. Map the ProgID to the Java class by running the following command:

chregclass [–f] [ProgID] [JAVA_CLASS]

where [ProgID] is the Prog ID you want to map and [JAVA_CLASS] is the name of the
Java class you want to register. [JAVA_CLASS] should not include the .class extension. If it
does, the mapping will not work.

4. Restart the ASP Server, as described in "Stopping and Restarting the ASP Server" in
"Chapter 3: Managing Sun Chili!Soft ASP."

For example, to register the Table .class in the package Database on the CLASSPATH, use the
following command:

chregclass Db.Table Database/Table

After running this command, you can then construct a Table object in a client script as follows:

set table = Server.CreateObject("Db.Table")

Sun Chili!Soft ASP 3.6.2 Product Documentation 456

 Returning a Java Class from a Method Call or Field Access
A Java object returned from a Java method call or field access in a client script is automatically
wrapped in its own Chili!Beans wrapper. For example, the classes Table and Record are defined
as:

//Table.java

package Database ;

public class Table {

 public Table(String name, in initialSize) {...};

 public int numRecords() {...};

 public Record getEmployee(int employeeNumber)

{...}

 ...

}

//Record.java

package Database ;

public class Record {

 public Record() {...};

 public String m_LastName ;

 public String m_FirstName ;

 ...

}

The following ASP script will print the names of the employees in Table:

set t = Server.CreateObject("Chili.Beans")

t.ClassName = "Database/Table"

t.Construct "Employees", 100

for I = 0 to t.numRecords – 1

 set record = t .getEmployee(I)

 Response.Write(record.m_FirstName & " " _

 & record .m_LastName & "
")

next

The Java objects returned by the getEmployee calls on the Table object are automatically given
Chili!Beans wrappers and their methods and fields are available even though they have not been
constructed with the CreateObject method.

Sun Chili!Soft ASP 3.6.2 Product Documentation 457

Component Programmer's Reference

On Windows and UNIX systems, Sun Chili!Soft ASP provides support for custom server
components, which can be useful when your Web applications require complex business logic.
The application developer may find it more efficient to encapsulate this business logic in a
custom server component written in an advanced language like C++ (on Windows) or Java (on
UNIX), rather than trying to implement it with script. Sun Chili!Soft ASP uses COM
(Component Object Model) as the standard interface for creating custom components.

Note

At this time there is no compiler or API for third-party COM objects available for UNIX.

On Windows, Sun Chili!Soft ASP server components can be written in any language that
supports COM, including Visual Basic, C++, and Java. On UNIX, Sun Chili!Soft ASP server
components can be written in Java. If you wish to develop your components in Java, Chili!Beans
shields you from many of the details of COM. For more information, see "Chili!Beans
Component Reference" in this chapter.

If you want to develop components using C++, this section is for you.

This section provides the following reference information about components:

� Scope and Threading

� C++ Interfaces Reference

� IApplicationObject Interface

� IReadCookie Interface

� IRequest Interface

� IRequestDictionary Interface

� IResponse Interface

� IScriptingContext Interface

� IServer Interface

� ISessionObject Interface

� IStringList Interface

� IVariantDictionary Interface

� IWriteCookie Interface

� COM on UNIX

Sun Chili!Soft ASP 3.6.2 Product Documentation 458

 Scope and Threading
COM objects used in ASP pages can have Page, Session, or Application scope depending on how
and when they are created. Objects created on ASP pages will have Page scope by default; they
are created when the page is processed, and are released when page processing is complete.
Objects with Page scope are only available on the page where they are created.

Objects given Session scope or Application scope in the global.asa file or on an ASP page are
then available to other ASP pages. Objects that are given Session or Application scope using the
Server.CreateObject method must be marked as both apartment and free-threaded. It is possible
to create single, apartment, and free-threaded objects in the global.asa file using the extended
<OBJECT> tag syntax, but doing so will constrain the Sun Chili!Soft ASP server to a single
thread, significantly impacting performance.

For maximum flexibility, all COM objects used on ASP pages should be marked as "Both," and
use both the apartment and free-threaded models.

 C++ Interfaces Reference
Sun Chili!Soft ASP implements interfaces that allow your components to access the properties
and methods of built-in ASP objects. You component can use these object interfaces to access the
properties, methods, and collections of the built-in objects.

Sun Chili!Soft ASP does not currently support the IObjectContext interface required to access
Microsoft Transaction Server methods. The IScriptingContext should be used to access the
built-in object interfaces.

The following table lists the built-in object interfaces:

Interface Description
IApplicationObject Calls the methods and properties of the Application object.

IReadCookie Retrieves the values stored in the read-only Cookies
collection.

IRequest Calls the methods and properties of the Request object.

IRequestDictionary Indexes the collections of the IRequest interface.

IResponse Calls the methods and properties of the Response object.

IScriptingContext Returns a pointer to the interface on one of the built-in
objects: IApplicationObject, IRequest, IResponse,
IServer, or ISessionObject.

IServer Calls the methods and properties of the Server object.

ISessionObject Calls the methods and properties of the Session object.

IStringList Retrieves the values stored in a string list, used in the
QueryString, Form or ServerVariables collections.

IVariantDictionary Retrieves the items stored in the Application and Session

Sun Chili!Soft ASP 3.6.2 Product Documentation 459

Contents and StaticObjects collections.

IWriteCookie Sets the values and attributes in the write-only Cookies
collection.

To use IScriptingContext and object interfaces in a C++ component, you must include the
header file asptlb.h.

For more information, see "ASP Built-in Objects Reference" in this chapter.

 COM on UNIX
Sun Chili!Soft ASP uses an implementation of COM for UNIX developed internally. At this time
there is no compiler or API available to port custom objects to UNIX platforms. If you are
developing your components in Java, you can use Sun Chili!Soft Chili!Beans technology instead.

IApplicationObject Interface

The IApplicationObject interface exposes the methods of the Application object.

IApplicationObject::get_Contents Retrieves the Contents collection

IApplicationObject::get_StaticObjects Retrieves the StaticObjects collection.

IApplicationObject::get_Value Retrieves the value of a variable stored in the
Application object.

IApplicationObject::Lock Prevents other clients from accessing the
variables stored in the Application object until
IApplication::Unlock is called.

IApplicationObject::putref_Value Stores a variable in the Application object by
reference.

IApplicationObject::put_Value Stores a variable in the Application object by
value.

IApplicationObject::UnLock Releases the lock that was created by the
IApplication::Lock method.

IApplication also supports all IUnknown and IDispatch interface methods.

 IApplicationObject::get_Contents
The IApplicationObject::get_Contents method retrieves the Application.Contents collection.

HRESULT get_Contents(

 IVariantDictionary **ppProperties

Sun Chili!Soft ASP 3.6.2 Product Documentation 460

)

Parameters: IApplicationObject::get_Contents
ppProperties

Points to an IVariantDictionary interface pointer that receives the Contents collection.

Remarks: IApplicationObject::get_Contents
The Application.Contents collection contains all variables and objects that have been given
application scope with the Server.CreateObject command. You can iterate through the
Contents collection with the IVariantDictionary::get_NewEnum method. You can also retrieve
a specific item with the IVariantDictionary::get_Item method.

 IApplicationObject::get_StaticObjects
The IApplicationObject::get_StaticObjects method retrieves the Appliction.StaticObjects
collection.

HRESULT get_StaticObjects(

 IVariantDictionary **ppProperties

);

Parameters: IApplicationObject::get_StaticObjects
ppProperties

Points to an IVariantDictionary interface pointer that receives the StaticObjects collection.

Remarks: IApplicationObject::get_StaticObjects
You can iterate through the StaticObjects collection with the
IVariantDictionary::get_NewEnum method. You can also retrieve a specific item with the
IVariantDictionary::get_Item method.

 IApplicationObject::get_Value
The IApplicationObject::get_Value method retrieves the value of a variable stored in the
Application object.

HRESULT get_Value

 BSTR bstrValue,

 VARIANT * pvar

)

Parameters: IApplicationObject::get_Value

Sun Chili!Soft ASP 3.6.2 Product Documentation 461

bstrValue

A binary string that contains the name of the variable to retrieve.

pvar

Points to a variant that holds the value for the variable specified in bstrValue.

Remarks: IApplicationObject::get_Value
You can use this method to access variables that have been given application scope.

 IApplicationObject::Lock
The IApplicationObject::Lock method prevents other clients from accessing the variables stored
in the Application object until the IApplicationObject::UnLock method has been called.

HRESULT Lock(VOID);

 IApplicationObject::putref_Value
The IApplicationObject::putref_Value method stores an object in the Application object.
Equivalent to the IApplicationObject::put_Value method for non-objects.

HRESULT putref_Value(

 BSTR bstrValue,

 VARIANT var

);

Parameters: IApplicationObject::putref_Value
bstrValue
A binary string that contains the name of the object to store.

var

A variant that contains the reference to the object.

Remarks: IApplicationObject::putref_Value
You can use this method to create a reference to an object. Giving some object application scope
will have a negative impact on server performance. See Scope and Threading for more
information.

 IApplicationObject::put_Value
The IApplicationObject::put_Value method stores a variant in the Application object.

HRESULT put_Value(

Sun Chili!Soft ASP 3.6.2 Product Documentation 462

 BSTR bstrValue,

 VARIANT var

);

Parameters: IApplicationObject::put_Value
bstrValue

A binary name that contains the name of the variable.

var

A variant that contains the variable value.

Remarks: IApplicationObject::put_Value
If the variant being stored is an object, Sun Chili!Soft ASP will attempt to store the default value
of that object into the application. If Sun Chili!Soft ASP cannot get the default value, the call will
fail.

 IApplicationObject::UnLock
The IApplicationObject::UnLock method releases a variable that was locked by the
IApplicationObject::Lock method.

HRESULT UnLock(VOID)

IReadCookie Interface

You can use the IReadCookie interface to access the objet returned from the read-only Cookies
collection. Calling IRequestDictionary::get_Item on the read-only Cookies collection will
always return an object that implements the IReadCookie interface.

IReadCookie::get_HasKeys Retrieves a Boolean indicating whether the cookie
has keys.

IReadCookie::get_Item Retrieves the specified item from a cookie
dictionary.

IReadCookie::get_NewEnum Retrieves an enumerator for the Cookies collection.

IReadCookie and IWriteCookie are interfaces for the same object. If you have an IReadCookie
pointer, you can use the IUnknown::QueryInterface method on an IWriteCookie pointer.

 IReadCookie::get_HasKeys
The IReadCookie::get_HasKeys method returns a Boolean value which indicates whether or not
the cookie has keys.

Sun Chili!Soft ASP 3.6.2 Product Documentation 463

HRESULT get_HasKeys(

 VARIANT_BOOL * pfHasKeys

);

Parameters: IReadCookie::get_HasKeys
pfHasKeys

Points to a Boolean that indicates whether or not the cookie has keys.

Remarks: IReadCookie::get_HasKeys
If the cookie has been implemented as a collection, this method will return TRUE. If the cookie
has keys, use the IReadCookie::get_NewEnum method to retrieve an enumerator for iterating
through the collection.

 IReadCookie::get_Item
 The IReadCookie::get_Item method retrieves the specified item from a Cookie object.

HRESULT get_Item(

 VARIANT Var,

 VARIANT * pVariantReturn

);

Parameters: IReadCookie::get_Item
Var

A variant that contains the name of the item in the collection.

pVariantReturn

Points to a variant that receives the item value.

Remarks: IReadCookie::get_Item
If Var is a string, the cookie is assumed to be a dictionary cookie and Var is treated as the key. If
Var is a variant with type VT_ERROR and error code DISP_E_PARAMNOTFOUND, then the cookie
is assumed to be a simple cookie and the primary value is returned. (If the cookie is a dictionary,
the sequence of key/value pairs are URL-encoded and returned.)

If a dictionary lookup is performed and the item is not found, then pVariantReturn returns
VT_EMPTY. Otherwise a VT_BSTR is always returned.

 IReadCookie::get_NewEnum
The IReadCookie::get_NewEnum method returns an enumerator interface which can be used to
iterate through the items in a cookie.

Sun Chili!Soft ASP 3.6.2 Product Documentation 464

HRESULT get_NewEnum(

 IUnknown ** ppEnumReturn

);

Parameters: IReadCookie::get_NewEnum
ppEnumReturn

Points to an IUnknown interface pointer that receives the enumerator.

Remarks: IReadCookie::get_NewEnum
If a cookie has been implemented as a collection, you can use this method to iterate through all
the members of its collection.

IRequest Interface

The IRequest interface exposes methods that access the collections of the Request object.

IRequest::BinaryRead Retrieves the current request and places it into a
safe array.

IRequest::get_Cookies Retrieves the Cookies collection.

IRequest::get_Form Retrieves the Form collection.

IRequest::get_Item Retrieves an item from the Request collection
by looking for the first match in the
QueryString, Form, Cookies,
ClientCertificate, and ServerVariables
collections.

IRequest::get_QueryString Retrieves the QueryString collection.

IRequest::get_ServerVariables Retrieves the ServerVariables collection.

IRequest::get_TotalBytes Returns the size of the current request in bytes.

The IRequest interface also supports the IUnknown and IDispatch interface methods.

The Sun Chili!Soft ASP IRequest interface does not currently support the IClientCertificate
collection.

 IRequest::BinaryRead
The IRequest::BinaryRead method retrieves the current Request object in a safe array.

HRESULT BinaryRead(

 VARIANT *pvarCountToRead,

 VARIANT *pvarReturn

Sun Chili!Soft ASP 3.6.2 Product Documentation 465

);

Parameters: IRequest::BinaryRead
pvarCountToRead

Points to a variant that contains an integer value of the bytes to read.

pvarReturn

Points to a safe array that contains the bytes that were read by an HTTP POST.

Remarks: IRequest::BinaryRead
A safe array is an array that contains information about the number of dimensions and the upper
and lower bounds of the dimensions.

 IRequest::get_Cookies
The IRequest::get_Cookies method retrieves the Cookies collection of the Request object.

HRESULT get_Cookies(

 IRequestDictionary ** ppDictReturn

);

Parameters: IRequest::get_Cookies
ppDictReturn

Points to an IRequestDictionary interface pointer that receives the Cookies collection.

Remarks: IRequest::get_Cookies
You can iterate through the Cookies collection with the IRequestDictionary::get_NewEnum
method or retrieve a specific cookie with the IRequestDictionary::get_Item method.

 IRequest::get_Form
The IRequest::get_Form method retrieves the Form collection of the Request object.

HRESULT get_Form(

 IRequestDictionary ** ppDictReturn

);

Parameters: IRequest::get_Form
ppDictReturn

Points to an IRequestDictionary interface that receives the Form collection.

Remarks: IRequest::get_Form

Sun Chili!Soft ASP 3.6.2 Product Documentation 466

You can iterate through the Form collection with the IRequestDictionary::get_NewEnum
method or retrieve a specific cookie with the IRequestDictionary::get_Item method.

 IRequest::get_Item
The IRequest::get_Item method retrieves a pointer to an interface pointer of the first item in the
Request object’s collections that contains the specified string.

HRESULT get_Item(

 BSTR bstrVar,

 IDispatch ** ppObjReturn

);

Parameters: IRequest::get_Item
bstrVar

A binary string that contains the name of the item to retrieve.

ppObjReturn

Points to an IDispatch pointer that receives the object that contains the value specified in
bstrVar.

Remarks: IRequest::get_Item
The Request object’s collections are searched in the following order: QueryString, Form,
Cookies, ClientCertificate, and ServerVariables.

If the object containing bstrVar is found in the QueryString, Form, or ServerVariables
collection, then ppObjReturn points to an object that supports the IStringList interface.

If the object is found in the Cookies collection, ppObjReturn points to an object that supports the
IReadCookie interface.

 IRequest::get_QueryString
The IRequest::get_QueryString method retrieves the QueryString collection of the Request
object.

HRESULT get_QueryString(

 IRequestDictionary ** ppDictReturn

);

Parameters: IRequest::get_QueryString
ppDictReturn

Points to an IRequestDictionary interface pointer that receives the QueryString collection.

Sun Chili!Soft ASP 3.6.2 Product Documentation 467

Remarks: IRequest::get_QueryString
You can iterate through the QueryString collection with the
IRequestDictionary::get_NewEnum method or retrieve a specific cookie with the
IRequestDictionary::get_Item method.

 IRequest::get_ServerVariables
The IRequest::get_ServerVariables method retrieves the QueryString collection of the
Request object.

HRESULT get_ServerVariables(

 IRequestDictionary ** ppDictReturn

);

Parameters: IRequest::get_ServerVariables
ppDictReturn

Points to an IRequestDictionary interface pointer that receives the ServerVariables collection.

Remarks: IRequest::get_ServerVariables
You can iterate through the ServerVariables collection with the
IRequestDictionary::get_NewEnum method or retrieve a specific cookie with the
IRequestDictionary::get_Item method.

 IRequest::get_TotalBytes
The IRequest::get_TotalBytes method retrieves the size of the current request in bytes.

get_TotalBytes(

 LONG pcbTotal

);

Parameters: IRequest::get_TotalBytes
pcbTotal

Points to a long integer that contains the size of the current request in bytes.

IRequestDictionary Interface

The IRequestDictionary interface is a general interface wrapper that can wrap the following
collections:

� Request.Cookies

Sun Chili!Soft ASP 3.6.2 Product Documentation 468

� Request.Form

� Request.QueryString

� Request.ServerVariables

� Response.Cookies

The behavior of the IRequestDictionary interface depends on how the Request or Response
object implements the IRequestDictionary::get_Item method.

IRequestDictionary::get_Count Retrieves the number of items in a dictionary.

IRequestDictionary::get_Item Retrieves the specified item from a dictionary.

IRequestDictionary::get_Key Retrieves the identifier of the item to be retrieved
from the collection.

IRequestDictionary::get_NewEnu
m

Retrieves an enumerator for the collection.

The IRequestDictionary interface also supports the IUnknown and IDispatch interface
methods.

 IRequestDictionary::get_Count
The IRequestDictionary::get_Count method determines the total number of items in a
collection.

HRESULT STDMETHODCALLTYPE get_Count(

 int * cStrRet

);

Return Values: IRequestDictionary::get_Count
cStrRet

Points to an integer that contains the total number of items in a collection.

 IRequestDictionary::get_Item
The IRequestDictionary::get_Item method retrieves the specified item from a Request object
dictionary

HRESULT get_Item(

 VARIANT Var,

 VARIANT * pVariantReturn

);

Sun Chili!Soft ASP 3.6.2 Product Documentation 469

Parameters: IRequestDictionary::get_Item
Var

A variant that contains the name of the item in the collection.

pVariantReturn

Points to a variant that receives the item.

Remarks: IRequestDictionary::get_Item
Objects can specify that one or more variant parameters are optional. This is done by passing the
parameter with the type set to VT_ERROR and a value of DISP_E_PARAMNOTFOUND. For
example, if you want to do this with the Var parameter, the value it returns will depend on the
object’s implementation of the IRequestDictionary interface; the QueryString object will return
the entire query string, for example.

� For Request.QueryString, pVariantReturn contains the unparsed query string data.

� For Request.Form, pVariantReturn contains the unparsed form data.

� For Request.Cookies, pVariantReturn contains a URL-encoded list of the cookies.

� Request.ServerVariables and Response.Cookies do not accept an optional variant parameter, and will raise a COM
exception if Var is DISP_E_PARAMNOTFOUND.

If Var is not an optional parameter then it must be a VT_BSTR or a VT_DISPATCH pointer with a
default value that can be converted to a BSTR. In this case, the BSTR value of Var is looked up in
the appropriate dictionary, and the value of Var is returned. If Var is not in the dictionary, then a
variant equal to VT_EMPTY is returned if the IRequestDictionary is covering one of the Request
object’s collections. If the IRequestDictionary pointer is the Response.Cookies collection, a
new cookie with the name of Var is created, and that cookie is returned. If Var is not a BSTR (and
not DISP_E_PARAMNOTFOUND), then the get_Item method will raise an OLE exception.

 IRequestDictionary::get_Key
The IRequestDictionary::get_Key method returns the unique identifier for items in the Cookies,
Form and QueryString collections.

HRESULT STDMETHODCALLTYPE get_Item(

 VARIANT VarKey,

 VARIANT * pVar

);

Parameters: IRequestDictionary::get_Key
VarKey

Identifier that indicates which item to retrieve from the collection.

Sun Chili!Soft ASP 3.6.2 Product Documentation 470

pVar

Points to a variant that receives the item.

 IRequestDictionary::get_NewEnum
The IRequestDictionary::get_NewEnum method returns an enumerator interface that can be
used to iterate through the items in a collection.

HRESULT get_NewEnum(

 IUnknown ** ppEnumReturn

);

Parameters: IRequestDictionary::get_NewEnum
ppEnumReturn

Points to an IUnknown interface pointer that receives the enumerator.

Remarks: IRequestDictionary::get_NewEnum
You can use this method to iterate through the items in any collection. Members of the Cookies
collection may be implemented as collections. IReadCookie and IWriteCookie both support this
method, which you can use to iterate through members of the sub-collections.

IResponse Interface

The IResponse interface exposes the methods of the Response object.

IResponse::AddHeader Adds a header to the HTML output.

IResponse::AppendToLog Adds a string to the end of the Web server log for the
current request.

IResponse::BinaryWrite Writes data to the HTTP output without any character
conversion.

IResponse::Clear Erases any buffered HTML output.

IResponse::End Causes the server to stop executing script and return the
current response.

IResponse::Flush Sends buffered HTML output immediately.

IResponse::get_Buffer Retrieves the value of the Buffer property.

IResponse::get_CacheControl Retrieves the value of the CacheControl property.

IResponse::get_CharSet Retrieves the name of the character set to append to the
content type header.

IResponse::get_ContentType Retrieves the value of the ContentType property.

Sun Chili!Soft ASP 3.6.2 Product Documentation 471

IResponse::get_Cookies Retrieves the write-only Cookies collection.

IResponse::get_Expires Retrieves the value of the Expires property.

IResponse::get_ExpiresAbsolute Retrieves the value of the ExpiresAbsolute property.

IResponse::get_Status Retrieves the value of the Status property.

IResponse::IsClientConnected Determines if the client has disconnected from the server.

IResponse::PICS Adds a value to the PICS label field of the Response header.

IResponse::put_Buffer Sets the value of the Buffer property.

IResponse::putCharSet Retrieves a character set to append to the content header
type.

IResponse::put_ContentType Sets the value of the ContentType property.

IResponse::put_Expires Sets the value of the Expires property.

IResponse::put_ExpiresAbsolute Sets the value of the ExpiresAbsolute property.

IResponse::put_Status Sets the value of the Status property.

IResponse::Redirect Causes the browser to attempt to connect to a different URL.

IResponse::Write Writes a variant to the HTTP output.

The IResponse interface also supports the IUnknown and IDispatch interface methods.

 IResponse::AddHeader
The IResponse::AddHeader method adds an HTTP header to the HTTP response.

HRESULT AddHeader(

 BSTR bstrHeaderName,

 BSTR bstrHeaderValue

);

Parameters: IResponse::AddHeader
bstrHeaderName

A binary string that contains the name of the HTTP header.

bstrHeaderValue

A binary string that contains the header value.

Remarks: IResponse::AddHeader
This method always adds an HTTP header with the specified value. It will not replace a header
with the same name; once a header has been added it cannot be removed.

Sun Chili!Soft ASP 3.6.2 Product Documentation 472

 IResponse::AppendToLog
The IResponse::AppendToLog method adds a string to the end of the Web server log entry for
the current request.

HRESULT AppendToLog(

 BSTR bstrLogEntry

);

Parameters: IResponse::AppendToLog
bstrLogEntry

A binary string to append to the log entry. The string may be a maximum of 80 characters and
may not contain commas (,).

Remarks: IResponse::AppendToLog
This method adds a string to the end of the Web server log entry for this request. It can be called
multiple times in one section of script; each time the method is called it appends the specified
string to the existing entry.

 IResponse::BinaryWrite
The IResponse::BinaryWrite method writes data to the HTTP output without converting Unicode
characters to ANSI.

HRESULT BinaryWrite(

 VARIANT varBuffer

);

Parameters: IResponse::BinaryWrite
varBuffer

A variant containing the data as a Safe Array.

Remarks: IResponse::BinaryWrite
 This method writes the specified information to the current HTTP output without any character
conversion. This method is useful for writing binary data required by a custom application.

 IResponse::Clear
The IResponse::Clear method erases any buffered HTML output.

HRESULT Clear(VOID)

Remarks: IResponse::Clear

Sun Chili!Soft ASP 3.6.2 Product Documentation 473

This method only erases the response body; it does not erase response headers. You can use this
method to handle error cases. This method will cause a run-time error if Response.Buffer has not
been set to TRUE.

 IResponse::End
The IResponse::End method causes the server to stop processing the script and to return the
current response.

HRESULT End(VOID)

Remarks: IResponse::End
Any remaining contents of the file are not processed.

 IResponse::Flush
The IResponse::Flush method sends buffered output immediately.

HRESULT Flush(VOID)

Remarks: IResponse::Flush
If this method is called on an ASP page, the server does not honor Keep-Alive requests for that
page. This method will cause a run-time error if Response.Buffer has not been set to TRUE.

 IResponse::get_Buffer
The IResponse::get_Buffer method retrieves the current value of the Buffer property of the
Response object.

HRESULT get_Buffer(

 VARIANT_BOOL * fIsBuffering

);

Parameters: IResponse::get_Buffer
fIsBuffering

Points to a Boolean variant that receives the Buffer value.

Remarks: IResponse::get_Buffer
When page output is buffered, the server does not send a response to the client until all of the
server scripts on the current page have been processed, or until the Flush or End method has
been called.

The Buffer property cannot be set after the server has sent output to the client. For this reason,
the call to Response.Buffer should be the first line of the .asp file.

Sun Chili!Soft ASP 3.6.2 Product Documentation 474

 IResponse::get_CacheControl
The IResponse::get_CacheControl method retrieves a value for the CacheControl property.

HRESULT get_CacheControl(

 BSTR * pbstrCacheControl

);

Parameters: IResponse::get_CacheControl
pbstrCacheControl

Points to a binary string that receives the CacheControl value.

Remarks: IResponse::get_CacheControl
You can use the CacheControl value to override the default value (FALSE). By setting the value
to TRUE, proxy servers will be able to cache output from ASP pages.

 IResponse::get_CharSet
The IResponse::get_CharSet method retrieves a character set to append to the content type
header.

HRESULT get_CharSet(

 BSTR * pbstrCharSetRet

);

Parameters: IResponse::get_CharSet
pbstrCharSetRet

Points to a binary string that receives the CharSet value.

Remarks: IResponse::get_CharSet
You can use the CharSet value to determine the character set to use when displaying the current
Response object.

 IResponse::get_ContentType
The IResponse::get_ContentType method retrieves the current value of the ContentType
property of the Response object.

HRESULT get_ContentType(

 BSTR * pbstrContentTypeRet

Sun Chili!Soft ASP 3.6.2 Product Documentation 475

);

Parameters: IResponse::get_ContentType
pbstrContentTypeRet

Points to a binary string that receives the ContentType value.

Remarks: IResponse::get_ContentType
You can use the pbstrContentTypeRet value to determine the content type of the current
Response object.

 IResponse::get_Cookies
The IResponse::get_Cookies method retrieves the write-only Cookies collection of the
Response object.

HRESULT get_Cookies(

 IRequestDictionary ** ppCookies

);

Parameters: IResponse::get_Cookies
ppCookies

Points to an IRequestDictionary interface pointer that receives the write-only Cookies
collection.

Remarks: IResponse::get_Cookies
You can iterate through the Cookies collection with the IRequestDictionary::get_NewEnum
method, or you can retrieve a specific cookie with the IRequestDictionary::get_Item method.

 IResponse::get_Expires
The IResponse::get_Expires method retrieves the current value of the Expires property of the
Response object.

HRESULT get_Expires*

 VARIANT * pvarExpiresMinutesRet

);

Parameters: IResponse::get_Expires
pvarExpiresMinutesRet

Points to a variant that receives the Expires value. This value specifies the number of minutes
until the page will expire.

Sun Chili!Soft ASP 3.6.2 Product Documentation 476

Remarks: IResponse::get_Expires
If the user returns to the same page before it expires, the cached version is displayed. If this
property is set more than once on a page, the shortest time is used.

 IResponse::get_ExpiresAbsolute
The IResponse::get_ExpiresAbsolute method retrieves the current value of the
ExpiresAbsolute property of the Response object.

HRESULT get_ExpiresAbsolute(

 VARIANT * pvarExpiresRet

);

Parameters: IResponse::get_ExpiresAbsolute
pvarExpiresRet

Points to a variant that receives the ExpiresAbsolute value. The variant should specify the date
and time.

Remarks: IResponse::get_ExpiresAbsolute
If the user returns to the same page before the set date and time, the cached version is displayed.
If a time is not specified, the page expires at midnight of that day. If a date is not specified, the
page expires at the given time on the day that the script is run. If this property is set more than
once on a page, the earliest expiration date or time is used. The date value sent in the Expires
header conforms to the RFC-1123 date format. The time value is converted to Greenwich Mean
Time before an Expires header is sent.

 IResponse::get_Status
The IResponse::get_Status method retrieves the current value of the Status property of the
Response object.

HRESULT get_Status(

 BSTR * pbstrStatusRet

);

Parameters: IResponse::get_Status
pbstrStatusRet

Points to a binary string that receives the Status value.

Remarks: IResponse::get_Status
Use this property to modify the status line returned by the server. Status values are defined in the
HTTP specification.

Sun Chili!Soft ASP 3.6.2 Product Documentation 477

 IResponse::IsClientConnected
The IResponse::IsClientConnected method determines if the client has disconnected from the
server since the last Response.Write operation.

HRESULT IsClientConnected(

 VARIANT_BOOL pfIsClientConnected

);

Parameters: IResponse::IsClientConnected
pfIsClientConnected

Points to a Boolean that indicates whether or not the client is connected.

 IResponse::PICS
The IResponse::PICS methods adds a value to the PICS label field of the response header.

HRESULT Pics(

 BSTR bstrHeaderValue

);

Parameters: IResponse::PICS
bstrHeaderValue

A binary string that contains the new PICS value.

Remarks: IResponse::PICS
The IResponse::PICS method inserts any string in the header, whether or not it represents a valid
PICS label.

If a single page contains multiple tags containing Response.PICS, each instance will replace the
PICS label set by the previous one. As a result, the PICS label will be set to the value specified by
the last instance of Response.PICS in the page.

Because PICS labels contain quotes, the author must replace each quote with the ASCII
equivalent for the quote symbol [& chr(34) &].

For more details on the PICS standard, see:

http://www.w3.org/PICS/

Sun Chili!Soft ASP 3.6.2 Product Documentation 478

 IResponse::put_Buffer
The IResponse::put_Buffer method sets the value of the Buffer property of the Response
object.

HRESULT put_Buffer(

 VARIANT_BOOL fIsBuffering

);

Parameters: IResponse::put_Buffer
fIsBuffering

A Boolean variant that contains the new Buffer value.

Remarks: IResponse::put_Buffer
When page output is buffered, the server does not send a response to the client until all of the
server scripts on the current page have been processed, or until the Flush or End methods are
called.

Since the Buffer property cannot be set after the server has sent output to the client, the call to
Response.Buffer should be the first line of the .asp file.

 IResponse::putCharSet
The IResponse::putCharSet method sets the value of the Charset property of the Response
object.

HRESULT put_CharSet(

 BSTR bstrCharset

);

Parameters: IResponse::putCharSet
bstrCharSet

A binary string that contains the new CharSet value.

Remarks: IResponse::putCharSet
You can use the CharSet value to set the character set to use when displaying the Response
object.

 IResponse::put_ContentType
The IResponse::put_ContentType method sets the value of the ContentType property of the
Response object.

HRESULT put_ContentType(

Sun Chili!Soft ASP 3.6.2 Product Documentation 479

 BSTR bstrContentType

);

Parameters: IResponse::put_ContentType
bstrContentType

A binary string that contains the new ContentType value.

Remarks: IResponse::put_ContentType
You can use the ContentType value to set the content type to use when displaying the current
Response object.

 IResponse::put_Expires
The IResponse::put_Expires method sets the current value of the Expires property of the
Response object.

HRESULT put_Expires(

 LONG lExpiresMinutes //LONG that contains the new Expires value

);

Parameters: IResponse::put_Expires
lExpiresMinutes

A Long integer that contains the new Expires value.

Remarks: IResponse::put_Expires
If the user returns to the same page before it expires, the cached version is displayed. If this
method is set more than once on a page, the shortest time is used.

 IResponse::put_ExpiresAbsolute
The IResponse::put_ExpiresAbsolute method sets the value of the ExpiresAbsolute property
of the Response object.

HRESULT put_ExpiresAbsolute(

 DATE dtExpires

);

Parameters: IResponse::put_ExpiresAbsolute
dtExpires

A date that contains the new ExpiresAbsolute value

Sun Chili!Soft ASP 3.6.2 Product Documentation 480

Remarks: IResponse::put_ExpiresAbsolute
If the user returns to the same page before the set date and time, the cached version is displayed.
If a time is not specified, the page expires at midnight of that day. If a date is not specified, the
page expires at the given time on the day that the script is run. If this property is set more than
once on a page, the earliest expiration date or time is used. The date value sent in the Expires
header conforms to the RFC-1123 date format. The time value is converted to Greenwich Mean
Time before an Expires header is sent.

 IResponse::put_Status
The IResponse::put_Status method sets the value of the Status property of the Response object.

HRESULT put_Status(

 BSTR bstrStatus

);

Parameters: IResponse::put_Status
bstrStatus

A binary string that contains the new Status value.

Remarks: IResponse::put_Status
You can use this property to modify the status line returned by the server. Status values are
defined in the HTTP specification.

 IResponse::Redirect
The IResponse::Redirect method first stops the server from processing the current script and
then causes the browser to attempt to connect to a different URL. For more information, see the
Redirect method of the Response object.

HRESULT Redirect(

 BSTR bstrURL

);

Parameters: IResponse::Redirect
bstrURL

A binary string that contains the URL.

Remarks: IResponse::Redirect
If you have set any response body content in the page, it will be ignored. However, this method
does send to the client other HTTP headers set by this page. An automatic response body

Sun Chili!Soft ASP 3.6.2 Product Documentation 481

containing the redirect URL as a link is generated. The IResponse::Redirect method sends the
following explicit header,

HTTP/1.0 302 Object Moved

Location URL

where URL is the value passed to the method.

 IResponse::Write
The IResponse::Write method writes the specified variant to the HTTP output. For more
information, see the Write method of the Response object.

HRESULT Write(

 VARIANT varText

);

Parameters: IResponse::Write
varText

A variant to write to the HTTP output.

Remarks: IResponse::Write
If VBScript is your primary scripting language, variant cannot be a string literal that contains
more than 1022 characters. This is because VBScript limits static strings to 1022 bytes. You can,
however, specify variant as the name of a variable that contains greater than 1022 bytes.

IScriptingContext Interface

The IScriptingContext interface exposes methods that your component can use to retrieve the
ASP built-in objects.

IScriptingContext::get_Application Retrieves the Application object. This object implements
the IApplicationObject interface.

IScriptingContext::get_Request Retrieves the Request object. This object implements the
IRequest interface.

IScriptingContext::get_Response Retrieves the Response object. This object implements the
IResponse interface.

IScriptingContext::get_Server Retrieves the Server object. This object implements the
IServer interface.

IScriptingContext::get_Session Retrieves the Session object. This object implements the
ISessionObject interface.

The IScriptingContext also supports the IUnknown and IDispatch interface methods.

Sun Chili!Soft ASP 3.6.2 Product Documentation 482

 IScriptingContext::get_Application
The IScriptingContext::get_Application method retrieves a pointer to the IApplicationObject
interface of the Application object.

HRESULT get_Application(

 IApplicationObject ** ppApplication

);

Parameters: IScriptingContext::get_Application
ppApplication

Points to an IApplicationObject interface.

Remarks: IScriptingContext::get_Application
You can use IApplicationObject interface to gain access to variables and objects that have been
given application scope. IApplicationObject also exposes methods to lock and unlock an
application to prevent concurrent access to application objects and variables.

 IScriptingContext::get_Request
The IScriptingContext::get_Request method retrieves a pointer to the IRequest interface of the
Request object.

HRESULT get_Request(

 IRequest ** ppRequest

);

Parameters: IScriptingContext::get_Request
ppRequest

Points to an IRequest interface pointer.

Remarks: IScriptingContext::get_Request
You can use the IRequest interface to access the methods, properties, and collections of the
Request object.

 IScriptingContext::get_Response
The IScriptingContext::get_Response method retrieves a pointer to the IResponse interface of
the Response object.

HRESULT get_Response(

Sun Chili!Soft ASP 3.6.2 Product Documentation 483

 IResponse ** ppResponse

);

Parameters: IScriptingContext::get_Response
ppResponse

Points to an IResponse interface pointer.

Remarks: IScriptingContext::get_Response
You can use the IResponse interface to access the methods, properties, and collections of the
Response object.

 IScriptingContext::get_Server
The IScriptingContext::get_Server method retrieves a pointer to the IServer interface of the
Server object.

HRESULT get_Server(

 IServer ** ppServer

);

Parameters: IScriptingContext::get_Server
ppServer

Points to an IServer interface pointer.

Remarks: IScriptingContext::get_Server
You can use the IServer interface to access the methods exposed by the Server object.

 IScriptingContext::get_Session
The IScriptingContext::get_Session method retrieves a pointer to the ISessionObject interface
of the Session object.

HRESULT get_Session(

 ISessionObject ** ppSession

);

Parameters: IScriptingContext::get_Session
ppSession

Points to an ISessionObject interface pointer.

Remarks: IScriptingContext::get_Session

Sun Chili!Soft ASP 3.6.2 Product Documentation 484

You can use the ISessionObject interface to access variables and objects that have been given
session scope.

IServer Interface

The IServer interface exposes the methods and properties of the Server object.

IServer::CreateObject Creates an instance of an object.

IServer::get_ScriptTimeout Retrieves the value of the ScriptTimeout property.

IServer::HTMLEncode Applies HTML encoding to the specified string.

IServer::MapPath Maps the specified relative or virtual path to the corresponding
physical directory on the server.

IServer::put_ScriptTimeout Sets the value of the ScriptTimeout property.

IServer::URLEncode Applies URL encoding rules, including escape characters, to
the specified string.

The IServer interface also supports the IUnknown and IDispatch interface methods.

 IServer::CreateObject
The IServer::CreateObject method creates an instance of a server component. For more
information, see the CreateObject method of the Server object.

HRESULT CreateObject(

 BSTR bstrProgID,

 IDispatch ** ppDispObject

);

Parameters: IServer::CreateObject
bstrProgID

A binary string that contains the progID of the object.

ppDispObject

Points to an IDispatch interface pointer.

Remarks: IServer::CreateObject
By default, objects created by the Server.CreateObject method have page scope. This means
that they are automatically destroyed by the server when it finishes processing the current ASP
page.

Sun Chili!Soft ASP 3.6.2 Product Documentation 485

To create an object with session or application scope, you can either use the <OBJECT> tag and
set the SCOPE attribute to SESSION or APPLICATION, or store the object in a session or
application variable.

 IServer::get_ScriptTimeout
The IServer::get_ScriptTimeout method retrieves the value of the ScriptTimeout property of
the Server object.

HRESULT get_ScriptTimeout(

 LONG * plTimeoutSeconds

);

Parameters: IServer::get_ScriptTimeout
plTimeoutSeconds

Points to a LONG that receives the ScriptTimeout value.

Remarks: IServer::get_ScriptTimeout
A default ScriptTimeout can be set for a Web Service or Web Server by using the
ScriptTimeout property in the registry or configuration file. The ScriptTimeout property cannot
be set to a value less than that specified in the registry or configuration file.

 IServer::HTMLEncode
The IServer::HTMLEncode method applies HTML encoding to the specified string. For more
information, see the HTMLEncode method of the Server object.

HRESULT HTMLEncode(

 BSTR bstrIn,

 BSTR * pbstrEncoded

);

Parameters: IServer::HTMLEncode
bstrIn
A binary string that contains the text to be encoded.

pbstrEncoded

Points to a binary string that receives the encoded text.

Remarks: IServer::HTMLEncode
If your component returns the encoded text to a browser, the browser will display it in HTML
format, rather than in plain text. For example, if the bstrIn contained the following string, < >,

Sun Chili!Soft ASP 3.6.2 Product Documentation 486

the pbstrEncoded parameter would contain the HTML code for those characters, < >. If
your component returned this to a browser, however, it would display it as < >.

 IServer::MapPath
The IServer::MapPath method maps the specified relative or virtual path to the corresponding
physical directory on the server. For more information, see the MapPath method of the Server
object.

HRESULT MapPath(

 BSTR bstrLogicalPath,

 BSTR * pbstrPhysicalPath

);

Parameters: IServer::MapPath
bstrLogicalPath

A binary string that contains the relative or virtual path.

pbstrPhysicalPath

Points to a binary string that receives the physical path.

Remarks: IServer::MapPath
This method does not check whether the path it returns is valid or exists on the server.

Because the IServer::MapPath method maps a path regardless of whether the specified
directories currently exist, you can use it to map a path to a physical directory structure, and then
pass that path to a component that creates the specified directory or file on the server.

 IServer::put_ScriptTimeout
The IServer::put_ScriptTimeout method sets the value of the ScriptTimeout property of the
Server object.

HRESULT put_ScriptTimeout(

 LONG lTimeoutSeconds

);

Parameters: IServer::put_ScriptTimeout
lTimeoutSeconds

A LONG integer that contains the new ScriptTimeout value.

Remarks: IServer::put_ScriptTimeout

Sun Chili!Soft ASP 3.6.2 Product Documentation 487

A default ScriptTimeout can be set for a Web Service or Web Server by using the
ScriptTimeout property in the registry or configuration file. The ScriptTimeout property cannot
be set to a value less than that specified in the registry or configuration file.

 IServer::URLEncode
The IServer::URLEncode method applies URL encoding rules, including escape characters, to
the specified string. For more information, see the URLEncode method of the Server object.

HRESULT URLEncode(

 BSTR bstrIn,

 BSTR * pbstrEncoded

);

Parameters: IServer::URLEncode
bstrIn

A binary string that contains the text to be encoded.

pbstrEncoded

Points to a binary string that receives the encoded text.

ISessionObject Interface

The ISessionObject interface exposes the methods of the Session object.

ISessionObject::Abandon Destroys all the objects stored in the Session
object and releases their resources.

ISessionObject::get_Contents Retrieves the Contents collection.

ISessionObject::get_SessionID Retrieves the value of the SessionID entry.

ISessionObject::get_StaticObjects Retrieves the StaticObjects collection.

ISessionObject::get_Timeout Retrieves the value of the Timeout property.

ISessionObject::get_Value Retrieves the value of a variable stored in the
Session object.

ISessionObject::put_Timeout Sets a value for the Timeout property.

ISessionObject::putref_Value Stores a variable in the Session object by
reference.

ISessionObject::put_Value Stores a variable in the Session object by value.

The ISessionObject interface also supports the IUnknown and IDispatch interfaces.

Sun Chili!Soft ASP 3.6.2 Product Documentation 488

 ISessionObject::Abandon
The ISessionObject::Abandon method destroys all the objects stored in the current session and
releases their resources. For more information see the Abandon method of the Session object.

HRESULT Abandon(VOID);

Remarks: ISessionObject::Abandon
When this method is called, the current Session object is queued for deletion, but is not actually
deleted until all of the script commands on the current page have been processed. This means that
you can access variables stored in the Session object on the same page as the call to Abandon,
but not in any subsequent Web pages.

 ISessionObject::get_Contents
The ISessionObject::get_Contents method retrieves the value of the Contents property.

HRESULT get_Contents(

 IVariantDictionary **ppProperties

);

Parameters: ISessionObject::get_Contents
ppProperties

Points to an IVariantDictionary interface pointer that receives the Contents collection.

Remarks: ISessionObject::get_Contents
The Session Contents collection contains all variables and objects that have been given
application scope with the Server.CreateObject command. You can iterate through the
Contents collection with the IVariantDictionary::get_NewEnum method exposed by the
interface. You can also retrieve a specific member of the collection with the
IVariantDictionary::get_Item method.

 ISessionObject::get_SessionID
The ISessionObject::get_SessionID method retrieves the value of the SessionID property.

HRESULT get_SessionID(

 BSTR * pbstrRet

);

Parameters: ISessionObject::get_SessionID
pbstrRet

Points to a binary string that receives the SessionID value.

Sun Chili!Soft ASP 3.6.2 Product Documentation 489

Remarks: ISessionObject::get_SessionID
You should not use the SessionID property to generate primary key values for a database
application. This is because if the Web server is restarted, some SessionID values may be the
same as those generated before the server was stopped. Instead, you should use an auto-increment
column data type.

 ISessionObject::get_StaticObjects
The ISessionObject::get_StaticObjects method retrieves the StaticObjects collection of the
Session object.

HRESULT get_StaticObjects(

 IVariantDictionary **ppProperties

);

Parameters: ISessionObject::get_StaticObjects
ppProperties

Points to an IVariantDictionary interface pointer that receives the StaticObjects collection.

Remarks: ISessionObject::get_StaticObjects
You can iterate through the StaticObjects collection with the
IVariantDictionary::get_NewEnum method exposed by the interface. You can also retrieve a
specific member of the collection with the IVariantDictionary::get_Item method.

 ISessionObject::get_Timeout
The ISessionObject::get_Timeout method retrieves the value of the Timeout property of the
Session object.

HRESULT get_Timeout(

 LONG * plvar

);

Parameters: ISessionObject::get_Timeout
plvar

Points to a LONG integer that receives the Timeout value.

 ISessionObject::get_Value
The ISessionObject::get_Value method retrieves the value of a variable stored in the Session
object.

Sun Chili!Soft ASP 3.6.2 Product Documentation 490

HRESULT get_Value(

 BSTR bstrValue,

 VARIANT * pvar

);

Parameters: ISessionObject::get_Value
bstrValue

A binary string that contains the variable name.

pvar

Points to a variant that receives the variable value.

Remarks: ISessionObject::get_Value
You can store values in the Session object. Information stored in the Session object is available
throughout the session and has session scope.

 ISessionObject::put_Timeout
This ISessionObject::put_Timeout method sets the value of the Timeout property of the
Session object.

HRESULT put_Timeout(

 LONG lvar

);

Parameters: ISessionObject::put_Timeout
lvar

A LONG integer that contains the new Timeout value.

 ISessionObject::putref_Value
The ISessionObject::putref_Value method stores a COM object in the Session object. This
method is equivalent to ISessionObject::put_Value for non-COM objects.

HRESULT putref_Value(

 BSTR bstrValue,

VARIANT var

);

Parameters: ISessionObject::putref_Value

Sun Chili!Soft ASP 3.6.2 Product Documentation 491

bstrValue

A binary string that contains the new variable name.

var

A variant to store in the variable.

Remarks: ISessionObject::putref_Value
Before you store an object in the Session object, you should know what threading model it uses.
For more information, see the Scope and Threading topics.

 ISessionObject::put_Value
The ISessionObject::put_Value method stores a variant in the Session object. If the variant is a
COM object, then Sun Chili!Soft ASP will attempt to store the default value of that object into
the application. If Sun Chili!Soft ASP cannot get the default value, then the call will fail.

HRESULT put_Value(

 BSTR bstrValue,

 VARIANT var

);

Parameters: ISessionObject::put_Value
bstrValue

A binary string that contains the variable name.

var

A variant that contains the variable value.

Remarks: ISessionObject::put_Value
If you store an array in a Session object, you should not attempt to alter the elements of the stored
array directly. For example, the following script will not work.

<% Session("StoredArray")(3) = "new value" %>

This is because the Session object is implemented as a collection. The array element
StoredArray(3) does not receive the new value. Instead, the value is indexed into the
collection, overwriting any information stored at that location.

It is strongly recommended that if you store an array in the Session object, you retrieve a copy of
the array before retrieving or changing any of the elements of the array. When you are done with
the array, you should store the array in the Session object again so that any changes you made are
saved.

Sun Chili!Soft ASP 3.6.2 Product Documentation 492

IStringList Interface

The IStringList interface is used to retrieve individual items from the string lists contained in the
QueryString, Form, or ServerVariables collections.

IStringList::get_Count Retrieves the number of items in the string list.

IStringList::get_Item Retrieves the specified item from a string list.

IStringList::get_NewEnum Retrieves an enumerator for the string list.

The IStringList interface also supports the IUnknown and IDispatch interface methods.

 IStringList::get_Count
The IStringList::get_Count method retrieves the number of items in a string list.

HRESULT get_Count(

 INT * cStrRet

);

Parameters: IStringList::get_Count
cStrRet

Points to an integer that receives the number of items.

Remarks: IStringList::get_Count
The Form, QueryString, and ServerVariables collections return parameter values as an array. If
the collection does not contain multiple values, the cStrRet will contain 1; if the parameter is
not found, it will contain 0.

You can use this method to determine the number of items in the array. For example, if a Form
included an Items ordered parameter, you could use the get_Count method to determine the
number of items that had been ordered in the Form.

 IStringList::get_Item
The IStringList::get_Item method retrieves an individual item from a string list.

HRESULT get_Item(

 VARIANT Var,

 VARIANT * pVariantReturn

);

Parameters: IStringList::get_Item

Sun Chili!Soft ASP 3.6.2 Product Documentation 493

Var

A variant that contains the name of the item in the collection.

pVariantReturn

Points to a variant that receives the item value.

Remarks: IStringList::get_Item
You can use this method to retrieve a particular item from an array that has been returned by a
Form, QueryString, or ServerVariables collection.

 IStringList::get_NewEnum
The IStringList::get_NewEnum method retrieves an enumerator interface which can be used to
iterate through the items in the string list.

HRESULT get__NewEnum(

 IUnknown ** ppEnumReturn

);

Parameters: IStringList::get_NewEnum
ppEnumReturn

Points to an IUnknown interface pointer that receives the enumerator.

Remarks: IStringList::get_NewEnum
The Form, QueryString, and ServerVariables collections return parameter values as an array.
You can use this method to retrieve an enumerator to iterate through one of the string list
collections.

IVariantDictionary Interface

The IVariantDictionary interface exposes methods that you use to access the members of the
Application Contents, Application StaticObjects, Session Contents and Session
StaticObjects collections.

IVariantDictionary::get_Count Retrieves the number of items in the collection.

IVariantDictionary::get_Item Retrieves an item from the specified collection.

IVariantDictionary::get_Key Retrieves an identifier for an item.

IVariantDictionary::get_NewEnum Retrieves an enumerator for the collection.

IVariantDictionary::put_Item Adds an item to the specified collection.

Sun Chili!Soft ASP 3.6.2 Product Documentation 494

 IVariantDictionary::get_Count
The IVariantDictionary::get_Count method returns the number of items in either the Contents
or StaticObjects collection.

HRESULT STDMETHODCALLTYPE get_Count(

 int * cStrRet

);

Parameters: IVariantDictionary::get_Count
cStrRet

Points to an integer that contains a total of the number of items in the collection.

 IVariantDictionary::get_Item
The IVariantDictionary::get_Item method retrieves the specified item from either the Contents
or StaticObjects collection. Both the Application and Session objects provide these collections.

HRESULT STDMETHODCALLTYPE get_Item(

 VARIANT VarKey,

 VARIANT * pvar

);

Parameters: IVariantDictionary::get_Item
VarKey

Identifier that indicates which item to retrieve from the collection.

pVar

Points to the item that is returned.

 IVariantDictionary::get_Key
The IVariantDictionary::get_Key method returns a unique identifier for an item in either the
Contents or StaticObjects collection.

HRESULT STDMETHODCALLTYPE get_Item(

 VARIANT VarKey,

 VARIANT * pvar

);

Parameters: IVariantDictionary::get_Key

Sun Chili!Soft ASP 3.6.2 Product Documentation 495

VarKey

Identifier that indicates which item to retrieve from the collection.

pVar

Points to the item that is returned.

 IVariantDictionary::get_NewEnum
The IVariantDictionary::get_NewEnum method retrieves an enumerator interface which can be
used to iterate through the items in the collection.

HRESULT STDMETHODCALLTYPE get__NewEnum(

 IUnknown * ppEnumReturn

);

Parameters: IVariantDictionary::get_NewEnum
ppEnumReturn

Points to an IUnknown interface pointer that receives the enumerator.

 IVariantDictionary::put_Item
The IVariantDictionary::put_Item method adds an item to either the Contents or
StaticObjects collection.

HRESULT put_Item(

 VARIANT VarKey,

 VARIANT var

);

Parameters: IVariantDictionary::put_Item
VarKey

Identifier that indicates which item to add to the collection.

Var

The item to add to the collection.

IWriteCookie Interface

The IWriteCookie interface exposes the methods that you can use to alter the values and
attributes of the cookies stored in the write-only Cookies collection.

Sun Chili!Soft ASP 3.6.2 Product Documentation 496

IWriteCookie::get_NewEnum Retrieves an enumerator for the Cookies collection.

IWriteCookie::get_HasKeys Retrieves a Boolean indicating whether the cookie
has keys.

IWriteCookie::put_Domain Sets the Domain attribute of the cookie to the
specified value.

IWriteCookie::put_Expires Sets the Expires attribute of the cookie to the
specified value.

IWriteCookie::put_Item Adds an item to the Cookies collection.

IWriteCookie::put_Path Sets the Path attribute of the cookie to the specified
value.

IWriteCookie::put_Secure Sets the Secure attribute of the cookie to the
specified value.

IWriteCookie and IReadCookie are interfaces for the same object. If you have an
IWriteCookie pointer, you can call the IUnknown::QueryInterface method on an
IReadCookie pointer.

The IWriteCookie interface also supports the IUnknown and IDispatch interface methods.

 IWriteCookie::get_NewEnum
The IWriteCookie::get_NewEnum method retrieves an enumerator interface which can be used
to iterate through the items in a cookie.

HRESULT get__NewEnum(

 IUnknown ** ppEnumReturn

);

Parameters: IWriteCookie::get_NewEnum
ppEnumReturn

Points to an IUnknown interface pointer that receives the enumerator.

Remarks: IWriteCookie::get_NewEnum
If a cookie has been implemented as a collection, you can use this method to iterate through all
the members of its collection.

 IWriteCookie::get_HasKeys
The IWriteCookie::get_HasKeys method retrieves a Boolean value which indicates whether or
not the cookie has keys.

HRESULT get_HasKeys(

Sun Chili!Soft ASP 3.6.2 Product Documentation 497

 VARIANT_BOOL * pfHasKeys

);

Parameters: IWriteCookie::get_HasKeys
pfHasKeys

Points to a Boolean that indicates whether or not the cookie has keys.

Remarks: IWriteCookie::get_HasKeys
If the cookie has been implemented as a collection, this method will return TRUE. If the cookie
has keys, you can use the IWriteCookie::get_NewEnum method to retrieve an enumerator for
iterating through the collection.

 IWriteCookie::put_Domain
The IWriteCookie::put_Domain method sets the Domain attribute of the write-only Cookies
collection to the specified value.

HRESULT put_Domain(

 BSTR bstrDomain

);

Parameters: IWriteCookie::put_Domain
bstrDomain

A binary string that contains the new domain value.

Remarks: IWriteCookie::put_Domain
You can use this method to specify particular domains for a cookie. This method only applies to
the Response.Cookies collection.

 IWriteCookie::put_Expires
The IWriteCookie::put_Expires method sets the Expires attribute of the write-only Cookies
collection to the specified value.

HRESULT put_Expires(

 DATE dtExpires

);

Parameters: IWriteCookie::put_Expires
dtExpires

A date that contains the new expiration value.

Sun Chili!Soft ASP 3.6.2 Product Documentation 498

Remarks: IWriteCookie::put_Expires
This date must be set in order for the cookie to be maintained after the session ends. If this
attribute is not set to a date beyond the current date, the cookie will expire when the session ends.

 IWriteCookie::put_Item
The IWriteCookie::put_Item method adds a specified cookie to the write-only Cookie
collection.

HRESULT put_Item(

 VARIANT key,

 BSTR bstrValue

);

Parameters: IWriteCookie::put_Item
key

A variant that contains the name of the cookie.

bstrValue

A binary string that contains the cookie value.

Remarks: IWriteCookie::put_Item
Automation objects can specify that one or more variant parameters are optional. This is done by
passing the parameter with the type set to VT_ERROR and a value of DISP_E_PARAMNOTFOUND.
If you pass key as an optional parameter, the cookie is treated as a simple cookie and its value is
set to bstrValue. Otherwise, the cookie is treated as a dictionary cookie and bstrValue is the value
for the cookie's key.

 IWriteCookie::put_Path
The IWriteCookie::put_Path method sets the Path attribute of the write-only Cookies
collection to the specified value.

HRESULT put_Path(

BSTR bstrPath

);

Parameters: IWriteCookie::put_Path
bstrPath

A binary string that contains the new path.

Sun Chili!Soft ASP 3.6.2 Product Documentation 499

Remarks: IWriteCookie::put_Path
You can use this method to specify that the cookie should be sent only to requests on a particular
path. If this attribute is not set, the application path is used.

 IWriteCookie::put_Secure
The IWriteCookie::put_Secure method sets the Secure attribute of the write-only Cookies
collection to the specified value.

HRESULT put_Secure(

 VARIANT_BOOL fSecure

);

Parameters: IWriteCookie::put_Secure
fSecure

A Boolean that contains the new value for the Secure attribute.

Remarks: IWriteCookie::put_Secure
You can use this method to specify that a cookie is secure. If you set this value to TRUE, a
Secure flag will be added to the Set-Cookie header sent to the client. The Secure flag
instructs the client to use only secure means to access the server when sending back the cookie.

JScript Language Reference

Sun Chili!Soft ASP supports version 3.1 of JScript.

This section provides reference information on the following JScript topics:

� JScript Operators

� JScript Statements

� JScript Functions

� JScript Objects

� JScript FileSystemObject Collections

 JScript Features (ECMA)
Category Feature/Keyword

Array Handling JScript Array Object

JScript Array Object concat Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 500

JScript Array Object join Method

JScript Array Object length Property

JScript Array Object reverse Method

JScript Array Object slice Method

JScript Array Object sort Method

Assignments JScript Assignment Operator (=) [JScript Assignment Operator
('equals sign')

JScript Compound Assignment Operators

Booleans JScript Boolean Object

Comments JScript Comment Statements

Constants/Literals JScript Global Object NaN Property

null,

true,

false,

JScript Global Object Infinity Property,

Undefined

Control Flow JScript break Statement

JScript continue Statement

JScript for Statement

JScript for. . . in Statement

JScript if. . . else Statement

JScript return Statement

JScript while Statement

Dates and Time JScript Date Object

JScript Date Object getDate Method

JScript Date Object getDay Method

JScript Date Object getFullYear Method

JScript Date Object getHours Method

JScript Date Object getMilliseconds Method

JScript Date Object getMinutes Method

JScript Date Object getMonth Method

JScript Date Object getSeconds Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 501

JScript Date Object getTime Method

JScript Date Object getTimezoneOffset Method

JScript Date Object getYear Method

JScript Date Object getUTCDate Method

JScript Date Object getUTCDay Method

JScript Date Object getUTCFullYear Method

JScript Date Object getUTCHours Method

JScript Date Object getUTCMilliseconds Method

JScript Date Object getUTCMinutes Method

JScript Date Object getUTCMonth Method

JScript Date Object getUTCSeconds Method

JScript Date Object setDate Method

JScript Date Object setFullYear Method

JScript Date Object setHours Method

JScript Date Object setMilliseconds Method

JScript Date Object setMinutes Method

JScript Date Object setMonth Method

JScript Date Object setSeconds Method

JScript Date Object setTime Method

JScript Date Object setYear Method

JScript Date Object setUTCDate Method

JScript Date Object setUTCFullYear Method

JScript Date Object setUTCHours Method

JScript Date Object setUTCMilliseconds Method

JScript Date Object setMinutes Method

JScript Date Object setUTCMonth Method

JScript Date Object setUTCSeconds Method

JScript Date Object toGMTString Method

JScript Date Object toLocaleString Method

JScript Date Object toUTCString Method

JScript Date Object parse Method

JScript Date Object UTC Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 502

Declarations JScript function Statement

JScript new Operator

JScript this Statement

JScript var Statement

JScript with Statement

Function Creation JScript Function Object

JScript Function Object arguments Property

JScript Function Object length Property

Global Methods JScript Global Object

JScript Global Object escape Method

JScript Global Object unescape Method

JScript Global Object eval Method

JScript Global Object isFinite Method

JScript Global Object isNaN Method

JScript Global Object parseInt Method

JScript Global Object parseFloat Method

Math JScript Math Object

JScript Math Object abs Method

JScript Math Object acos Method

JScript Math Object asin Method

JScript Math Object atan Method

JScript Math Object atan2 Method

JScript Math Object ceil Method

JScript Math Object cos Method

JScript Math Object exp Method

JScript Math Object floor Method

JScript Math Object log Method

JScript Math Object max Method

JScript Math Object min Method

JScript Math Object pow Method

JScript Math Object random Method

JScript Math Object round Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 503

JScript Math Object sin Method

JScript Math Object sqrt Method

JScript Math Object tan Method

JScript Math Object E Property

JScript Math Object LN2 Property

JScript Math Object LN10 Property

JScript Math Object LOG2E Property

JScript Math Object LOG10E Property

JScript Math Object PI Property

JScript Math Object SQRT1_2 Property

JScript Math Object SQRT2 Property

Numbers JScript Number Object

JScript Number Object MAX_VALUE Property

JScript Number Object MIN_VALUE Property

JScript Number Object NaN Property

JScript Number Object NEGATIVE_INFINITY Property

JScript Number Object POSITIVE_INFINITY Property

Object Creation JScript Object

JScript new Operator

JScript Object constructor Property

JScript Object prototype Property

JScript Object toString Method

JScript Object valueOf Method

Operators JScript Addition Operator (+)

JScript Subtraction and Unary Negation Operator (-)

JScript Modulus Operator (%)

JScript Multiplication Operator (*)

JScript Division Operator (/)

JScript Subtraction and Unary Negation Operator (-)

JScript Comparison Operators

JScript Logical AND Operator (&&)

JScript Logical OR Operator (||)

Sun Chili!Soft ASP 3.6.2 Product Documentation 504

JScript Logical NOT Operator (!)

JScript Bitwise AND Operator (&)

JScript Bitwise OR Operator (|)

JScript Bitwise NOT Operator (~)

JScript Bitwise XOR Operator (^)

JScript Bitwise Left Shift Operator (<<)

JScript Bitwise Right Shift Operator (>>)

JScript Unsigned Right Shift Operator (>>>)

JScript Conditional (ternary) Operator (?:)

JScript Comma Operator (,)

JScript delete Operator

JScript typeof Operator

JScript void Operator

JScript Decrement (--) and Increment (++) Operators

Objects JScript Array Object

JScript Boolean Object

JScript Date Object

JScript Dictionary Object

JScript Function Object

JScript Global Object

JScript Math Object

JScript Number Object

JScript Object

JScript String Object

Strings JScript String Object

JScript String Object charAt Method

JScript String Object charCodeAt Method

JScript String Object fromCharCode Method

JScript String Object indexOf Method

JScript String Object lastIndexOf Method

JScript String Object split Method

JScript String Object toLowerCase Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 505

JScript String Object toUpperCase Method

JScript String Object length Property

 JScript Features (non-ECMA)
Category Feature/Keyword

Array Handling JScript Array Object concat Method

JScript Array Object slice Method

JScript VBArray Object

JScript VBArray Object Dimensions Method

JScript VBArray Object getItem Method

JScript VBArray Object lbound Method

JScript VBArray Object toArray Method

JScript VBArray Object ubound Method

Conditional
Compilation

JScript @cc_on Statement

JScript @if Statement

JScript @set Statement

JScript Conditional Compilation Variables

Control Flow JScript do. . . while Statement

JScript Labeled Statement

JScript switch Statement

Dates and Time JScript Date Object getVarDate Method

Enumeration JScript Enumerator Object

JScript Enumerator Object AtEnd Method

JScript Enumerator Object item Method

JScript Enumerator Object moveFirst Method

JScript Enumerator Object moveNext Method

Function Creation JScript Function Object caller Property

Operators JScript Comparison Operators

Objects JScript Enumerator Object

JScript RegExp Object

JScript Regular Expression Object

Sun Chili!Soft ASP 3.6.2 Product Documentation 506

JScript VBArray Object

Regular Expressions
and Pattern
Matching

JScript RegExp Object

JScript RegExp Object index Property

JScript RegExp Object input Property

JScript RegExp Object lastIndex Property

JScript RegExp Object lastMatch Property

JScript RegExp Object lastParen Property

JScript RegExp Object leftContext Property

JScript RegExp Object multiline Property

JScript RegExp Object rightContext Property

JScript RegExp Object $1. . . $9 Property

JScript Regular Expression Object

JScript Regular Expression Object global Property

JScript Regular Expression Object ignoreCase Property

JScript Regular Expression Object lastIndex Property

JScript Regular Expression Object source Property

JScript Regular Expression Object compile Method

JScript Regular Expression Object exec Method

JScript Regular Expression Object test Method

Script Engine
Identification

JScript ScriptEngine Function

JScript ScriptEngineBuildVersion Function

JScript ScriptEngineBuildMajorVersion Function

JScript ScriptEngineBuildMinorVersion Function

Strings JScript String Object concat Method

JScript String Object slice Method

JScript String Object match Method

JScript String Object replace Method

JScript String Object search Method

JScript String Object anchor Method

JScript String Object big Method

JScript String Object blink Method

JScript String Object bold Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 507

JScript String Object fixed Method

JScript String Object fontcolor Method

JScript String Object fontsize Method

JScript String Object italics Method

JScript String Object small Method

JScript String Object strike Method

JScript String Object sub Method

JScript String Object sup Method

 JScript Data Type Conversion
JScript provides automatic type conversion as the context may require. This means that if the
context expects a value to be a string, for example, JScript tries to convert the value to a string.

The language has six types of data. All values have one of these types:

� Undefined. The undefined type has one value only, undefined.

� Null. The null type has one value only, null.

� Boolean. The Boolean type represents the two logical values, true and false.

� String. A string delineated by single or double quotation marks; can contain zero or more
unicode characters. An empty string ("") has zero characters and length.

� Number. Can be an integer or floating point number according to the IEEE 754
specification. There also several special values:

� NaN, or not a Number

� Positive infinity

� Negative infinity

� Positive zero

� Negative zero

� Object. An object definition including its set of properties and methods.

The following table defines what happens when the context requires that JScript convert one data
type into another:

Output Input

Undefined Null Boolean Number String Object

Boolean false false no
conversion

false if +0, -0
or NaN,
otherwise

false if empty
string (""),
otherwise

true

Sun Chili!Soft ASP 3.6.2 Product Documentation 508

true true

Number NaN NaN 1 if true +0 if
false

no
conversion

If it cannot
be interpreted
as a number,
it is
interpreted as
NaN

Number
object

String undefined "null" "true" or
"false"

The absolute
value of the
number plus
its sign, with
the following
exceptions:
NaN returns
"NaN" +0 or
-0 returns "0"
+ infinity
returns
"Infinity" –
infinity
returns "-
Infinity"

no
conversion

String object

Object runtime
error

runtim
e error

New Boolean
object

New Number
object

New String
object

no
conversion

 JScript Conditional Compilation Variables
The following predefined variables are available for conditional compilation. If a variable is not
True, it is not defined and behaves as NaN when accessed.

Variable Description

@_win32 True if running on a Win32 system.

@_win16 True if running on a Win16 system.

@_mac True if running on an Apple Macintosh system.

@_alpha True if running on a DEC Alpha processor.

@_x86 True if running on an Intel processor.

@_mc680x0 True if running on a Motorola 680x0 processor.

@_PowerPC True if running on a Motorola PowerPC processor.

Sun Chili!Soft ASP 3.6.2 Product Documentation 509

@_jscript Always true.

@_jscript_build Contains the build number of the JScript scripting
engine.

@_jscript_version Contains the JScript version number in major.minor
format.

JScript Operators

Operator Description

JScript Addition Operator (+) Sum two numbers or perform string concatenation.

JScript Assignment Operator (=)
[JScript Assignment Operator
('equals sign')

Assign a value to a variable.

JScript Bitwise AND Operator
(&)

Perform bitwise AND on two expressions.

JScript Bitwise Left Shift
Operator (<<)

Shift the bits of an expression to the left.

JScript Bitwise NOT Operator
(~)

Perform a bitwise NOT (negation) of an
expression.

JScript Bitwise OR Operator (|) Perform bitwise OR on two expressions.

JScript Bitwise Right Shift
Operator (>>)

Shift the bits of an expression right, maintaining
sign.

JScript Bitwise XOR Operator
(^)

Perform bitwise exclusive OR on two expressions.

JScript Comma Operator (,) Causes expressions to be executed sequentially.

JScript Comparison Operators Returns a Boolean value indicating the result of the
comparison.

JScript Compound Assignment
Operators

Combine computational operators with assignment
operators to simplify expressions.

JScript Conditional (ternary)
Operator (?:)

Executes one of two statements depending on a
condition.

JScript Delete Operator Deletes a property from an object, or removes an
element from an array.

JScript Decrement (--) and
Increment (++) Operators

Decrements a variable by one.

JScript Division Operator (/) Divide two numbers and return a numeric result.

Sun Chili!Soft ASP 3.6.2 Product Documentation 510

JScript Comparison Operators
(==)

Compares two expressions for equality

JScript Comparison Operators
(>)

Compares the magnitude of two expressions.

JScript Comparison Operators
(>=)

Compares the magnitude or equality of two
expressions.

JScript Comparison Operators
(===)

Compares two expressions for equality and type.

JScript Decrement (--) and
Increment (++) Operators

Increments a variable by one.

JScript Logical AND Operator
(&&)

Perform a logical conjunction on two expressions.

JScript Logical NOT Operator
(!)

Perform logical negation on an expression.

JScript Logical OR Operator (||) Perform a logical disjunction on two expressions.

JScript Modulus Operator (%) Divide two numbers and return only the remainder.

JScript Multiplication Operator
(*)

Multiply two numbers.

JScript new Operator Create a new object.

JScript Subtraction and Unary
Negation Operator (-)

Indicate the negative value of a numeric
expression.

Comparison (!===) Compares two expressions for equality and type.

Subtraction (-) Find the difference between two expressions

JScript typeof Operator Determine the type of an expression.

JScript Unsigned Right Shift
Operator (>>>)

Shift bits of an expression to the right.

JScript void Operator Discards its operator and returns undefined.

 JScript Operator Behavior
The following table describes the behavior of most JScript operators. The columns and rows
represent the different types of expressions possible on either side of an operator in JScript, and
the entries in the table describe the behavior.

An E indicates a run-time error. An N indicates a numeric result, or a Boolean result in the case
of logical operators.

Sun Chili!Soft ASP 3.6.2 Product Documentation 511

obj As Ns num bool Undef null

Obj N E N N N E E

As E E E E E E E

Ns N E N N N E E

Num N E N N N E E

Bool N E N N N E E

Undef E E E E E E E

Null E E E E E E E

obj = object, as = alphanumeric string, ns = numeric string, num = number, bool = Boolean, undef
= undefined, null = null value.

 JScript Operator Precedence
Operators in JScript are evaluated in a particular order. This order is known as the operator
precedence. The following table lists the operators in highest-to-lowest precedence order.
Operators with the same precedence are evaluated in left to right order in the expression.

Operator Description

. [] () Field access, array indexing, and function calls

++ -- - ~ ! delete new typeof
void

Unary operators, return data type, object creation,
undefined values

* / % Multiplication, division, modulo division

+ - + Addition, subtraction, string concatenation

<< >> >>> Bit shifting

< <= > >= Less than, less than or equal, greater than, greater than or
equal

== != === !== Equality, inequality, identity, nonidentity

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

&& Logical AND

| | Logical OR

?: Conditional

= OP= Assignment, assignment with operation

, Multiple evaluation

Sun Chili!Soft ASP 3.6.2 Product Documentation 512

Parentheses are used to alter the order of evaluation. The expression within parentheses is fully
evaluated before its value is used in the remainder of the statement.

An operator with higher precedence is evaluated before one with lower precedence. For example:

z = 78 * (96 + 3 + 45)

There are five operators in this expression: =, *, (), +, and +. According to precedence,
they are evaluated in the following order: (), *, +, +, =.

Evaluation of the expression within the parentheses is first: There are two addition operators, and
they have the same precedence: 96 and 3 are added together and 45 is added to that total,
resulting in a value of 144.

Multiplication is next: 78 and 144 are multiplied, resulting in a value of 10998.

Assignment is last: 11232 is assigned into z.

 JScript Addition Operator (+)
Used to sum two numbers or perform string concatenation.

Syntax: JScript Addition Operator (+)
result = expression1 + expression2

Arguments: JScript Addition Operator (+)
result

Any variable.

expression1

Any expression.

expression2

Any expression.

Remarks: JScript Addition Operator (+)
The underlying subtype of the expressions determines the behavior of the + operator.

If Then

Both expressions are numeric or Boolean Add

Both expressions are strings Concatenate

One expression is numeric and the other is a string Concatenate

 JScript += Operator
Used to increment a variable by a specified amount

Sun Chili!Soft ASP 3.6.2 Product Documentation 513

Syntax: JScript += Operator
result += expression

Arguments: JScript += Operator
result

Any variable.

expression

Any expression.

Remarks: JScript += Operator
Using this operator is exactly the same as specifying:

result = result + expression

The underlying subtype of the expression determines the behavior of the += operator:

If Then

Both expressions are numeric or Boolean Add

Both expressions are strings Concatenate

One expression is numeric and the other is a
string

Concatenate

For information on when a run-time error is generated by the += operator, see the Operator
Behavior table.

 JScript Assignment Operator (=)
Assigns a value to a variable.

Syntax: JScript Assignment Operator (=)
result = expression

Arguments: JScript Assignment Operator (=)
result

Any variable.

expression

Any numeric expression.

Remarks: JScript Assignment Operator (=)
As the = operator behaves like other operators, expressions using it have a value in addition to
assigning that value into variable. This means that you can chain assignment operators as
follows:

j = k = l = 0;

Sun Chili!Soft ASP 3.6.2 Product Documentation 514

j, k, and l equal zero after the example statement is executed.

 JScript Bitwise AND Operator (&)
Used to perform a bitwise AND on two expressions.

Syntax: JScript Bitwise AND Operator (&)
result = expression1 & expression2

Arguments: JScript Bitwise AND Operator (&)
result

Any variable.

expression1

Any expression.

expression2

Any expression.

Remarks: JScript Bitwise AND Operator (&)
The & operator looks at the binary representation of the values of two expressions and does a
bitwise AND operation on them. The result of this operation behaves as follows:

0101 (expression1)

1100 (expression2)

0100 (result)

Any time both of the expressions have a 1 in a digit, the result has a 1 in that digit. Otherwise, the
result has a 0 in that digit.

 JScript &= Operator
Used to perform a bitwise AND on an expression

Syntax: JScript &= Operator
result &= expression

Arguments: JScript &= Operator
result

Any variable.

expression

Any expression.

Sun Chili!Soft ASP 3.6.2 Product Documentation 515

Remarks: JScript &= Operator
Using this operator is exactly the same as specifying:

result = result & expression

The &= operator looks at the binary representation of the values of result and expression and does
a bitwise AND operation on them. The output of this operation behaves like this:

0101 (result)

1100 (expression)

0100 (output)

Any time both result and expression have a 1 in a digit, result will have a 1 in that digit,
otherwise result will have a 0 in that digit.

For information on when a run-time error is generated by the &= operator, see the Operator
Behavior table.

 JScript Bitwise Left Shift Operator (<<)
Used to shift the bits of an expression to the left.

Syntax: JScript Bitwise Left Shift Operator (<<)
result = expression1 << expression2

Arguments: JScript Bitwise Left Shift Operator (<<)
result

Any variable.

expression1

Any expression.

expression2

Any expression.

Remarks: JScript Bitwise Left Shift Operator (<<)
The << operator shifts the bits of expression1 left by the number of bits specified in expression2.
For example:

var temp

temp = 14 << 2

The variable temp has a value of 56 as 14 (00001110 in binary) shifted left two bits equals 56
(00111000 in binary).

For information on when a run-time error is generated by the << operator, see the Operator
Behavior table.

Sun Chili!Soft ASP 3.6.2 Product Documentation 516

 JScript <<= Operator
Left shifts the value of a variable by the number of bits specified in the value of an expression
and assigns the result to a variable.

Syntax: JScript <<= Operator
result <<= expression

Arguments: JScript <<= Operator
result

Any variable.

expression

Any expression.

Remarks: JScript <<= Operator
Using this operator is exactly the same as specifying:

result = result << expression

The <<= operator shifts the bits of result left by the number of bits specified in expression. For
example:

var temp

temp = 14

temp <<= 2

The variable temp has a value of 56 as 14 (00001110 in binary) shifted left two bits equals 56
(00111000) in binary. Bits are filled in with zeroes when shifting.

For information on when a run-time error is generated by the <<= operator, see the Operator
Behavior table.

 JScript Bitwise NOT Operator (~)
Used to perform a bitwise NOT (negation) on an expression.

Syntax: JScript Bitwise NOT Operator (~)
result = ~ expression

Arguments: JScript Bitwise NOT Operator (~)
result

Any variable.

expression

Sun Chili!Soft ASP 3.6.2 Product Documentation 517

Any expression.

Remarks: JScript Bitwise NOT Operator (~)
All unary operators, such as the ~ operator, evaluate expressions as follows:

� If applied to undefined or null expressions, a run-time error is raised.

� Objects are converted to strings.

� Strings are converted to numbers if possible. If not, a run-time error is raised.

� Boolean values are treated as numbers (0 if false, 1 if true).

The operator is applied to the resulting number.

The ~ operator looks at the binary representation of the values of the expression and does a
bitwise negation operation on it. The result of this operation behaves as follows:

0101 (expression)

1010 (result)

1011

Any digit that is a 1 in the expression becomes a 0 in the result. Any digit that is a 0 in the
expression becomes a 1 in the result.

 JScript Bitwise OR Operator (|)
Used to perform a bitwise OR on two expressions.

Syntax: JScript Bitwise OR Operator (|)
result = expression1 | expression2

Arguments: JScript Bitwise OR Operator (|)
result

Any variable.

expression1

Any expression.

expression2

Any expression.

Remarks: JScript Bitwise OR Operator (|)
The | operator looks at the binary representation of the values of two expressions and does a
bitwise OR operation on them. The result of this operation behaves as follows:

0101 (expression1)

Sun Chili!Soft ASP 3.6.2 Product Documentation 518

1100 (expression2)

1101 (result)

Any time either of the expressions has a 1 in a digit, the result will have a 1 in that digit.
Otherwise, the result will have a 0 in that digit.

For information on when a run-time error is generated by the | operator, see the Operator
Behavior table.

 JScript |= Operator
Used to perform a bitwise OR on an expression.

Syntax: JScript |= Operator
result |= expression

Arguments: JScript |= Operator
result

Any variable.

expression

Any expression.

Remarks: JScript |= Operator
Using this operator is exactly the same as specifying:

result = result | expression

The |= operator looks at the binary representation of the values of result and expression and does
a bitwise OR operation on them. The output of this operation behaves like this:

0101 (result)

1100 (expression)

1101 (output)

Any time either result or expression has a 1 in a digit, result will have a 1 in that digit, otherwise
result will have a 0 in that digit.

For information on when a run-time error is generated by the |= operator, see the Operator
Behavior table.

 JScript Bitwise Right Shift Operator (>>)
Used to shift the bits of an expression to the right, maintaining sign.

Sun Chili!Soft ASP 3.6.2 Product Documentation 519

Syntax: JScript Bitwise Right Shift Operator (>>)
result = expression1 >> expression2

Arguments: JScript Bitwise Right Shift Operator (>>)
result

Any variable.

expression1

Any expression.

expression2

Any expression.

Remarks: JScript Bitwise Right Shift Operator (>>)
The >> operator shifts the bits of expression1 right by the number of bits specified in
expression2. The sign bit of expression1 is used to fill the digits from the left. Digits shifted off
the right are discarded. For example, after the following code is evaluated, temp has a value of -
4: 14 (11110010 in binary) shifted right two bits equals -4 (11111100 in binary).

var temp

temp = -14 >> 2

For information on when a run-time error is generated by the >> operator, see the Operator
Behavior table.

 JScript >>= Operator
Used to shift the bits of an expression to the right, preserving sign.

Syntax: JScript >>= Operator
result >>= expression

Arguments: JScript >>= Operator
result

Any variable.

expression

Any expression.

Remarks: JScript >>= Operator
Using this operator is exactly the same as specifying:

result = result >> expression

The >>= operator shifts the bits of result right by the number of bits specified in expression. The
sign bit of result is used to fill the digits from the left. Digits shifted off the right are discarded.

Sun Chili!Soft ASP 3.6.2 Product Documentation 520

For example, after the following code is evaluated, temp has a value of –4: 14 (11110010 in
binary) shifted right two bits equals –4 (11111100 in binary).

var temp

temp = -14

temp <<= 2

For information on when a run-time error is generated by the >>= operator, see the Operator
Behavior table.

 JScript Bitwise XOR Operator (^)
Used to perform a bitwise exclusive OR on two expressions.

Syntax: JScript Bitwise XOR Operator (^)
result = expression1 ^ expression2

Arguments: JScript Bitwise XOR Operator (^)
result

Any variable.

expression1

Any expression.

expression2

Any expression.

Remarks: JScript Bitwise XOR Operator (^)
The ^ operator looks at the binary representation of the values of two expressions and does a
bitwise exclusive OR operation on them. The result of this operation behaves as follows:

0101 (expression1)

1100 (expression2)

1001 (result)

When one, and only one, of the expressions has a 1 in a digit, the result has a 1 in that digit.
Otherwise, the result has a 0 in that digit.

For information on when a run-time error is generated by the ^ operator, see the Operator
Behavior table.

 JScript ^= Operator
Used to perform a bitwise exclusive OR on an expression.

Sun Chili!Soft ASP 3.6.2 Product Documentation 521

Syntax: JScript ^= Operator
result ^= expression

Arguments: JScript ^= Operator
result

Any variable.

expression

Any expression.

Remarks: JScript ^= Operator
Using this operator is exactly the same as specifying:

result = result ^ expression

The ^= operator looks at the binary representation of the values of result and expression and does
a bitwise OR operation on them. The output of this operation behaves like this:

0101 (result)

1100 (expression)

1001 (output)

When one, and only one, of result or expression have a 1 in a digit, result will have a 1 in that
digit, otherwise result will have a 0 in that digit.

For information on when a run-time error is generated by the ^= operator, see the Operator
Behavior table.

 JScript Comma Operator (,)
Causes two expressions to be executed sequentially.

Syntax: JScript Comma Operator (,)
expression1, expression2

Arguments: JScript Comma Operator (,)
expression1

Any expression.

expression2

Any expression.

Remarks: JScript Comma Operator (,)

Sun Chili!Soft ASP 3.6.2 Product Documentation 522

The , operator causes the expressions on either side of it to be executed in left-to-right order,
and obtains the value of the expression on the right. The most common use for the , operator is in
the increment expression of a for loop. For example:

for (i = 0; i < 10; i++, j++)

{

k = i + j;

}

The for statement only allows a single expression to be executed at the end of every pass through
a loop. The , operator is used to allow multiple expressions to be treated as a single expression,
thereby getting around the restriction.

 JScript Comparison Operators
Returns a Boolean value indicating the result of the comparison.

Syntax: JScript Comparison Operators
expression1 comparisonoperator expression2

Arguments: JScript Comparison Operators
expression1

Any expression.

comparisonoperator

Any comparison operator.

expression2

Any expression.

Remarks: JScript Comparison Operators
When comparing strings, JScript uses the Unicode character value of the String expression. The
following is how the different groups of operators behave depending on the types and values of
expression1 and expression2:

Relational (<, >, <=, =)
Attempt to convert both expression1 and expression2 into numbers.

� If both expressions are strings, do a lexicographical string comparison.

� If either expression is NaN, return false.

� Negative zero equals Positive zero.

� Negative Infinity is less than everything including itself.

� Positive Infinity is greater than everything including itself.

Sun Chili!Soft ASP 3.6.2 Product Documentation 523

Equality (==, !=)
If the types of the two expressions are different, attempt to convert them to string, number, or
Boolean.

� NaN is not equal to anything including itself.

� Negative zero equals positive zero.

� Null equals both null and undefined.

� Values are considered equal if they are identical strings, numerically equivalent numbers,
the same object, identical Boolean values, or (if different types) they can be coerced into
one of these situations.

� Every other comparison is considered unequal.

Identity (===. !==)
These operators behave identically to the equality operators except no type conversion is done,
and the types must be the same to be considered equal.

 JScript Compound Assignment Operators
The compound assignment operators combine computational operators with assignment operators
to simplify expressions. The following compound assignment operators are available:

Operator Description

JScript += Operator (JScript 'plus equals'
Operator)

Compound addition operator.

JScript &= Operator (JScript &'equals' Operator) Compound bitwise AND operator.

JScript |= Operator (JScript |'equals' Operator) Compound bitwise OR operator.

JScript ^= Operator (JScript ^'equals' Operator) Compound exclusive OR operator.

JScript /= Operator (JScript /'equals' Operator) Compound division operator.

JScript <<= Operator (JScript <<'equals'Operator) Compound left shift operator.

JScript %= Operator (JScript %'equals' Operator) Compound modulus operator.

JScript *= Operator (JScript *'equal' Operator) Compound multiplication operator.

JScript >>= Operator (JScript >>'equals'
Operator)

Compound right shift operator.

JScript -= Operator (JScript -'equal' Operator) Compound subtraction operator.

JScript >>>= Operator (JScript >>>'equals'
Operator)

Compound unsigned right-shift
operator.

Sun Chili!Soft ASP 3.6.2 Product Documentation 524

 JScript Conditional (ternary) Operator (?:)
Executes one of two statements depending on a condition.

Syntax: JScript Conditional (ternary) Operator (?:)
test ? statement1 : statement2

Arguments: JScript Conditional (ternary) Operator (?:)
test

Any Boolean expression.

statement1

A statement executed if test is true. May be a compound statement.

statement2

A statement executed if test is false. May be a compound statement.

Remarks: JScript Conditional (ternary) Operator (?:)
The ?: operator is a shortcut for an if...else statement. It is typically used as part of a larger
expression where an if...else statement would be awkward. For example:

var now = new Date();

var greeting = "Good" + ((now.getHours() 17) ? " evening." :

" day.");

The example creates a string containing "Good evening." if it is after 6 pm. The equivalent code
using an if...else statement would look as follows:

var now = new Date();

var greeting = "Good";

if (now.getHours() 17)

greeting += " evening.";

else

greeting += " day.";

 JScript delete Operator
Deletes a property from an object, or removes an element from an array.

Syntax: JScript delete Operator
delete expression

Arguments: JScript delete Operator
expression

Sun Chili!Soft ASP 3.6.2 Product Documentation 525

A valid JScript expression that usually (but does not have to) results in a property name or array
element.

Remarks: JScript delete Operator
If the result of expression is an object, and the property specified in expression exists, and the
object will not allow it to be deleted, false is returned.

In all other cases true is returned.

 JScript Decrement (--) and Increment (++) Operators
++ and -- operators are used to increment or decrement a variable by one.

Syntax: JScript Decrement (--) and Increment (++) Operators
result = ++variable

result = --variable

result = variable++

result = variable--

Syntax 2: JScript Decrement (--) and Increment (++) Operators
++variable

--variable

variable++

variable--

Arguments: JScript Decrement (--) and Increment (++) Operators
result

Any variable.

variable

Any variable.

Remarks: JScript Decrement (--) and Increment (++) Operators
The increment and decrement operators are used as a shortcut to modify the value stored in a
variable. The value of an expression containing one of these operators depends on whether the
operator comes before or after the variable:

var j, k;

k = 2;

j = ++k;

j is assigned the value 3, as the increment occurs before the expression is evaluated. Contrast the
following example:

Sun Chili!Soft ASP 3.6.2 Product Documentation 526

var j, k;

k = 2;

j = k++;

Here, j is assigned the value 2, as the increment occurs after the expression is evaluated.

 JScript Division Operator (/)
Used to divide two numbers and return a numeric result.

Syntax: JScript Division Operator (/)
result = number1 / number2

Arguments: JScript Division Operator (/)
result

Any numeric variable.

number1

Any numeric expression.

number2

Any numeric expression.

Remarks: JScript Division Operator (/)
For information on when a run-time error is generated by the / operator, see the Operator
Behavior table.

 JScript /= Operator
Used to divide a variable by an expression.

Syntax: JScript /= Operator
result /= expression

Arguments: JScript /= Operator
result

Any variable.

expression

Any expression.

Remarks: JScript /= Operator
Using this operator is exactly the same as specifying:

Sun Chili!Soft ASP 3.6.2 Product Documentation 527

result = result / expression

For information on when a run-time error is generated by the /= operator, see the Operator
Behavior table.

 JScript Logical AND Operator (&&)
Used to perform a logical conjunction on two expressions.

Syntax: JScript Logical AND Operator (&&)
result = expression1 && expression2

Arguments: JScript Logical AND Operator (&&)
result

Any variable.

expression1

Any expression.

expression2

Any expression.

Remarks: JScript Logical AND Operator (&&)
If, and only if, both expressions evaluate to True, result is True. If either expression evaluates to
False, result is False.

For information on when a run-time error is generated by the && operator, see the Operator
Behavior table.

JScript uses the following rules for converting non-Boolean values to Boolean values:

� All objects are considered true.

� Strings are considered false if and only if they are empty.

� Null and undefined are considered false.

� Numbers are false if and only if they are zero.

 JScript Logical NOT Operator (!)
Used to perform logical negation on an expression.

Syntax: JScript Logical NOT Operator (!)
result = !expression

Arguments: JScript Logical NOT Operator (!)
result

Sun Chili!Soft ASP 3.6.2 Product Documentation 528

Any variable.

expression

Any expression.

Remarks: JScript Logical NOT Operator (!)
The following table illustrates how result is determined.

If expression is Then result is

True False

False True

All unary operators, such as the ! operator, evaluate expressions as follows:

� If applied to undefined or null expressions, a run-time error is raised.

� Objects are converted to strings.

� Strings are converted to numbers if possible. If not, a run-time error is raised.

� Boolean values are treated as numbers (0 if false, 1 if true).

The operator is applied to the resulting number.

For the ! operator, if expression is nonzero, result is zero. If expression is zero, result is 1.

 JScript Logical OR Operator (||)
Used to perform a logical disjunction on two expressions.

Syntax: JScript Logical OR Operator (||)
result = expression1 || expression2

Arguments: JScript Logical OR Operator (||)
result

Any variable.

expression1

Any expression.

expression2

Any expression.

Remarks: JScript Logical OR Operator (||)
If either or both expressions evaluate to True, result is True. The following table illustrates how
result is determined:

Sun Chili!Soft ASP 3.6.2 Product Documentation 529

If expression1 is And expression2 is The result is

True True True

True False True

False True True

False False False

For information on when a run-time error is generated by the || operator, see the Operator
Behavior table.

JScript uses the following rules for converting non-Boolean values to Boolean values:

� All objects are considered true.

� Strings are considered false if and only if they are empty.

� Null and undefined are considered false.

� Numbers are false if and only if they are 0.

 JScript Modulus Operator (%)
Used to divide two numbers and return only the remainder.

Syntax: JScript Modulus Operator (%)
result = number1 % number2

Arguments: JScript Modulus Operator (%)
result

Any variable.

number1

Any numeric expression.

number2

Any numeric expression.

Remarks: JScript Modulus Operator (%)
The modulus, or remainder, operator divides number1 by number2 (rounding floating-point
numbers to integers) and returns only the remainder as result. For example, in the following
expression, A (which is result) equals 5.

A = 19 % 6.7

For information on when a run-time error is generated by the % operator, see the Operator
Behavior table.

Sun Chili!Soft ASP 3.6.2 Product Documentation 530

 JScript %= Operator
Used to divide two numbers and return only the remainder

Syntax: JScript %= Operator
result %= expression

Arguments: JScript %= Operator
result

Any variable.

expression

Any expression.

Remarks: JScript %= Operator
Using this operator is exactly the same as specifying:

result = result % expression

For information on when a run-time error is generated by the %= operator, see the Operator
Behavior table.

 JScript Multiplication Operator (*)
Used to multiply two numbers.

Syntax: JScript Multiplication Operator (*)
result = number1 * number2

Arguments: JScript Multiplication Operator (*)
result

Any variable.

number1

Any expression.

number2

Any expression.

Remarks: JScript Multiplication Operator (*)
For information on when a run-time error is generated by the * operator, see the Operator
Behavior table.

 JScript *= Operator
Used to multiply one number by another number.

Sun Chili!Soft ASP 3.6.2 Product Documentation 531

Syntax: JScript *= Operator
result *= expression

Arguments: JScript *= Operator
result

Any variable.

expression

Any expression.

Remarks: JScript *= Operator
Using this operator is exactly the same as specifying:

result = result * expression

For information on when a run-time error is generated by the *= operator, see the Operator
Behavior table.

 JScript new Operator
Creates a new object.

Syntax: JScript new Operator
new constructor[(arguments)]

Arguments: JScript new Operator
constructor

The constructor argument calls object's constructor. The parentheses can be omitted if the
constructor takes no arguments.

arguments

Optional. Any arguments to be passed to the new object's constructor.

Remarks: JScript new Operator
The new operator performs the following tasks:

� It creates an object with no members.

� It calls the constructor for that object, passing a pointer to the newly created object as the
this pointer.

� The constructor then initializes the object according to the arguments passed to the
constructor.

These are examples of valid uses of the new operator:

my_object = new Object;

my_array = new Array();

Sun Chili!Soft ASP 3.6.2 Product Documentation 532

my_date = new Date("Jan 5 1996");

 JScript Subtraction and Unary Negation Operator (-)
Used to find the difference between two numbers or to indicate the negative value of a numeric
expression.

Syntax 1: JScript Subtraction and Unary Negation Operator (-)
result = number1 - number2

Syntax 2: JScript Subtraction and Unary Negation Operator (-)
-number

Arguments: JScript Subtraction and Unary Negation Operator (-)
result

Any numeric variable.

number

Any numeric expression.

number1

Any numeric expression.

number2

Any numeric expression.

Remarks: JScript Subtraction and Unary Negation Operator (-)
In Syntax 1, the - operator is the arithmetic subtraction operator used to find the difference
between two numbers. In Syntax 2, the - operator is used as the unary negation operator to
indicate the negative value of an expression.

For information on when a run-time error is generated by Syntax 1, see the Operator Behavior
table.

For Syntax 2, as for all unary operators, expressions are evaluated as follows:

� If applied to undefined or null expressions, a run-time error is raised.

� Objects are converted to strings.

� Strings are converted to numbers if possible. If not, a run-time error is raised.

� Boolean values are treated as numbers (0 if false, 1 if true).

The operator is applied to the resulting number. In Syntax 2, if the resulting number is nonzero,
result is equal to the resulting number with its sign reversed. If the resulting number is zero,
result is zero.

Sun Chili!Soft ASP 3.6.2 Product Documentation 533

 JScript -= Operator
Used to subtract the value of an expression from a variable.

Syntax: JScript -= Operator
result -= expression

Arguments: JScript -= Operator
result

Any variable.

expression

Any expression.

Remarks: JScript -= Operator
Using this operator is exactly the same as specifying:

result = result - expression

For information on when a run-time error is generated by the -= operator, see the Operator
Behavior table.

 JScript typeof Operator
Used to determine the type of an expression.

Syntax: JScript typeof Operator
typeof [(] expression [)] ;

Arguments: JScript typeof Operator
expression

Any expression for which type information is sought.

Remarks: JScript typeof Operator
The typeof operator returns type information as a string. There are six possible values that typeof
returns: "number," "string," "boolean," "object," "function," and "undefined."

The parentheses are optional in the typeof syntax.

 JScript Unsigned Right Shift Operator (>>>)
Used to make an unsigned right shift of the bits in an expression.

Syntax: JScript Unsigned Right Shift Operator (>>>)
result = expression1 >>> expression2

Sun Chili!Soft ASP 3.6.2 Product Documentation 534

Arguments: JScript Unsigned Right Shift Operator (>>>)
result

Any variable.

expression1

Any expression.

expression2

Any expression.

Remarks: JScript Unsigned Right Shift Operator (>>>)
The >>> operator shifts the bits of expression1 right by the number of bits specified in
expression2. Zeroes are filled in from the left. Digits shifted off the right are discarded. For
example:

var temp

temp = -14 >> 2

The variable temp has a value of 1073741820 as -14 (11111111 11111111 11111111 11110010
in binary) shifted right two bits equals 1073741820 (00111111 11111111 11111111 11111100 in
binary).

For information on when a run-time error is generated by the >>> operator, see the Operator
Behavior table.

 JScript >>>= Operator
Used to make an unsigned right shift of the bits in a variable.

Syntax: JScript >>>= Operator
result >>>= expression

Arguments: JScript >>>= Operator
result

Any variable.

expression

Any expression

Remarks: JScript >>>= Operator
Using this operator is exactly the same as specifying:

result = result >>> expression

The >>>= operator shifts the bits of result right by the number of bits specified in expression.
Zeroes are filled in from the left. Digits shifted off the right are discarded. For example:

Sun Chili!Soft ASP 3.6.2 Product Documentation 535

var temp

temp = -14

temp >>>= 2

The variable temp has a value of 1073741820 as –14 (11111111 11111111 11111111 11110010
in binary) shifted right two bits equals 1073741820 (00111111 11111111 11111111 11111100 in
binary).

For information on when a run-time error is generated by the >>>= operator, see the Operator
Behavior table.

 JScript void Operator
Discards its operator and returns undefined.

Syntax: JScript void Operator
void expression

Arguments: JScript void Operator
expression

Any valid JScript expression.

Remarks: JScript void Operator
The void operator evaluates its expression, and returns undefined. It is most useful in situations
where you want an expression evaluated but do not want the results visible to the remainder of
the script.

JScript Functions

Function Description

JScript Getobject Function Returns a reference to an Automation object from a
file. This is a client-side only function.

JScript ScriptEngine Function Returns a string representing the scripting language
in use.

JScript ScriptEngineBuildVersion Function Returns the build version number of the script
engine in use.

JScript ScriptEngineBuildMajorVersion
Function

Returns the major version number of the script
engine in use.

JScript ScriptEngineBuildMinorVersion
Function

Returns the minor version number of the script
engine in use.

Sun Chili!Soft ASP 3.6.2 Product Documentation 536

 JScript Getobject Function
Returns a reference to an Automation object from a file. This is a client-side only function.

Syntax: JScript Getobject Function
GetObject([pathname] [, class])

Arguments: JScript Getobject Function
pathname

An optional full path and name of the file containing the object to retrieve. If pathname is
omitted, class is required.

class

An optional class of the object. The class argument uses the syntax appname.objectype and has
these parts:

appname

A name of the application providing the object. Required.

objectype

A type or class of the object to create. Required.

Remarks: JScript Getobject Function
Use the GetObject function to access an Automation object from a file and assign the object to
an object variable. Assign the object returned by GetObject to the object variable. For example:

var CADObject;

CADObject = GetObject("C:\\CAD\\SCHEMA.CAD");

When this code is executed, the application associated with the specified pathname is started, and
the object in the specified file is activated. If pathname is a zero-length string (""), GetObject
returns a new object instance of the specified type. If the pathname argument is omitted,
GetObject returns a currently active object of the specified type. If no object of the specified type
exists, an error occurs.

Some applications allow you to activate part of a file. Add an exclamation point (!) to the end of
the file name and follow it with a string that identifies the part of the file you want to activate. For
information on how to create this string, see the documentation for the application that created the
object.

For example, in a drawing application you might have multiple layers to a drawing stored in a
file. You could use the following code to activate a layer within a drawing called SCHEMA.CAD:

var LayerObject = GetObject("C:\\CAD\\SCHEMA.CAD!Layer3");

If you don't specify the object's class, Automation determines the application to start and the
object to activate, based on the file name you provide. Some files, however, may support more
than one class of object. For example, a drawing might support three different types of objects: an

Sun Chili!Soft ASP 3.6.2 Product Documentation 537

Application object, a Drawing object, and a Toolbar object, all of which are part of the same
file. To specify which object in a file you want to activate, use the optional class argument. For
example:

var MyObject;

MyObject = GetObject("C:\\DRAWINGS\\SAMPLE.DRW",

 "FIGMENT.DRAWING");

In the preceding example, FIGMENT is the name of a drawing application and DRAWING is one
of the object types it supports. Once an object is activated, you reference it in code using the
object variable you defined. In the preceding example, you access properties and methods of the
new object using the object variable MyObject. For example:

MyObject.Line(9, 90);

MyObject.InsertText(9, 100, "Hello, world.");

MyObject.SaveAs("C:\\DRAWINGS\\SAMPLE.DRW");

Note
Use the GetObject function when there is a current instance of the object or if you want
to create the object with a file already loaded. If there is no current instance, and you
don't want the object started with a file loaded, use the ActiveXObject object.

If an object has registered itself as a single-instance object, only one instance of the
object is created, no matter how many times ActiveXObject is executed. With a single-
instance object, GetObject always returns the same instance when called with the zero-
length string ("") syntax, and it causes an error if the pathname argument is omitted.

 JScript ScriptEngine Function
Returns a string representing the scripting language in use.

Syntax: JScript ScriptEngine Function
ScriptEngine();

Return Values: JScript ScriptEngine Function
The ScriptEngine function can return any of the following strings:

JScript

Microsoft JScript is the current script engine.

VBA

Microsoft Visual Basic for Applications is the current script engine.

VBScript

Microsoft Visual Basic Scripting Edition is the current script engine.

Sun Chili!Soft ASP 3.6.2 Product Documentation 538

 JScript ScriptEngineBuildVersion Function
Returns the build version number of the script engine in use.

Syntax: JScript ScriptEngineBuildVersion Function
ScriptEngineBuildVersion();

Return Values: JScript ScriptEngineBuildVersion Function
The return value corresponds directly to the version information contained in the DLL for the
scripting language in use.

 JScript ScriptEngineBuildMajorVersion Function
Returns the major version number of the script engine in use.

Syntax: JScript ScriptEngineBuildMajorVersion Function
ScriptEngineMajorVersion();

Return Values: JScript ScriptEngineBuildMajorVersion Function
The return value corresponds directly to the version information contained in the DLL for the
scripting language in use.

 JScript ScriptEngineBuildMinorVersion Function
Returns the minor version number of the script engine in use.

Syntax: JScript ScriptEngineBuildMinorVersion Function
ScriptEngineMinorVersion();

Return Values: JScript ScriptEngineBuildMinorVersion Function
The return value corresponds directly to the version information contained in the DLL for the
scripting language in use.

JScript Statements

Statement Description

JScript break Statement Terminates the current loop or associated statement.

JScript @cc_on Statement Activates conditional compilation support.

JScript Comment Statements Causes comments to be ignored by the JScript parser.

JScript continue Statement Stops the current iteration of a loop and starts a new
iteration.

Sun Chili!Soft ASP 3.6.2 Product Documentation 539

JScript do. . . while
Statement

Executes a block once, and then repeats execution of
the loop until a conditional expression evaluates to
False.

JScript for Statement Executes a block of statements as long as a specified
condition is True.

JScript for. . . in Statement Executes a statement for each element of an object or
array.

JScript function Statement Declares a new function.

JScript @if Statement Conditionally executes a group of statements
depending on the value of an expression.

JScript if. . . else Statement Conditionally executes a group of statements
depending on the value of an expression.

JScript Labeled Statement Provides an identifier for a statement.

JScript return Statement Exits from the current function and returns a value from
that function.

JScript @set Statement Allows creation of variables used in conditional
compilation statements.

JScript switch Statement Enables the execution of one or more statements when
a specified expression’s value matches a label.

JScript this Statement Refers to the current object.

JScript var Statement Declares a variable.

JScript with Statement Establishes the default object for a statement.

JScript while Statement Executes a statement until a specified condition is
False.

 JScript break Statement
Terminates the current loop, or if in conjunction with a label, terminates the associated statement.

Syntax: JScript break Statement
break [label];

Arguments: JScript break Statement
label

Optional argument that specifies the label of the statement you are breaking from.

Remarks: JScript break Statement

Sun Chili!Soft ASP 3.6.2 Product Documentation 540

You typically use the break statement in switch statements and while, for, for…in, or
do…while loops. You most commonly use the label argument in switch statements, but it can be
used in any statement, whether simple or compound.

Executing the break statement exits from the current loop or statement, and begins script
execution with the statement immediately following.

 JScript @cc_on Statement
Activates conditional compilation support.

Syntax: JScript @cc_on Statement
@cc_on

Remarks: JScript @cc_on Statement
The @cc_on statement activates conditional compilation in the scripting engine.

It is strongly recommended that you use the @cc_on statement in a comment, so that browsers
that do not support conditional compilation will accept your script as valid syntax:

/*@cc_on*/

...

(remainder of script)

Alternatively, an @if or @set statement outside of a comment also activates conditional
compilation.

 JScript Comment Statement
Creates comments that are ignored by the JScript parser.

Syntax 1: JScript Comment Statement
Single-line Comment:

// comment

Syntax 2: JScript Comment Statement
Multiline Comment:

/*

comment

*/

Arguments: JScript Comment Statement
comment

The text of any comment you want to include in your script.

Sun Chili!Soft ASP 3.6.2 Product Documentation 541

Syntax 3: JScript Comment Statement
//@CondStatement

Syntax 4: JScript Comment Statement
/*@

CondStatement

@*/

Arguments: JScript Comment Statement
CondStatement

Conditional compilation code to be used if conditional compilation is activated. If Syntax 3 is
used, there can be no space between the "//" and "@" characters.

Remarks: JScript Comment Statement
Use comments to keep parts of a script from being read by the JScript parser. You can use
comments to include explanatory remarks in a program.

If Syntax 1 is used, the parser ignores any text between the comment marker and the end of the
line. If Syntax 2 is used, it ignores any text between the beginning and end markers.

Syntax 3 and Syntax 4 are used to support conditional compilation while retaining compatibility
with browsers that do not support that feature. These browsers treat those forms of comments as
Syntax 1 and Syntax 2 respectively.

 JScript continue Statement
Stops the current iteration of a loop, and starts a new iteration.

Syntax: JScript continue Statement
continue [label];

Arguments: JScript continue Statement
label

Optional argument that specifies the statement to which continue applies.

Remarks: JScript continue Statement
You can use the continue statement only inside a while, do…while, for, or for…in loop.
Executing the continue statement stops the current iteration of the loop and continues program
flow with the beginning of the loop. This has the following effects on the different types of loops:

� while and do...while loops test their condition, and if true, execute the loop again.

� for loops execute their increment expression, and if the test expression is true, execute the
loop again.

� for...in loops proceed to the next field of the specified variable and execute the loop again.

Sun Chili!Soft ASP 3.6.2 Product Documentation 542

 JScript do. . . while Statement
Executes a statement block once, and then repeats execution of the loop until a condition
expression evaluates to false.

Syntax: JScript do. . . while Statement
do

statement

while (expression) ;

Arguments: JScript do. . . while Statement
statement

The statement to be executed if expression is True. Can be a compound statement.

expression

An expression that can be coerced to Boolean True or False. If expression is True, the loop is
executed again. If expression is False, the loop is terminated.

Remarks: JScript do. . . while Statement
The value of expression is not checked until after the first iteration of the loop, guaranteeing that
the loop is executed at least once. Thereafter, it is checked after each succeeding iteration of the
loop.

 JScript for Statement
Executes a block of statements for as long as a specified condition is true.

Syntax: JScript for Statement
for (initialization; test; increment)

statement

Arguments: JScript for Statement
initialization

An expression. This expression is executed only once, before the loop is executed.

test

A Boolean expression. If test is True, statement is executed. If test if False, the loop is
terminated.

increment

An expression. The increment expression is executed at the end of every pass through the loop.

statement

Sun Chili!Soft ASP 3.6.2 Product Documentation 543

The statement to be executed if test is True. Can be a compound statement.

Remarks: JScript for Statement
You usually use a for loop when the loop is to be executed a specific number of times as the
following example demonstrates:

/* i is set to 0 at start, and is incremented by 1 at the end

of each iteration. Loop terminates when i is not less

than 10 before a loop iteration. */

for (i = 0; i < 10; i++)

{

j *= i;

}

 JScript for. . . in Statement
Executes a statement for each element of an object or array.

Syntax: JScript for. . . in Statement
for (variable in [object | array])

statement

Arguments: JScript for. . . in Statement
variable

A variable that can hold any of the elements of object.

object, array

An object or array over which to iterate.

statement

The statement to be executed for each member of object. Can be a compound statement.

Remarks: JScript for. . . in Statement
Before each iteration of a loop, variable is assigned the next element of object. You can then use
it in any of the statements inside the loop exactly as if you were using the element of object.

When iterating over an object, there is no way to determine or control the order in which the
members of the object are assigned to variable.

 JScript function Statement
Declares a new function.

Sun Chili!Soft ASP 3.6.2 Product Documentation 544

Syntax: JScript function Statement
function functionname([argument1 [, argument2 [, ...argumentn]]])

{

statements

}

Arguments: JScript function Statement
functionname

The name of the function.

argument1...argumentn

An optional, comma-separated list of arguments the function understands.

statements

One or more JScript statements.

Remarks: JScript function Statement
Use the function statement to declare a function for later use. The code contained in statements is
not executed until the function is called from elsewhere in the script.

 JScript @if Statement
Conditionally executes a group of statements, depending on the value of an expression.

Syntax: JScript @if Statement
@if (condition1)

text1

[@elif (condition2)

text2]

[@else

text3]

@end

Arguments: JScript @if Statement
condition1, condition2

An expression that can be coerced into a Boolean expression.

text1

The text to be parsed if condition1 is True.

text2

Sun Chili!Soft ASP 3.6.2 Product Documentation 545

The text to be parsed if condition1 is False and condition2 is True.

text3

The text to be parsed if both condition1 and condition2 are False.

Remarks: JScript @if Statement
When writing an @if statement, its clauses do not have to appear on separate lines. In addition,
you may use multiple @elif clauses. If you do, all must come before an @else clause.

You commonly use the @if statement to determine which text among several options should be
used for text output. For example:

alert(@if (@_win32) "using Windows NT or Windows 95"

@else "using Windows 3.1" @end)

 JScript if. . . else Statement
Conditionally executes a group of statements, depending on the value of an expression.

Syntax: JScript if. . . else Statement
if (condition)

statement1

[else

statement2]

Arguments: JScript if. . . else Statement
condition

A Boolean expression. If condition is null or undefined, condition is treated as false.

statement1

The statement to be executed if condition is True. Can be a compound statement.

statement2

The statement to be executed if condition is False. Can be a compound statement.

Remarks: JScript if. . . else Statement
It is generally good practice to enclose statement1 and statement2 in braces ({}) for clarity and to
avoid inadvertent errors. In the following example, you may intend that the else be used with the
first if statement, but it is used with the second one.

if (x == 5)

if (y == 6)

z = 17;

else

Sun Chili!Soft ASP 3.6.2 Product Documentation 546

z = 20;

Changing the code in the following manner eliminates any ambiguities:

if (x == 5)

{

if (y == 6)

z = 17;

}

else

z = 20;

Similarly, if you want to add a statement to statement1, and you don't use braces, you can
accidentally create an error:

if (x == 5)

z = 7;

q = 42;

else

z = 19;

In this case, there is a syntax error, as there is more than one statement between the if and else
statements. Putting braces around the statements between the if and else is required.

 JScript Labeled Statement
Provides an identifier for a statement.

Syntax: JScript Labeled Statement
label :

statement

Arguments: JScript Labeled Statement
label

A unique identifier used when referring to the labeled statement.

statement

The statement associated with label. May be a compound statement.

Remarks: JScript Labeled Statement
Labels are used by the break and continue statements to specify the statement to which the
break and continue apply.

Sun Chili!Soft ASP 3.6.2 Product Documentation 547

 JScript return Statement
Exits from the current function and returns a value from that function.

Syntax: JScript return Statement
return [expression];

Arguments: JScript return Statement
expression

The value to be returned from the function. If omitted, the function does not return a value.

Remarks: JScript return Statement
You use the return statement to stop execution of a function and return the value of expression.
If expression is omitted, or no return statement is executed from within the function, the
expression that called the current function is assigned the value undefined.

 JScript @set Statement
Allows creation of variables used in conditional compilation statements.

Syntax: JScript @set Statement
@set @varname = term

Arguments: JScript @set Statement
varname

A valid JScript variable name. Must be preceded by an "@" character at all times.

term

Zero or more unary operators followed by either a constant, conditional compilation variable, or
parenthesized expression.

Remarks: JScript @set Statement
Numeric and Boolean variables are supported for conditional compilation. Strings are not.
Variables created using @set are generally used in conditional compilation statements, but can be
used anywhere in JScript code.

Examples of variable declarations look like this:

@set @myvar1 = 12

@set @myvar2 = (@myvar1 * 20)

@set @myvar3 = @_jscript_version

The following operators are supported in parenthesized expressions:

! ~

* / %

Sun Chili!Soft ASP 3.6.2 Product Documentation 548

+ -

<< >> >>>

< <= > >=

== != === !==

& ^ |

&& ||

If a variable is used before it has been defined, its value is NaN. NaN can be checked for using
the @if statement:

@if (@newVar != @newVar)

...

This works because NaN is the only value not equal to itself.

 JScript switch Statement
Enables the execution of one or more statements when a specified expression's value matches a
label.

Syntax: JScript switch Statement
switch (expression) {

case label :

statementlist

case label :

statementlist

...

default :

statementlist

}

Arguments: JScript switch Statement
expression

The expression to be evaluated.

label

An identifier to be matched against expression. If label = = = expression, execution starts with the
statementlist immediately after the colon and continues until it encounters either a break
statement, which is optional, or the end of the switch statement.

statementlist

Sun Chili!Soft ASP 3.6.2 Product Documentation 549

One or more statements to be executed.

Remarks: JScript switch Statement
Use the default clause to provide a statement to be executed if none of the label values matches
expression. It can appear anywhere within the switch code block.

Zero or more label blocks may be specified. If no label matches the value of expression, and a
default case is not supplied, no statements are executed.

Execution flows through a switch statement as follows:

� Evaluate expression and look at label in order until a match is found.

� If a label value equals expression, execute its accompanying statementlist. Continue
execution until a break statement is encountered, or the switch statement ends. This
means that multiple label blocks are executed if a break statement is not used.

� If no label equals expression, go to the default case. If there is no default case, go to last
step.

� Continue execution at the statement following the end of the switch code block.

The following example tests an object for its type:

function MyObject() {

...}

switch (object.constructor){

case Date:

...

case Number:

...

case String:

...

case MyObject:

...

default:

...

}

 JScript this Statement
Refers to the current object.

Syntax: JScript this Statement

Sun Chili!Soft ASP 3.6.2 Product Documentation 550

this.property

Remarks: JScript this Statement
The this keyword is typically used in object constructors to refer to the current object. In the
following example, this refers to the newly created Car object, and assigns values to three
properties:

function Car(color, make, model)

{

this.color = color;

this.make = make;

this.model = model;

}

For client versions of JScript, this refers to the Window object if used outside of the context of
any other object.

 JScript var Statement
Declares a variable.

Syntax: JScript var Statement
var variable [= value] [, variable2 [= value2], ...]

Arguments: JScript var Statement
variable, variable2

The names of the variables being declared.

value, value2

The initial value assigned to the variable.

Remarks: JScript var Statement
Use the var statement to declare variables. These variables can be assigned values at declaration
or later in your script. Examples of declaration follow:

var index;

var name = "Thomas Jefferson";

var answer = 42, counter, numpages = 10;

 JScript with Statement
Establishes the default object for a statement.

Sun Chili!Soft ASP 3.6.2 Product Documentation 551

Syntax: JScript with Statement
with (object)

statement

Arguments: JScript with Statement
object

The new default object.

statement

The statement for which object is the default object. Can be a compound statement.

Remarks: JScript with Statement
The with statement is commonly used to shorten the amount of code that you have to write in
certain situations. In the example that follows, notice the repeated use of Math:

x = Math.cos(3 * Math.PI) + Math.sin(Math.LN10)

y = Math.tan(14 * Math.E)

When you use the with statement, your code becomes shorter and easier to read:

with (Math)

{

x = cos(3 * PI) + sin (LN10)

y = tan(14 * E)

}

 JScript while Statement
Executes a statement until a specified condition is False.

Syntax: JScript while Statement
while (expression)

statement

Arguments: JScript while Statement
expression

A Boolean expression checked before each iteration of the loop. If expression is True, the loop is
executed. If expression is False, the loop is terminated.

statement

The statement to be executed if expression is True. Can be a compound statement.

Remarks: JScript while Statement

Sun Chili!Soft ASP 3.6.2 Product Documentation 552

The while statement checks expression before a loop is first executed. If expression is False at
this time, the loop is never executed.

JScript Objects

JScript Array Object Provides support for creation of arrays of any
data type.

JScript Boolean Object Creates a new Boolean value.

JScript Date Object Enables basic storage and retrieval of dates and
times.

JScript Dictionary Object Object that stores data as key, item pairs.

JScript Drive Object Provides access to the properties of a disk drive
or network share.

JScript Enumerator Object Enumerates the items in a collection.

JScript File Object Provides access to the properties of a file.

JScript FileSystemObject Object Provides access to a computer’s file system.

JScript Folder Object Provides access to the properties of a folder.

JScript Function Object Creates a new function.

JScript Global Object Intrinsic object that collects global methods
into one object.

JScript Math Object Intrinsic object that provides basic math
functions.

JScript Number Object An object representation of the number data
type.

JScript Object Provides functionality common to all JScript
objects.

JScript RegExp Object Stores information on regular expression
pattern searches.

JScript Regular Expression Object Contains a regular expression pattern.

JScript String Object An object representation of the string data type.

JScript TextStream Object Facilitates sequential access to file.

JScript VBArray Object An object representation of VBScript safe
arrays.

JScript Collections Useful collections of other objects.

Sun Chili!Soft ASP 3.6.2 Product Documentation 553

JScript Object

 JScript Object
The JScript Object object provides functionality common to all JScript objects.

Methods: JScript Object
JScript Object valueOf Method Returns the primitive value of the specified object.

JScript Object toString Method Returns a string representation of an object.

Properties: JScript Object
JScript Object constructor Property The function that creates an object.

JScript Object prototype Property A reference to the prototype for a class of objects.

Syntax: JScript Object
new Object([value])

Arguments: JScript Object
value

Used if you want to convert a primitive data type (number, Boolean, string, or function) into an
object. If omitted, an object with no contents is created. Optional.

Remarks: JScript Object
The Object object is contained in all other JScript objects—all of its methods and properties are
available in all other objects. The methods can be redefined in objects you define, and are called
by JScript at appropriate times. The toString method is an example of a frequently redefined
Object method.

In this language reference, the description of each Object method includes both default and
object-specific implementation information for the intrinsic JScript objects.

 JScript Object constructor Property
Specifies the function that creates an object.

Syntax: JScript Object constructor Property
object.constructor

Arguments: JScript Object constructor Property
object

The name of an object or function.

Remarks: JScript Object constructor Property

Sun Chili!Soft ASP 3.6.2 Product Documentation 554

The constructor property is a member of the prototype of every object that has a prototype. This
includes all intrinsic JScript objects except the Global and Math objects. The constructor
property contains a reference to the function that constructs instances of that particular object. For
example:

x = new String("Hi");

if (x.constructor == String)

 // Do something (the condition will be true).

or

function MyFunc {

// Body of function.

}

y = new MyFunc;

if (y.constructor == MyFunc)

 // Do something (the condition will be true).

 JScript Object prototype Property
Contains a reference to the prototype for a class of objects.

Syntax: JScript Object prototype Property
objectname.prototype

Arguments: JScript Object prototype Property
objectname

The name of an object.

Remarks: JScript Object prototype Property
Use the prototype property to provide a base set of functionality to a class of objects. New
instances of an object "inherit" the behavior of the prototype assigned to that object.

For example, say you wanted to add a method to the Array object that returns the value of the
largest element of the array. To do this, declare the function, add it to Array.prototype, and then
use it.

function array_max()

{

var i, max = this[0];

for (i = 1; i < this.length; i++)

{

Sun Chili!Soft ASP 3.6.2 Product Documentation 555

if (max < this[i])

max = this[i];

}

return max;

}

Array.prototype.max = array_max;

var x = new Array(1, 2, 3, 4, 5, 6);

var y = x.max();

After this code is executed, y contains the largest value in the array x, or 6.

All intrinsic JScript objects have a prototype property that is read-only. Functionality may be
added to the prototype, as in the example, but the object may not be assigned a different
prototype.

This is not the case for user-defined objects: User-defined objects may be assigned a new
prototype.

The method and property lists for each intrinsic object in this language reference indicate which
ones are part of the object's prototype, and which are not.

 JScript Object toString Method
Returns a string representation of an object.

Syntax: JScript Object toString Method
objectname.toString()

Arguments: JScript Object toString Method
objectname

An object for which a string representation is sought.

Remarks: JScript Object toString Method
The toString method is a member of all built-in JScript objects. How it behaves depends on the
object type:

Object Behavior

Array Elements of an Array are converted to strings. The resulting
strings are concatenated, separated by commas.

Boolean If the Boolean value is True, returns "true". Otherwise,
returns "false".

Function Returns a string returned of the following form, where
functionname is the name of the function whose toString

Sun Chili!Soft ASP 3.6.2 Product Documentation 556

method was called:

Function functionname() { [native code] }

Number Returns the textual representation of the number.

String Returns the value of the String object.

Default Returns "[object objectname]", where objectname is the
name of the object type.

 JScript Object valueOf Method
Returns the primitive value of the specified object.

Syntax: JScript Object valueOf Method
object.valueOf()

Arguments: JScript Object valueOf Method
object

Any JScript object.

Remarks: JScript Object valueOf Method
The valueOf method is defined differently for each intrinsic JScript object.

Object Return Value

Array The elements of the array are converted into strings, and
the strings are concatenated together, separated by
commas.

Boolean The Boolean value.

Date The stored time value in milliseconds since midnight,
January 1, 1970 UTC.

Function The function itself.

Number The numeric value.

Object The object itself. This is the default.

String The string value.

The Math object does not have a valueOf property.

JScript Array Object

 JScript Array Object
The Array object provides support for creation of arrays of any data type.

Sun Chili!Soft ASP 3.6.2 Product Documentation 557

Methods: JScript Array Object
JScript Array Object concat Method Combines two arrays to make a new array.

JScript Array Object join Method Converts all elements of an array into a String
object and joins them.

JScript Array Object reverse Method Reverses the elements of an array.

JScript Array Object slice Method Returns a section of an array.

JScript Array Object sort Method Sorts the elements of an array.

Properties: JScript Array Object
JScript Array Object length Property An integer value one higher than the highest

element defined in an array.

Syntax: JScript Array Object
new Array()

new Array(size)

new Array(element0, element1, ..., elementn)

Arguments: JScript Array Object
size

The size of the array. As arrays are zero-based, created elements will have indices from zero to
size - 1.

element0,...,elementn

The elements to place in the array. This creates an array with n + 1 elements, and a length of n.

Remarks: JScript Array Object
After an array is created, the individual elements of the array can be accessed using [] notation,
for example:

var my_array = new Array();

for (i = 0; i < 10; i++)

{

my_array[i] = i;

}

x = my_array[4];

Since arrays in Microsoft JScript are zero-based, the last statement in the preceding example
accesses the fifth element of the array. That element contains the value 4.

If only one argument is passed to the Array constructor, and it is a number, it is coerced into an
unsigned integer and the value is used as the size of the array. Otherwise, the parameter passed in
is used as the only element of the array.

Sun Chili!Soft ASP 3.6.2 Product Documentation 558

 JScript Array Object concat Method
Combines two arrays to create a new array.

Syntax: JScript Array Object concat Method
array1.concat(array2)

Arguments: JScript Array Object concat Method
array1

An Array object to concatenate with array2. Required.

array2

An Array object to concatenate to the end of array1. Required.

Remarks: JScript Array Object concat Method
The concat method returns an Array object containing the concatenation of array1 and array2.

If an object reference is copied from either array1 or array2 to the result, the object reference in
the result still points to the same object. Changes to that object are reflected in both arrays.

 JScript Array Object join Method
Converts all elements of an array into a String object and joins them.

Syntax: JScript Array Object join Method
arrayobj.join(separator)

Arguments: JScript Array Object join Method
arrayobj

The name of an Array object.

separator

A String object that is used to separate one element of an array from the next in the resulting
String object. If omitted, the array elements are separated with an empty string.

Remarks: JScript Array Object join Method
The join method returns a String object that contains each element converted to a string and
concatenated together. An example using the join method follows:

var my_array = new Array("Jan 5", 1996, "hey", "my birthday!");

var my_string = my_array.join(", ");

After execution, my_string contains

"Jan 5, 1996, hey, my birthday!"

Sun Chili!Soft ASP 3.6.2 Product Documentation 559

 JScript Array Object length Property
Specifies an integer value one higher than the highest element defined in an array.

Syntax: JScript Array Object length Property
numVar = arrayObj.length;

Remarks: JScript Array Object length Property
As the elements in an array do not have to be contiguous, the length property is not necessarily
the number of elements in the array. For example, in the following array definition,
my_array.length contains 7, not 2:

var my_array = new Array();

my_array[0] = "Test";

my_array[6] = "Another Test";

If a value smaller than its previous value is assigned to the length property, the array is truncated
and any elements with array indices equal to or greater than the new value of the length property
are lost.

If a value larger than its previous value is assigned to the length property, the array is expanded,
and any new elements created have the value undefined.

 JScript Array Object reverse Method
Reverses the elements of an Array object.

Syntax: JScript Array Object reverse Method
arrayobj.reverse()

Arguments: JScript Array Object reverse Method
arrayObj

The name of an Array object. Required.

Remarks: JScript Array Object reverse Method
The reverse method reverses the elements of an Array object in place. It does not create a new
Array object during execution.

If the array is not contiguous, the reverse method creates elements in the array that fill the gaps in
the array. Each of these created elements has the value undefined.

 JScript Array Object slice Method
Returns a section of an array.

Syntax: JScript Array Object slice Method
arrayObj.slice(start, [end])

Sun Chili!Soft ASP 3.6.2 Product Documentation 560

Arguments: JScript Array Object slice Method
arrayObj

An Array object. Required.

start

The zero-based index of the beginning of the specified portion of arrayObj. Required.

end

The zero-based index of the end of the specified portion of arrayObj. Optional.

Remarks: JScript Array Object slice Method
The slice method returns an Array object containing the specified portion of arrayObj.

The slice method copies up to, but not including, the element indicated by end. If negative, end
indicates an offset from the end of arrayObj. In addition, it is not zero-based. If omitted,
extraction continues to the end of arrayObj.

In the example that follows, all but the last element of myArray is copied into newArray:

newArray.slice(0, -1))

If an object reference is copied from arrayObj to the result, the object reference in the result still
points to the same object. Changes to that object are reflected in both arrays.

 JScript Array Object sort Method
Sorts the elements of an Array object.

Syntax: JScript Array Object sort Method
arrayObj.sort(sortfunction)

Arguments: JScript Array Object sort Method
arrayObj

The name of an Array object.

sortfunction

The name of the function used to determine the order of the elements. If omitted, the elements are
sorted in ascending, ASCII-character order.

Remarks: JScript Array Object sort Method
The sort method sorts the Array object in place; no new Array object is created during
execution.

If you supply a function in the sortfunction argument, it must return one of the following values:

� A negative value if the first argument passed is less than the second argument.

� Zero if the two arguments are equivalent.

Sun Chili!Soft ASP 3.6.2 Product Documentation 561

� A positive value if the first argument is greater than the second argument.

JScript Boolean Object

 JScript Boolean Object
The Boolean object creates a new Boolean value.

Methods & Properties: JScript Boolean Object
See JScript Object methods and properties.

Syntax: JScript Boolean Object
var variablename = new Boolean(boolvalue)

Arguments: JScript Boolean Object
boolvalue

The initital Boolean value for the new object. If this value is omitted, or is False, 0, Null, NaN, or
an empty string, the initial value of the Boolean object is False. Otherwise, the initial value is
True. Optional.

Remarks: JScript Boolean Object
The Boolean object is a wrapper for the Boolean data type. JScript implicitly uses the Boolean
object whenever a Boolean data type is converted to a Boolean object.

You rarely call the Boolean object explicitly.

JScript Date Object

 JScript Date Object
The Date object enables basic storage and retrieval of dates and times.

Methods: JScript Date Object
JScript Date Object getDate Method Returns the day of the month according to local

time.

JScript Date Object getDay Method Returns the day of the week according to local
time.

JScript Date Object getFullYear Method Returns the 4-digit year according to local
time.

JScript Date Object getHours Method Returns the hours according to local time.

JScript Date Object getMilliseconds Method Returns the number of milliseconds past the
second according to local time.

Sun Chili!Soft ASP 3.6.2 Product Documentation 562

JScript Date Object getMinutes Method Returns the number of minutes past the hour
according to local time.

JScript Date Object getMonth Method Returns the month value according to local
time.

JScript Date Object getSeconds Method Returns the number of seconds past the minute
according to local time.

JScript Date Object getTime Method Returns the time stored in a Date object.

JScript Date Object getTimezoneOffset
Method

Determines the difference in minutes between
the time on the host computer and Universal
Time Coordinated (UTC).

JScript Date Object getUTCDate Method Returns the date of the month according to
UTC.

JScript Date Object getUTCDay Method Returns the day of the week according to UTC.

JScript Date Object getUTCFullYear Method Returns the 4-digit year according to UTC.

JScript Date Object getUTCHours Method Returns the hours according to UTC.

JScript Date Object getUTCMilliseconds
Method

Returns the number of milliseconds past the
second according to UTC.

JScript Date Object getUTCMinutes Method Returns the number of minutes past the hour
according to UTC.

JScript Date Object getUTCMonth Method Returns the month according to UTC.

JScript Date Object getUTCSeconds Method Returns the number of seconds past the minute
according to UTC.

JScript Date Object getVarDate Method Returns the VT_DATE value.

JScript Date Object getYear Method Returns the 2-digit year.

JScript Date Object parse Method Parses a string containing a date and returns the
number of milliseconds between that date and
midnight, January 1, 1970.

JScript Date Object setDate Method Sets the numeric data according to local time.

JScript Date Object setFullYear Method Sets the 4-digit year according to local time.

JScript Date Object setHours Method Modifies the hours value according to local
time.

JScript Date Object setMilliseconds Method Modifies the milliseconds value according to
local time.

JScript Date Object setMinutes Method Modifies the minutes value according to local
time.

JScript Date Object setMonth Method Modifies the month according to local time.

Sun Chili!Soft ASP 3.6.2 Product Documentation 563

JScript Date Object setSeconds Method Modifies the seconds according to local time.

JScript Date Object setTime Method Sets the date and time value directly.

JScript Date Object setUTCDate Method Sets the numeric date in Universal Coordinated
Time (UTC)

JScript Date Object setUTCFullYear Method Sets the year value according to UTC.

JScript Date Object setUTCHours Method Modifies the year value according to UTC.

JScript Date Object setUTCMilliseconds
Method

Modifies the milliseconds according to UTC.

JScript Date Object setUTCMinutes Method Modifies the minutes according to UTC.

JScript Date Object setUTCMonth Method Modifies the month according to UTC.

JScript Date Object setUTCSeconds Method Modifies the seconds according to UTC.

JScript Date Object setYear Method Sets the 2-digit year.

JScript Date Object toGMTString Method Converts the date to a string using GMT
conventions.

JScript Date Object toLocaleString Method Converts the date to a string using the current
locale.

JScript Date Object toUTCString Method Converts the date to a string using UTC
conventions.

JScript Date Object UTC Method Computes the number of milliseconds between
midnight, January 1, 1970 Universal
Coordinated Time (or GMT) and the supplied
date.

Syntax: JScript Date Object
var newDateObj = new Date()

var newDateObj = new Date(dateVal)

var newDateObj = new Date(year, month, date[, hours[, minutes[,
seconds[,ms]]]])

Arguments: JScript Date Object
dateVal

If a numeric value, dateVal represents the number of milliseconds in Universal Coordinated Time
between the specified date and midnight January 1, 1970. If a string, dateVal is parsed according
to the rules in the parse method. The dateVal argument can also be a VT_DATE value as returned
from some ActiveX objects.

year

The full year, for example, 1976 (and not 76). Required.

month

Sun Chili!Soft ASP 3.6.2 Product Documentation 564

The month as an integer between 0 and 11 (January to December).

date

An integer between 1 and 31. Required.

hours

Must be supplied if minutes is supplied. An integer from 0 to 23 (midnight to 11pm) that specifies
the hour. Optional.

minutes

Must be supplied if seconds is supplied. An integer from 0 to 59 that specifies the minutes.
Optional.

seconds

Must be supplied if milliseconds is supplied. An integer from 0 to 59 that specifies the seconds.
Optional.

ms

An integer from 0 to 999 that specifies the milliseconds. Optional.

Remarks: JScript Date Object
A Date object contains a number representing a particular instant in time to within a millisecond.
If the value of an argument is greater than its range or is a negative number, other stored values
are modified accordingly. For example, if you specify 150 seconds, JScript redefines that number
as 2 minutes and 30 seconds.

If the number is NaN, that indicates that the object does not represent a specific instant of time. If
you pass no parameters to the Date object, it is initialized to the current time (UTC). A value
must be given to the object before you can use it.

The range of dates that can be represented in a Date object is approximately 285,616 years on
either side of January 1, 1970.

The Date object has two static methods that are called without creating a Date object. They are
the parse and UTC methods.

 JScript Date Object getDate Method
Returns the day of the month as stored in a Date object according to local time.

Syntax: JScript Date Object getDate Method
objDate.getDate()

Arguments: JScript Date Object getDate Method
objDate

The name of a Date object. Required.

Remarks: JScript Date Object getDate Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 565

To get the date value according to Universal Coordinated Time (UTC), use the getUTCDate
method.

The return value is an integer between 1 and 31 that represents the date stored in the Date object.

 JScript Date Object getDay Method
Retrieves the day of the week represented by the date stored in a Date object according to local
time.

Syntax: JScript Date Object getDay Method
objDate.getDay()

Arguments: JScript Date Object getDay Method
objDate

The name of a Date object. Required.

Remarks: JScript Date Object getDay Method
To get the day according to Universal Coordinated Time (UTC), use the getUTCDay method.

The integer returned from the getDay method is an integer between 0 and 6 representing the day
of the week and corresponds to a day of the week as follows:

0 = Sunday

1 = Monday

2 = Tuesday

3 = Wednesday

4 = Thursday

5 = Friday

6 = Saturday

 JScript Date Object getFullYear Method
Returns the year stored in the Date object according to local time.

Syntax: JScript Date Object getFullYear Method
objDate.getFullYear()

Arguments: JScript Date Object getFullYear Method
objDate

The name of a Date object.

Remarks: JScript Date Object getFullYear Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 566

To get the year according to Universal Coordinated Time (UTC), use the getUTCFullYear
method.

The getFullYear method returns the year as an absolute number. For example, the year 1976 is
returned as 1976. This avoids problems with dates occurring at the end of the 20th century.

 JScript Date Object getHours Method
Retrieves the hours stored in a Date object according to local time.

Syntax: JScript Date Object getHours Method
objDate.getHours()

Arguments: JScript Date Object getHours Method
objDate

The name of a Date object.

Remarks: JScript Date Object getHours Method
To get the hours value according to Universal Coordinated Time (UTC), use the getUTCHours
method.

The getHours method returns an integer between 0 and 23 indicating the number of hours since
midnight. A zero occurs in two situations: the time is before 1:00:00 am, or the time was not
stored in the Date object when the object was created. The only way to determine which situation
you have is to also check the minutes and seconds for zero values. If they are all zeroes, it is
nearly certain that the time was not stored in the Date object.

 JScript Date Object getMilliseconds Method
Retrieves the number of milliseconds past the second from the milliseconds value stored in a
Date object according to local time.

Syntax: JScript Date Object getMilliseconds Method
objDate.getMilliseconds()

Arguments: JScript Date Object getMilliseconds Method
objDate

The name of a Date object. Required.

Remarks: JScript Date Object getMilliseconds Method
To get the number of milliseconds in Universal Coordinated Time (UTC), use the
getUTCMilliseconds method.

The millisecond value returned can range from 0-999.

Sun Chili!Soft ASP 3.6.2 Product Documentation 567

 JScript Date Object getMinutes Method
Retrieves the number of minutes past the hour from the minutes value stored in a Date object
according to local time.

Syntax: JScript Date Object getMinutes Method
objDate.getMinutes()

Arguments: JScript Date Object getMinutes Method
objDate

The name of a Date object. Required.

Remarks: JScript Date Object getMinutes Method
To get the minutes value according to Universal Coordinated Time (UTC), use the
getUTCMinutes method.

The getMinutes method returns an integer between 0 and 59 equal to the minutes value stored in
the Date object. A zero is returned in two situations: one occurs when the time is less than one
minute after the hour. The other occurs when the time was not stored in the Date object when the
object was created. The only way to determine which situation you have is to also check the hours
and seconds for zero values. If they are all zeroes, it is nearly certain that the time was not stored
in the Date object.

 JScript Date Object getMonth Method
Retrieves the month value of the Date object according to local time.

Syntax: JScript Date Object getMonth Method
objDate.getMonth()

Arguments: JScript Date Object getMonth Method
objDate

The name of a Date object. Required.

Remarks: JScript Date Object getMonth Method
To get the month value according to Universal Coordinated Time (UTC), use the getUTCMonth
method.

The getMonth method returns an integer between 0 and 11 indicating the month stored in the
Date object. The integer returned is not the traditional number used to indicate the month—it is
one less. If "Jan 5, 1996 08:47:00" is stored in a Date object, getMonth returns 0.

 JScript Date Object getSeconds Method
Retrieves the number of seconds past the minute from the seconds value stored in a Date object
according to local time.

Sun Chili!Soft ASP 3.6.2 Product Documentation 568

Syntax: JScript Date Object getSeconds Method
objDate.getSeconds()

Arguments: JScript Date Object getSeconds Method
objDate

The name of a Date object. Required.

Remarks: JScript Date Object getSeconds Method
To get the seconds value according to Universal Coordinated Time (UTC), use the
getUTCSeconds method.

The getSeconds method returns an integer between 0 and 59 indicating the seconds value of the
indicated Date object. A zero is returned in two situations. One occurs when the time is less than
one second into the current minute. The other occurs when the time was not stored in the Date
object when the object was created. The only way to determine which situation you have is to
also check the hours and minutes for zero values. If they are all zeroes, it is nearly certain that the
time was not stored in the Date object.

 JScript Date Object getTime Method
Retrieves the time stored in a Date object.

Syntax: JScript Date Object getTime Method
objDate.getTime()

Arguments: JScript Date Object getTime Method
objDate

The name of a Date object. Required.

Remarks: JScript Date Object getTime Method
The getTime method returns an integer value representing the number of milliseconds between
midnight, January 1, 1970 and the time stored in the Date object. The range of dates is
approximately 285,616 years from either side of midnight, January 1, 1970. Negative numbers
indicate dates prior to 1970.

When doing multiple date and time calculations, it is frequently useful to define variables equal to
the number of milliseconds in a day, hour, or minute. For example:

varMinuteMilli = 1000 * 60

varHourMilli = varMinuteMilli * 60

varDayMilli = varHourMilli * 24

 JScript Date Object getTimezoneOffset Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 569

Determines the difference in minutes between the time on the host computer and Universal
Coordinated Time (UTC).

Syntax: JScript Date Object getTimezoneOffset Method
objDate.getTimezoneOffset()

Arguments: JScript Date Object getTimezoneOffset Method
objDate

The name of a Date object. Required.

Remarks: JScript Date Object getTimezoneOffset Method
The getTimezoneOffset method returns an integer value representing the number of minutes
between the time on the current machine and UTC. These values are appropriate to the computer
the script is executed on. If it is called from a server script, the return value is appropriate to the
server. If it is called from a client script, the return value is appropriate to the client.

This number will be positive if you are behind UTC (e.g., Pacific Daylight Time), and negative if
you are ahead of UTC (e.g., Japan).

For example, suppose a server in New York City is contacted by a client in Los Angeles on
December 1. getTimezoneOffset returns 480 if executed on the client, or 300 if executed on the
server.

 JScript Date Object getUTCDate Method
Returns the date of the month stored in a Date object according to Universal Coordinated Time
(UTC).

Syntax: JScript Date Object getUTCDate Method
objDate.getUTCDate()

Arguments: JScript Date Object getUTCDate Method
objDate

The name of a Date object. Required.

Remarks: JScript Date Object getUTCDate Method
To get the date according to local time, use the getDate method.

The return value is an integer between 1 and 31 that represents the date stored in the Date object.

 JScript Date Object getUTCDay Method
Returns the day of the week as stored in a Date object according to Universal Coordinated Time
(UTC).

Syntax: JScript Date Object getUTCDay Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 570

objDate.getUTCDay()

Arguments: JScript Date Object getUTCDay Method
objDate

The name of a Date object. Required.

Remarks: JScript Date Object getUTCDay Method
To get the day of the week according to local time, use the getDay method.

The value returned by the getUTCDay method is an integer between 0 and 6 representing the day
of the week and corresponds to a day of the week as follows:

0 = Sunday

1 = Monday

2 = Tuesday

3 = Wednesday

4 = Thursday

5 = Friday

6 = Saturday

 JScript Date Object getUTCFullYear Method
Returns the year stored in a Date object according to Universal Coordinated Time (UTC).

Syntax: JScript Date Object getUTCFullYear Method
objDate.getUTCFullYear()

Arguments: JScript Date Object getUTCFullYear Method
objDate

The name of a Date object. Required.

Remarks: JScript Date Object getUTCFullYear Method
To get the year according to local time, use the getFullYear method.

The getUTCFullYear method returns the year as an absolute number. This avoids problems with
dates occurring at the end of the 20th century.

 JScript Date Object getUTCHours Method
Returns the hours stored in a Date object according to Universal Coordinated Time (UTC).

Syntax: JScript Date Object getUTCHours Method
objDate.getUTCHours()

Sun Chili!Soft ASP 3.6.2 Product Documentation 571

Arguments: JScript Date Object getUTCHours Method
objDate

The name of a Date object. Required.

Remarks: JScript Date Object getUTCHours Method
To get the number of hours elapsed since midnight using local time, use the getHours method.

The getUTCHours method returns an integer between 0 and 23 indicating the number of hours
since midnight. A zero occurs in two situations: the time is before 1:00:00 A.M., or a time was
not stored in the Date object when the object was created. The only way to determine which
situation you have is to also check the minutes and seconds for zero values. If they are all zeroes,
it is nearly certain that the time was not stored in the Date object.

 JScript Date Object getUTCMilliseconds Method
Retrieves the number of milliseconds past the second from the milliseconds value stored in a
Date object according to Universal Coordinated Time (UTC).

Syntax: JScript Date Object getUTCMilliseconds Method
objDate.getUTCMilliseconds()

Arguments: JScript Date Object getUTCMilliseconds Method
objDate

The name of a Date object. Required.

Remarks: JScript Date Object getUTCMilliseconds Method
To get the number of milliseconds in local time, use the getMilliseconds method.

The millisecond value returned can range from 0-999.

 JScript Date Object getUTCMinutes Method
Retrieves the number of minutes past the hour from the minutes value stored in a Date object
according to Universal Coordinated Time (UTC).

Syntax: JScript Date Object getUTCMinutes Method
objDate.getUTCMinutes()

Arguments: JScript Date Object getUTCMinutes Method
objDate

The name of a Date object. Required.

Remarks: JScript Date Object getUTCMinutes Method
To get the number of minutes stored using local time, use the getMinutes method.

Sun Chili!Soft ASP 3.6.2 Product Documentation 572

The getUTCMinutes method returns an integer between 0 and 59 equal to the number of minutes
stored in the Date object. A zero occurs in two situations: the time is less than one minute after
the hour, or a time was not stored in the Date object when the object was created. The only way
to determine which situation you have is to also check the hours and seconds for zero values. If
they are all zeroes, it is nearly certain that the time was not stored in the Date object.

 JScript Date Object getUTCMonth Method
Retrieves the month value stored in a Date object according to Universal Coordinated Time
(UTC).

Syntax: JScript Date Object getUTCMonth Method
objDate.getUTCMonth()

Arguments: JScript Date Object getUTCMonth Method
objDate

The name of a Date object. Required.

Remarks: JScript Date Object getUTCMonth Method
To get the month in local time, use the getMonth method.

The getUTCMonth method returns an integer between 0 and 11 indicating the month stored in
the Date object. The integer returned is not the traditional number used to indicate the month—it
is one less. If "Jan 5, 1996 08:47:00.0" is stored in a Date object, getUTCMonth returns 0.

 JScript Date Object getUTCSeconds Method
Retrieves the number of seconds past the minute from the seconds value stored in a Date object
according to Universal Coordinated Time (UTC).

Syntax: JScript Date Object getUTCSeconds Method
objDate.getUTCSeconds()

Arguments: JScript Date Object getUTCSeconds Method
objDate

The name of a Date object. Required.

Remarks: JScript Date Object getUTCSeconds Method
To get the number of seconds in local time, use the getSeconds method.

The getUTCSeconds method returns an integer between 0 and 59 indicating the seconds value of
the indicated Date object. A zero occurs in two situations: the time is less than one second into
the current minute, or a time was not stored in the Date object when the object was created. The
only way to determine which situation you have is to also check the minutes and hours for zero
values. If they are all zeroes, it is nearly certain that the time was not stored in the Date object.

Sun Chili!Soft ASP 3.6.2 Product Documentation 573

 JScript Date Object getVarDate Method
Returns the VT_DATE value stored in the Date object.

Syntax: JScript Date Object getVarDate Method
objDate.getVarDate()

Arguments: JScript Date Object getVarDate Method
objDate

The name of a Date object. Required.

Remarks: JScript Date Object getVarDate Method
The getVarDate method is used when interacting with ActiveX or other objects that accept and
return date values in VT_DATE format.

 JScript Date Object getYear Method
Retrieves the year stored in the specified Date object.

Syntax: JScript Date Object getYear Method
objDate.getYear()

Arguments: JScript Date Object getYear Method
objDate

The name of a Date object. Required.

Remarks: JScript Date Object getYear Method
This method is obsolete, and is provided for backwards compatibility only. Use the getFullYear
method instead.

The year is an integer value and is returned as the difference between the stored year and 1900.
For example, 1996 is returned as 96, and 2025 is returned as 125.

 JScript Date Object parse Method
Parses a string containing a date, and returns the number of milliseconds between that date and
midnight, January 1, 1970.

Syntax: JScript Date Object parse Method
Date.parse(dateVal)

Arguments: JScript Date Object parse Method
dateVal

Sun Chili!Soft ASP 3.6.2 Product Documentation 574

The required dateVal argument is either a string containing a date in a format such as "Jan 5,
1996 08:47:00" or a VT_DATE value retrieved from an ActiveX object or other object.

Remarks: JScript Date Object parse Method
The parse method returns an integer value representing the number of milliseconds between
midnight, January 1, 1970 and the date supplied in dateVal.

The parse method is a static method of the Date object. Because it is a static method, it is
invoked as shown in the following code rather than invoked as a method of a created Date object.

var datestring = "November 1, 1997 10:15 AM";

Date.parse(datestring)

The following rules govern what the parse method can successfully parse:

� Short dates can use either a "/" or "-" date separator, but must follow the month/day/year
format, for example "7/20/96."

� Long dates of the form "July 10 1995" can be given with the year, month, and day in any
order, and the year in 2- or 4-digit form. If you use the 2-digit form, the year must be
greater than or equal to 70.

� Any text inside parentheses is treated as a comment. These parentheses may be nested.

� Both commas and spaces are treated as delimiters. Multiple delimiters are permitted.
Month and day names must have two or more characters. Two character names that are
not unique are resolved as the last match. For example, "Ju" is resolved as July, not June.

� The stated day of the week is ignored if it is incorrect given the remainder of the supplied
date. For example, "Tuesday November 9 1996" is accepted and parsed even though that
date actually falls on a Friday. The resulting Date object contains "Friday November 9
1996."

Note
JScript handles all standard time zones, as well as Universal Coordinated Time (UTC)
and Greenwich Mean Time (GMT). Hours, minutes, and seconds are separated by colons,
although all need not be specified. "10:", "10:11", and "10:11:12" are all valid. If the 24-
hour clock is used, it is an error to specify "PM" for times later than 12 noon. For
example, "23:15 PM" is an error. A string containing an invalid date is an error. For
example, a string containing two years or two months is an error.

 JScript Date Object setDate Method
Sets the numeric date of the Date object according to local time.

Syntax: JScript Date Object setDate Method
objDate.setDate(numDate)

Arguments: JScript Date Object setDate Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 575

objDate

The name of a Date object. Required.

numDate

A numeric value equal to the numeric date.

Remarks: JScript Date Object setDate Method
To set the date value according to Universal Coordinated Time (UTC), use the setUTCDate
method.

If the value of numDate is greater than the number of days in the month stored in the Date object
or is a negative number, the date is set to a date equal to numDate minus the number of days in
the stored month. For example, if the stored date is January 5, 1996, and setDate(32) is called, the
date changes to February 1, 1996. Negative numbers have a similar behavior.

 JScript Date Object setFullYear Method
Sets the year value in the Date object according to local time.

Syntax: JScript Date Object setFullYear Method
objDate.setFullYear(numYear[, numMonth[, numDate]])

Arguments: JScript Date Object setFullYear Method
objDate

The name of a Date object. Required.

numYear

A numeric value equal to the year. Required.

numMonth

A numeric value equal to the month. Must be supplied if numDate is supplied. Optional.

numDate

A numeric value equal to the date. Optional.

Remarks: JScript Date Object setFullYear Method
All set methods taking optional arguments use the value returned from corresponding get
methods, if you do not specify an optional argument. For example, if the numMonth argument is
optional, but not specified, JScript uses the value returned from the getMonth method.

In addition, if the value of an argument is greater that its range or is a negative number, other
stored values are modified accordingly.

To set the year according to Universal Coordinated Time (UTC), use the setUTCFullYear
method.

Sun Chili!Soft ASP 3.6.2 Product Documentation 576

The range of years supported in the date object is approximately 285,616 years from either side of
1970.

 JScript Date Object setHours Method
Modifies the hours stored in the Date object according to local time.

Syntax: JScript Date Object setHours Method
objDate.setHours(numHours[, numMin[, numSec[, numMilli]]])

Arguments: JScript Date Object setHours Method
objDate

The name of a Date object. Required.

numHours

A numeric value equal to the hours value. Required.

numMin

A numeric value equal to the minutes value. Must be supplied if either of the following
arguments are used. Optional.

numSec

A numeric value equal to the seconds value. Must be supplied if the following argument is used.
Optional.

numMilli

A numeric value equal to the milliseconds value. Optional.

Remarks: JScript Date Object setHours Method
All set methods taking optional arguments use the value returned from corresponding get
methods, if you do not specify an optional argument. For example, if the numMin argument is
optional, but not specified, JScript uses the value returned from the getMinutes method.

To set the hours value according to Universal Coordinated Time (UTC), use the setUTCHours
method.

If the value of an argument is greater than its range or is a negative number, other stored values
are modified accordingly. For example, if the stored date is "Jan 5, 1996 00:00:00," and
setHours(30) is called, the date is changed to "Jan 6, 1996 06:00:00." Negative numbers have a
similar behavior.

 JScript Date Object setMilliseconds Method
Modifies the milliseconds value stored in the Date object according to local time.

Syntax: JScript Date Object setMilliseconds Method
objDate.setMilliseconds(numMilli)

Sun Chili!Soft ASP 3.6.2 Product Documentation 577

Arguments: JScript Date Object setMilliseconds Method
objDate

The name of a Date object. Required.

numMilli

A numeric value equal to the millisecond value.

Remarks: JScript Date Object setMilliseconds Method
To set the milliseconds value according to Universal Coordinated Time (UTC), use the
setUTCMilliseconds method.

If the value of numMilli is greater than 999 or is a negative number, the stored number of seconds
(and minutes, hours, and so forth if necessary) is incremented an appropriate amount.

 JScript Date Object setMinutes Method
Modifies the minutes stored in the Date object according to local time.

Syntax: JScript Date Object setMinutes Method
objDate.setMinutes(numMinutes[, numSeconds[, numMilli]])

Arguments: JScript Date Object setMinutes Method
objDate

The name of a Date object. Required.

numMinutes

A numeric value equal to the minutes value. Required.

numSeconds

A numeric value equal to the seconds value. Must be supplied if the numMilli argument is used.
Optional.

numMilli

A numeric value equal to the milliseconds value. Optional.

Remarks: JScript Date Object setMinutes Method
All set methods taking optional arguments use the value returned from corresponding get
methods, if you do not specify an optional argument. For example, if the numSeconds argument is
optional, but not specified, JScript uses the value returned from the getSeconds method.

To set the minutes value according to Universal Coordinated Time (UTC), use the
setUTCMinutes method.

If the value of an argument is greater than its range or is a negative number, other stored values
are modified accordingly. For example, if the stored date is "Jan 5, 1996 00:00:00" and
setMinutes(90) is called, the date is changed to "Jan 5, 1996 01:30:00." Negative numbers have a
similar behavior.

Sun Chili!Soft ASP 3.6.2 Product Documentation 578

 JScript Date Object setMonth Method
Modifies the month stored in the Date object according to local time.

Syntax: JScript Date Object setMonth Method
objDate.setMonth(numMonth[, dateVal])

Arguments: JScript Date Object setMonth Method
objDate

The name of a Date object. Required.

numMonth

A numeric value equal to the month. Required.

dateVal

A numeric value representing the date. If not supplied, the value from a call to the getDate
method is used. Optional.

Remarks: JScript Date Object setMonth Method
To set the month value according to Universal Coordinated Time (UTC), use the setUTCMonth
method.

If the value of numMonth is greater than 11 (January is month 0) or is a negative number, the
stored year is modified accordingly. For example, if the stored date is "Jan 5, 1996" and
setMonth(14) is called, the date is changed to "Mar 5, 1997."

 JScript Date Object setSeconds Method
Modifies the seconds value stored in the Date object according to local time.

Syntax: JScript Date Object setSeconds Method
objDate.setSeconds(numSeconds[, numMilli])

Arguments: JScript Date Object setSeconds Method
objDate

The name of a Date object. Required.

numSeconds

A numeric value equal to the seconds value. Required.

numMilli

A numeric value equal to the milliseconds value. Optional.

Remarks: JScript Date Object setSeconds Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 579

All set methods taking optional arguments use the value returned from corresponding get
methods, if you do not specify an optional argument. For example, if the numMilli argument is
optional, but not specified, JScript uses the value returned from the getMilliseconds method.

To set the seconds value according to Universal Coordinated Time (UTC), use the
setUTCSeconds method.

If the value of an argument is greater than its range or is a negative number, other stored values
are modified accordingly. For example, if the stored date is "Jan 5, 1996 00:00:00" and
setSeconds(150) is called, the date is changed to "Jan 5, 1996 00:02:30."

 JScript Date Object setUTCDate Method
Sets the numeric date of the Date object in Universal Coordinated Time (UTC).

Syntax: JScript Date Object setUTCDate Method
objDate.setUTCDate(numDate)

Arguments: JScript Date Object setUTCDate Method
objDate

The name of a Date object. Required.

numDate

A numeric value equal to the numeric date.

Remarks: JScript Date Object setUTCDate Method
To set the date according to local time, use the setDate method.

If the value of numDate is greater than the number of days in the month stored in the Date object
or is a negative number, the date is set to a date equal to numDate minus the number of days in
the stored month. For example if the stored date is January 5, 1996, and setUTCDate(32) is
called, the date changes to February 1, 1996. Negative numbers have a similar behavior.

 JScript Date Object setTime Method
Sets the date and time value directly in the Date object.

Syntax: JScript Date Object setTime Method
objDate.setTime(milliseconds)

Arguments: JScript Date Object setTime Method
objDate

The name of a Date object. Required.

milliseconds

Sun Chili!Soft ASP 3.6.2 Product Documentation 580

An integer value representing the number of elapsed milliseconds since midnight, January 1,
1970 GMT.

Remarks: JScript Date Object setTime Method
If milliseconds is negative, it indicates a date before 1970. The range of available dates is
approximately 285,616 years from either side of 1970.

Setting the date and time with the setTime method is independent of the time zone.

 JScript Date Object setUTCFullYear Method
Sets the year value in the Date object according to Universal Coordinated Time (UTC).

Syntax: JScript Date Object setUTCFullYear Method
objDate.setUTCFullYear(numYear[, numMonth[, numDate]])

Arguments: JScript Date Object setUTCFullYear Method
objDate

The name of a Date object. Required.

numYear

A numeric value equal to the year. Required.

numMonth

A numeric value equal to the month. Must be supplied if numDate is supplied. Optional.

numDate

A numeric value equal to the date. Optional.

Remarks: JScript Date Object setUTCFullYear Method
All set methods taking optional arguments use the value returned from corresponding get
methods, if you do not specify an optional argument. For example, if the numMonth argument is
optional, but not specified, JScript uses the value returned from the getUTCMonth method.

In addition, if the value of an argument is greater that its range or is a negative number, other
stored values are modified accordingly.

To set the year according to local time, use the setFullYear method.

The range of years supported in the Date object is approximately 285,616 years from either side
of 1970.

 JScript Date Object setUTCHours Method
Modifies the hours stored in the Date object according to Universal Coordinated Time (UTC).

Syntax: JScript Date Object setUTCHours Method
objDate.setUTCHours(numHours[, numMin[, numSec[, numMilli]]])

Sun Chili!Soft ASP 3.6.2 Product Documentation 581

Arguments: JScript Date Object setUTCHours Method
objDate

The name of a Date object. Required.

numHours

A numeric value equal to the hours value. Required.

numMin

A numeric value equal to the minutes value. Must be supplied if either numSec or numMilli are
used. Optional.

numSec

A numeric value equal to the seconds value. Must be supplied if numMilli argument is used.
Optional.

numMilli

Optional. A numeric value equal to the milliseconds value.

Remarks: JScript Date Object setUTCHours Method
All set methods taking optional arguments use the value returned from corresponding get
methods, if you do not specify an optional argument. For example, if the numHours argument is
optional, but not specified, JScript uses the value returned from the getUTCHours method.

To set the hours value according to local time, use the setHours method.

If the value of an argument is greater than its range or is a negative number, other stored values
are modified accordingly. For example, if the stored date is "Jan 5, 1996 00:00:00.00," and
setUTCHours(30) is called, the date is changed to "Jan 6, 1996 06:00:00.00."

 JScript Date Object setUTCMilliseconds Method
Modifies the milliseconds value stored in the Date object according to Universal Coordinated
Time (UTC).

Syntax: JScript Date Object setUTCMilliseconds Method
objDate.setUTCMilliseconds(numMilli)

Arguments: JScript Date Object setUTCMilliseconds Method
objDate

The name of a Date object. Required.

numMilli

A numeric value equal to the milliseconds value.

Remarks: JScript Date Object setUTCMilliseconds Method
To set the milliseconds according to local time, use the setMilliseconds method.

Sun Chili!Soft ASP 3.6.2 Product Documentation 582

If the value of numMilli is greater than 999 or is a negative number, the stored number of seconds
(and minutes, hours, and so forth if necessary) is incremented an appropriate amount.

 JScript Date Object setUTCMinutes Method
Modifies the minutes value of the Date object according to Universal Coordinated Time (UTC).

Syntax: JScript Date Object setUTCMinutes Method
objDate.setUTCMinutes(numMinutes[, numSeconds[, numMilli]])

Arguments: JScript Date Object setUTCMinutes Method
objDate

The name of a Date object. Required.

numMinutes

A numeric value equal to the minutes value. Required.

numSeconds

A numeric value equal to the seconds value. Must be supplied if numMilli is used. Optional.

numMilli

A numeric value equal to the milliseconds value. Optional.

Remarks: JScript Date Object setUTCMinutes Method
All set methods taking optional arguments use the value returned from corresponding get
methods, if you do not specify an optional argument. For example, if the numSeconds argument is
optional, but not specified, JScript uses the value returned from the getUTCSeconds method.

To modify the minutes value according to local time, use the setMinutes method.

If the value of an argument is greater than its range or is a negative number, other stored values
are modified accordingly. For example, if the stored date is "Jan 5, 1996 00:00:00.00," and
setUTCMinutes(70) is called, the date is changed to "Jan 5, 1996 01:10:00.00."

 JScript Date Object setUTCMonth Method
Modifies the month stored in the Date object according to Universal Coordinated Time (UTC).

Syntax: JScript Date Object setUTCMonth Method
objDate.setUTCMonth(numMonth[, dateVal])

Arguments: JScript Date Object setUTCMonth Method
objDate

The name of a Date object. Required.

numMonth

Sun Chili!Soft ASP 3.6.2 Product Documentation 583

A numeric value equal to the month. Required.

dateVal

A numeric value representing the date. If not supplied, the value from a call to the getUTCDate
method is used. Optional.

Remarks: JScript Date Object setUTCMonth Method
To set the month value according to local time, use the setMonth method.

If the value of numMonth is greater than 11 (January is month 0) or is a negative number, the
stored year is incremented or decremented appropriately.

For example, if the stored date is "Jan 5, 1996 00:00:00.00," and setUTCMonth(14) is called, the
date is changed to "Mar 5, 1997 00:00:00.00."

 JScript Date Object setUTCSeconds Method
Modifies the seconds value stored in the Date object according to Universal Coordinated Time
(UTC).

Syntax: JScript Date Object setUTCSeconds Method
objDate.setUTCSeconds(numSeconds[, numMilli])

Arguments: JScript Date Object setUTCSeconds Method
objDate

The name of a Date object. Required.

numSeconds

A numeric value equal to the seconds value. Required.

numMilli

A numeric value equal to the milliseconds value. Optional.

Remarks: JScript Date Object setUTCSeconds Method
All set methods taking optional arguments use the value returned from corresponding get
methods, if you do not specify an optional argument. For example, if the numMilli argument is
optional, but not specified, JScript uses the value returned from the getUTCMilliseconds
method.

To set the seconds value according to local time, use the setSeconds method.

If the value of an argument is greater than its range or is a negative number, other stored values
are modified accordingly. For example, if the stored date is "Jan 5, 1996 00:00:00.00" and
setSeconds(150) is called, the date is changed to "Jan 5, 1996 00:02:30.00."

 JScript Date Object setYear Method
Sets the year value in the Date object.

Sun Chili!Soft ASP 3.6.2 Product Documentation 584

Syntax: JScript Date Object setYear Method
objDate.setYear(numYear)

Arguments: JScript Date Object setYear Method
objDate

The name of a Date object. Required.

numYear

A numeric value equal to the year minus 1900.

Remarks: JScript Date Object setYear Method
This method is obsolete, and is maintained for backwards compatibility only. Use the
setFullYear method instead.

To set the year of a Date object to 1997, call setYear(97). To set the year to 110, call
setYear(110). Finally, to set the year to a year in the range 0-99, use the setFullYear method.

 JScript Date Object toGMTString Method
Converts the date to a string using GMT convention.

Syntax: JScript Date Object toGMTString Method
objDate.toGMTString()

Arguments: JScript Date Object toGMTString Method
objDate

The name of a Date object. Required.

Remarks: JScript Date Object toGMTString Method
The toGMTString method is obsolete, and is provided for backwards compatibility only. It is
recommended that you use the toUTCString method instead

The toGMTString method returns a String object that contains the date formatted using GMT
convention. The format of the return value is as follows: "05 Jan 1996 00:00:00 GMT."

 JScript Date Object toLocaleString Method
Converts the date to a string using the current locale.

Syntax: JScript Date Object toLocaleString Method
dateObj.toLocaleString()

Arguments: JScript Date Object toLocaleString Method
objDate

The name of a Date object. Required.

Sun Chili!Soft ASP 3.6.2 Product Documentation 585

Remarks: JScript Date Object toLocaleString Method
The toLocaleString method returns a String object that contains the date written in the current
locale's default format. The format of the return value depends on the current locale. For example,
in the United States, toLocaleString may return "01/05/96 00:00:00" for January 5, but in
Europe, it may return "05/01/96 00:00:00" for the same date, as European convention puts the
day before the month.

 JScript Date Object toUTCString Method
Converts the date to a string in Universal Coordinated Time (UTC).

Syntax: JScript Date Object toUTCString Method
objDate.toUTCString()

Arguments: JScript Date Object toUTCString Method
objDate

The name of a Date object. Required.

Remarks: JScript Date Object toUTCString Method
The toUTCString method returns a String object that contains the date formatted using UTC
convention in a convenient, easily readable form.

 JScript Date Object UTC Method
Computes the number of milliseconds between midnight, January 1, 1970 Universal Coordinated
Time (UTC) (or GMT) and the supplied date.

Syntax: JScript Date Object UTC Method
Date.UTC(year, month, day[, hours[, minutes[, seconds[,ms]]]])

Arguments: JScript Date Object UTC Method
year

The full year designation is required for cross-century date accuracy. If year between 0 and 99 is
used, then year is assumed to be 1900 + year. Required.

month

The month as an integer between 0 and 11 (January to December). Required.

date

The date as an integer between 1 and 31. Required.

hours

Must be supplied if minutes is supplied. An integer from 0 to 23 (midnight to 11pm) that specifies
the hour. Optional.

Sun Chili!Soft ASP 3.6.2 Product Documentation 586

minutes

Must be supplied if seconds is supplied. An integer from 0 to 59 that specifies the minutes.
Optional.

seconds

Must be supplied if milliseconds is supplied. An integer from 0 to 59 that specifies the seconds.
Optional.

ms

An integer from 0 to 999 that specifies the milliseconds. Optional.

Remarks: JScript Date Object UTC Method
The UTC method returns the number of milliseconds between midnight, January 1, 1970 UTC
and the supplied date. This return value can be used in the setTime method and in the Date object
constructor. If the value of an argument is greater than its range or is a negative number, other
stored values are modified accordingly. For example, if you specify 150 seconds, JScript
redefines that number as two minutes and 30 seconds.

The difference between the UTC method and the Date object constructor that accepts a date is
that the UTC method assumes UTC, and the Date object constructor assumes local time.

The UTC method is a static method. Therefore, a Date object does not have to be created before
it can be used. The UTC method is invoked as follows:

var datestring = "November 1, 1997 10:15 AM";

Date.UTC(datestring)

Note
If year is between 0 and 99, use 1900 + year for the year.

JScript Dictionary Object

 JScript Dictionary Object
The Dictionary object stores data key, item pairs.

Methods: JScript Dictionary Object
JScript Dictionary Object Add Method Adds a key, item pair to a Dictionary object.

JScript Dictionary Object Exists Method Returns a Boolean value indicating the existence of
a key.

JScript Dictionary Object Items Method Returns an array containing all the existing items in
a Dictionary object..

JScript Dictionary Object Keys Method Returns an array containing all the existing keys in a
dictionary object.

Sun Chili!Soft ASP 3.6.2 Product Documentation 587

JScript Dictionary Object Remove Method Removes a key, item pair.

JScript Dictionary Object RemoveAll
Method

Removes all key, item pairs.

Properties: JScript Dictionary Object
JScript Dictionary Object Key Property A key in a Dictionary object.

JScript Dictionary Object Count Property The number of items in a Dictionary object.

JScript Dictionary Object Item Property An item associated with a key in a Dictionary
object.

Syntax: JScript Dictionary Object
y = new ActiveXObject("Scripting.Dictionary")

Remarks: JScript Dictionary Object
A Dictionary object is the equivalent of a PERL associative array. Items, which can be any form
of data, are stored in the array. Each item is associated with a unique key. The key is used to
retrieve an individual item and is usually an integer or a string, but can be anything except an
array.

The following code illustrates how to create a Dictionary object:

var y = new ActiveXObject("Scripting.Dictionary");

y.add ("a", "test");

if (y.Exists("a"))

document.write("true");

...

 JScript Dictionary Object Add Method
Adds a key and item pair to a Dictionary object.

Syntax: JScript Dictionary Object Add Method
object.Add (key, item)

Arguments: JScript Dictionary Object Add Method
object

The name of a Dictionary object. Required.

key

The key associated with the item being added. Required.

item

The item associated with the key being added. Required.

Sun Chili!Soft ASP 3.6.2 Product Documentation 588

Remarks: JScript Dictionary Object Add Method
An error occurs if the key already exists.

 JScript Dictionary Object Count Property
Returns the number of items in a Dictionary object. Read-only.

Syntax: JScript Dictionary Object Count Property
object.Count

object

The name of a Dictionary object.

Remarks: JScript Dictionary Object Count Property
The following code illustrates use of the Count property:

var a, d, i, s; // Create some variables.

d = new ActiveXObject("Scripting.Dictionary");

d.Add ("a", "Athens"); // Add some keys and items

d.Add ("b", "Belgrade");

d.Add ("c", "Cairo");

a = (new VBArray(d.Keys())); // Get the keys.

s = "";

for (i = 0; i < d.Count; i++) //Iterate the dictionary.

{

s += a.getItem(i) + " - " + d(a.getItem(i)) + "
";

}

document.write(s); // Print item.

 JScript Dictionary Object Exists Method
Returns True if a specified key exists in the Dictionary object, False if it does not.

Syntax: JScript Dictionary Object Exists Method
object.Exists(key)

Arguments: JScript Dictionary Object Exists Method
object

The name of a Dictionary object. Required.

key

Sun Chili!Soft ASP 3.6.2 Product Documentation 589

The key value being searched for in the Dictionary object. Required.

 JScript Dictionary Object Item Property
Sets or returns an item for a specified key in a Dictionary object Read/write.

Syntax: JScript Dictionary Object Item Property
object.Item(key)[= newitem]

object

The name of a Dictionary object. Required.

key

Index associated with the item being retrieved or added. Required.

newitem

If provided, newitem is the new value associated with the specified key. Optional.

Remarks: JScript Dictionary Object Item Property
If key is not found when changing an item, a new key is created with the specified newitem. If key
is not found when attempting to return an existing item, a new key is created and its
corresponding item is left empty.

 JScript Dictionary Object Items Method
Returns an array containing all the items in a Dictionary object.

Syntax: JScript Dictionary Object Items Method
object.Items()

Arguments: JScript Dictionary Object Items Method
object

The name of a Dictionary object.

Remarks: JScript Dictionary Object Items Method
The following code illustrates use of the Items method:

var a, d, i, s; // Create some variables.

d = new ActiveXObject("Scripting.Dictionary");

d.Add ("a", "Athens"); // Add some keys and items

d.Add ("b", "Belgrade");

d.Add ("c", "Cairo");

a = (new VBArray(d.Items())).toArray(); // Get the items.

Sun Chili!Soft ASP 3.6.2 Product Documentation 590

s = "";

for (i in a) //Iterate the dictionary.

{

s += a[i] + "
";

}

document.write(s); // Print item.

 JScript Dictionary Object Key Property
Sets a key in a Dictionary object.

Syntax: JScript Dictionary Object Key Property
object.Key(key) = newkey

object

The name of a Dictionary object. Required.

key

The key value being changed. Required.

newkey

A new value that replaces the specified key. Required.

Remarks: JScript Dictionary Object Key Property
If key is not found when changing a key, a new key is created and its associated item is left empty.

 JScript Dictionary Object Keys Method
Returns an array containing all existing keys in a Dictionary object.

Syntax: JScript Dictionary Object Keys Method
object.Keys()

Arguments: JScript Dictionary Object Keys Method
object

The name of a Dictionary object.

Remarks: JScript Dictionary Object Keys Method
The following code illustrates use of the Keys method:

var a, d, i, s; // Create some variables.

d = new ActiveXObject("Scripting.Dictionary");

d.Add ("a", "Athens"); // Add some keys and items

Sun Chili!Soft ASP 3.6.2 Product Documentation 591

d.Add ("b", "Belgrade");

d.Add ("c", "Cairo");

a = (new VBArray(d.Keys())).toArray(); // Get the keys.

s = "";

for (i in a) //Iterate the dictionary.

{

s += a[i] + " - " + d(a[i]) + "
";

}

document.write(s); // Print item.

 JScript Dictionary Object Remove Method
Removes a key, item pair from a Dictionary object.

Syntax: JScript Dictionary Object Remove Method
object.Remove(key)

Arguments: JScript Dictionary Object Remove Method
object

The name of a Dictionary object. Required.

key

The key associated with the key, item pair you want to remove from the Dictionary object.
Required.

Remarks: JScript Dictionary Object Remove Method
An error occurs if the specified key, item pair does not exist.

The following code illustrates use of the Remove method:

var a, d, i, s; // Create some variables.

d = new ActiveXObject("Scripting.Dictionary");

d.Add ("a", "Athens"); // Add some keys and items

d.Add ("b", "Belgrade");

d.Add ("c", "Cairo");

...

d.Remove("b"); // Remove second pair.

 JScript Dictionary Object RemoveAll Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 592

The RemoveAll method removes all key, item pairs from a Dictionary object.

Applies To: JScript Dictionary Object RemoveAll Method
Dictionary

Syntax: JScript Dictionary Object RemoveAll Method
object.RemoveAll()

Arguments: JScript Dictionary Object RemoveAll Method
object

The name of a Dictionary object.

Remarks: JScript Dictionary Object RemoveAll Method
The following code illustrates use of the RemoveAll method:

var a, d, i; // Create some variables.

d = new ActiveXObject("Scripting.Dictionary");

d.Add ("a", "Athens"); // Add some keys and items.

d.Add ("b", "Belgrade");

d.Add ("c", "Cairo");

...

d.RemoveAll(); // Clear the dictionary.

JScript Drive Object

 JScript Drive Object
The Drive object provides access to the properties of a particular disk drive or network share.

Properties: JScript Drive Object
JScript Drive Object AvailableSpace
Property

The amount of space available to a user. This
property is not currently supported on UNIX.

JScript Drive Object DriveLetter Property The drive letter of a physical drive or network
share. This property is not currently supported
on UNIX.

JScript Drive Object DriveType Property The type of a drive. This property is not
currently supported on UNIX.

JScript Drive Object FileSystem Property The type of file system in use on the drive. This
property is not currently supported on UNIX.

JScript Drive Object FreeSpace Property The amount of free space available to a user on
a specified drive or network share. This

Sun Chili!Soft ASP 3.6.2 Product Documentation 593

property is currently not supported on UNIX.

JScript Drive Object IsReady Property Boolean value indicating the status of a drive.

JScript Drive Object Path Property The file system path to the drive.

JScript Drive Object RootFolder Property A Folder object representing the root folder of
a drive.

JScript Drive Object SerialNumber Property The decimal serial number used to uniquely
identify a disk volume. This property is not
currently supported on UNIX.

JScript Drive Object ShareName Property The network share name for the drive. This
property is not currently supported on UNIX.

JScript Drive Object TotalSize Property The total size, in bytes, of a drive or network
share. This property is not currently supported
on UNIX.

JScript Drive Object VolumeName Property The volume name of a drive or network share.
This property is not currently supported on
UNIX.

Remarks: JScript Drive Object
The following code illustrates the use of the Drive object to access drive properties:

function ShowUsedSpace(drvPath)

{

var fs, d, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

d = fs.GetDrive(fs.GetDriveName(drvPath));

s = "Space used on drive " + drvPath + " - " ;

s += d.RootFolder.Size/1024 + " Kbytes";

Response.Write(s);

}

 JScript Drive Object AvailableSpace Property
Returns the amount of space available to a user on the specified drive or network share. This
property is not available under UNIX.

Syntax: JScript Drive Object AvailableSpace Property
object.AvailableSpace

Arguments: JScript Drive Object AvailableSpace Property
object

Sun Chili!Soft ASP 3.6.2 Product Documentation 594

A Drive object.

Remarks: JScript Drive Object AvailableSpace Property
The value returned by the AvailableSpace property is typically the same as that returned by the
FreeSpace property. Differences may occur between the two for computer systems that support
quotas.

The following code illustrates the use of the AvailableSpace property:

function ShowAvailableSpace(drvPath)

{

var fs, d, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

d = fs.GetDrive(fs.GetDriveName(drvPath));

s = "Drive " + drvPath.toUpperCase + " - ";

s += d.VolumeName + "
";

s += "Available Space: " + d.AvailableSpace/1024 + " Kbytes";

Response.Write(s);

}

 JScript Drive Object DriveLetter Property
Returns the drive letter of a physical local drive or a network share. This property is not available
under UNIX. Read-only.

Syntax: JScript Drive Object DriveLetter Property
object.DriveLetter

Arguments: JScript Drive Object DriveLetter Property
object

A Drive object.

Remarks: JScript Drive Object DriveLetter Property
The DriveLetter property returns a zero-length string ("") if the specified drive is not associated
with a drive letter, for example, a network share that has not been mapped to a drive letter.

The following code illustrates the use of the DriveLetter property:

function ShowDriveLetter(drvPath)

{

var fs, d, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

Sun Chili!Soft ASP 3.6.2 Product Documentation 595

d = fs.GetDrive(fs.GetDriveName(drvPath));

s = "Drive " + d.DriveLetter.toUpperCase() + ": - ";

s += d.VolumeName + "
";

s += "Available Space: " + d.AvailableSpace/1024 + " Kbytes";

Response.Write(s);

}

 JScript Drive Object DriveType Property
Returns a value indicating the type of a specified drive. This property is not available under
UNIX.

Syntax: JScript Drive Object DriveType Property
object.DriveType

Arguments: JScript Drive Object DriveType Property
object

A Drive object.

Remarks: JScript Drive Object DriveType Property
The following code illustrates the use of the DriveType property:

function ShowDriveType(drvpath)

{

var fs, d, s, t;

fs = new ActiveXObject("Scripting.FileSystemObject");

d = fs.GetDrive(drvpath);

switch (d.DriveType)

{

case 0: t = "Unknown"; break;

case 1: t = "Removable"; break;

case 2: t = "Fixed"; break;

case 3: t = "Network"; break;

case 4: t = "CD-ROM"; break;

case 5: t = "RAM Disk"; break;

}

s = "Drive " + d.DriveLetter + ": - " + t;

Sun Chili!Soft ASP 3.6.2 Product Documentation 596

Response.Write(s);

}

 JScript Drive Object FileSystem Property
Returns the type of file system in use for the specified drive. This property is not available under
UNIX.

Syntax: JScript Drive Object FileSystem Property
object.FileSystem

Arguments: JScript Drive Object FileSystem Property
object

A Drive object.

Remarks: JScript Drive Object FileSystem Property
Available return types include FAT, NTFS, and CDFS.

The following code illustrates the use of the FileSystem property:

function ShowFileSystemType(drvPath)

{

var fs,d, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

d = fs.GetDrive(drvPath);

s = d.FileSystem;

Response.Write(s);

}

 JScript Drive Object FreeSpace Property
Returns the amount of free space available to a user on the specified drive or network share. This
property is not available under UNIX. Read-only.

Syntax: JScript Drive Object FreeSpace Property
object.FreeSpace

Arguments: JScript Drive Object FreeSpace Property
object

A Drive object.

Remarks: JScript Drive Object FreeSpace Property

Sun Chili!Soft ASP 3.6.2 Product Documentation 597

The value returned by the FreeSpace property is typically the same as that returned by the
AvailableSpace property. Differences may occur between the two for computer systems that
support quotas.

The following code illustrates the use of the FreeSpace property:

function ShowFreeSpace(drvPath)

{

var fs, d, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

d = fs.GetDrive(fs.GetDriveName(drvPath));

s = "Drive " + drvPath.toUpperCase() + " - ";

s += d.VolumeName + "
";

s += "Free Space: " + d.FreeSpace/1024 + " Kbytes";

Response.Write(s);

}

 JScript Drive Object IsReady Property
Returns True if the specified drive is ready; False if it is not.

Syntax: JScript Drive Object IsReady Property
object.IsReady

Arguments: JScript Drive Object IsReady Property
object

A Drive object.

Remarks: JScript Drive Object IsReady Property
For removable-media drives and CD-ROM drives on Windows systems, IsReady returns True
only when the appropriate media is inserted and ready for access. Under UNIX, IsReady always
returns True.

The following code illustrates the use of the IsReady property:

function ShowDriveInfo(drvpath)

{

var fs, d, s, t;

fs = new ActiveXObject("Scripting.FileSystemObject")

d = fs.GetDrive(drvpath)

switch (d.DriveType)

Sun Chili!Soft ASP 3.6.2 Product Documentation 598

{

case 0: t = "Unknown"; break;

case 1: t = "Removable"; break;

case 2: t = "Fixed"; break;

case 3: t = "Network"; break;

case 4: t = "CD-ROM"; break;

case 5: t = "RAM Disk"; break;

}

s = "Drive " + d.DriveLetter + ": - " + t;

if (d.IsReady)

{

s += "
" + "Drive is Ready.";

}

else

{

s += "
" + "Drive is not Ready.";

}

Response.Write(s);

}

 JScript Drive Object Path Property
Returns the path for a specified drive.

Syntax: JScript Drive Object Path Property
object.Path

Arguments: JScript Drive Object Path Property
object

A Drive object.

Remarks: JScript Drive Object Path Property
For drive letters, the root drive is not included. For example, the path for the C drive is C:, not
C:\.

 JScript Drive Object RootFolder Property

Sun Chili!Soft ASP 3.6.2 Product Documentation 599

Returns a Folder object representing the root folder of a specified drive. Read-only.

Syntax: JScript Drive Object RootFolder Property
object.RootFolder

Arguments: JScript Drive Object RootFolder Property
object

A Drive object.

Remarks: JScript Drive Object RootFolder Property
All the files and folders contained on the drive can be accessed using the returned Folder object.

 JScript Drive Object SerialNumber Property
Returns the decimal serial number used to uniquely identify a disk volume. This property is not
available under UNIX.

Syntax: JScript Drive Object SerialNumber Property
object.SerialNumber

Arguments: JScript Drive Object SerialNumber Property
object

A Drive object.

Remarks: JScript Drive Object SerialNumber Property
You can use the SerialNumber property to ensure that the correct disk is inserted in a drive with
removable media.

The following code illustrates the use of the SerialNumber property:

function ShowDriveInfo(drvpath)

{

var fs, d, s, t;

fs = new ActiveXObject("Scripting.FileSystemObject");

d = fs.GetDrive(fs.GetDriveName(fs.GetAbsolutepathname(drvpath)));

switch (d.DriveType)

{

case 0: t = "Unknown"; break;

case 1: t = "Removable"; break;

case 2: t = "Fixed"; break;

case 3: t = "Network"; break;

Sun Chili!Soft ASP 3.6.2 Product Documentation 600

case 4: t = "CD-ROM"; break;

case 5: t = "RAM Disk"; break;

}

s = "Drive " + d.DriveLetter + ": - " + t;

s += "
" + "SN: " + d.SerialNumber;

Response.Write(s);

}

 JScript Drive Object ShareName Property
Returns the network share name for a specified drive. This property is not available under UNIX.

Syntax: JScript Drive Object ShareName Property
object.ShareName

Arguments: JScript Drive Object ShareName Property
object

A Drive object.

Remarks: JScript Drive Object ShareName Property
If object is not a network drive, the ShareName property returns a zero-length string ("").

The following code illustrates the use of the ShareName property:

function ShowDriveInfo(drvpath)

{

var fs, d, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

d = fs.GetDrive(fs.GetDriveName(fs.GetAbsolutepathname(drvpath)));

s = "Drive " + d.DriveLetter + ": - " + d.ShareName;

Response.Write(s);

}

 JScript Drive Object TotalSize Property
Returns the total space, in bytes, of a drive or network share. This property is not available under
UNIX.

Syntax: JScript Drive Object TotalSize Property
object.TotalSize

Sun Chili!Soft ASP 3.6.2 Product Documentation 601

Arguments: JScript Drive Object TotalSize Property
object

A Drive object.

Remarks: JScript Drive Object TotalSize Property
The following code illustrates the use of the TotalSize property:

function SpaceReport(drvPath)

{

var fs, d, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

d = fs.GetDrive(fs.GetDriveName(drvPath));

s = "Drive " + drvPath + " - ";

s += d.VolumeName + "
";

s += "Total Space: "+ d.TotalSize/1024 + " Kbytes
";

s += "Free Space: " + d.FreeSpace/1024 + " Kbytes";

Response.Write(s);

}

 JScript Drive Object VolumeName Property
Sets or returns the volume name of the specified drive. This property is not available under
UNIX. Read/write.

Syntax: JScript Drive Object VolumeName Property
object.VolumeName [= newname]

Arguments: JScript Drive Object VolumeName Property
object

Required. Always the name of a Drive object.

newname

The new name of the specified object. Optional.

Remarks: JScript Drive Object VolumeName Property
The following code illustrates the use of the VolumeName property:

function SpaceReport(drvPath)

{

var fs, d, s;

Sun Chili!Soft ASP 3.6.2 Product Documentation 602

fs = new ActiveXObject("Scripting.FileSystemObject");

d = fs.GetDrive(fs.GetDriveName(drvPath));

s = "Drive " + drvPath + " - ";

s += d.VolumeName + "
";

s += "Total Space: "+ d.TotalSize/1024 + " Kbytes
";

s += "Free Space: " + d.FreeSpace/1024 + " Kbytes";

Response.Write(s);

}

JScript Enumerator Object

 JScript Enumerator Object
The Enumerator object provides a way to enumerate items in a collection.

Methods: JScript Enumerator Object
JScript Enumerator Object AtEnd Method Returns a Boolean value indicating if an

Enumerator object is at the end of a
collection.

JScript Enumerator Object item Method Returns the current item in the collection.

JScript Enumerator Object moveFirst
Method

Resets the current item pointer to the first item
in the collection.

JScript Enumerator Object moveNext
Method

Moves the current item pointer to the next item
in the collection.

Syntax: JScript Enumerator Object
new Enumerator(collection)

Arguments: JScript Enumerator Object
collection

Any collection object.

Remarks: JScript Enumerator Object
Collections differ from arrays in that the members of a collection are not directly accessible.
Instead of using indices, as you would with arrays, you can only move the current item pointer to
the first or next element of a collection.

The Enumerator object provides a way to access any member of a collection and behaves
similarly to the for…in statement in JScript.

The following code shows the usage of the Enumerator object:

Sun Chili!Soft ASP 3.6.2 Product Documentation 603

function ShowDriveList()

{

var fs, s, n, e, x;

fs = new ActiveXObject("Scripting.FileSystemObject");

e = new Enumerator(fs.Drives);

s = "";

for (;!e.atEnd();e.moveNext())

{

x = e.item();

s = s + x.DriveLetter;

s += " - ";

if (x.DriveType == 3)

n = x.ShareName;

else if (x.IsReady)

n = x.VolumeName;

else

n = "[Drive not ready]";

s += n + "
";

}

Response.Write(s);

}

 JScript Enumerator Object AtEnd Method
Returns a Boolean value indicating if the enumerator is at the end of the collection.

Syntax: JScript Enumerator Object AtEnd Method
myEnum.atEnd()

Arguments: JScript Enumerator Object AtEnd Method
myEnum

Any Enumerator object.

Return Value: JScript Enumerator Object AtEnd Method
The atEnd method returns True if the current item is the last one in the collection, the collection
is empty, or the current item is undefined. Otherwise, it returns False.

Sun Chili!Soft ASP 3.6.2 Product Documentation 604

 JScript Enumerator Object item Method
Returns the current item in the collection.

Syntax: JScript Enumerator Object item Method
myEnum.item()

Parameters[0]: JScript Enumerator Object item Method
myEnum

Any Enumerator object.

Return Value: JScript Enumerator Object item Method
The item method returns the current item. If the collection is empty or if the current item is
undefined, item returns undefined.

 JScript Enumerator Object moveFirst Method
Resets the current item in the collection to the first item.

Syntax: JScript Enumerator Object moveFirst Method
myEnum.moveFirst()

Arguments: JScript Enumerator Object moveFirst Method
myEnum

Any Enumerator object.

Remarks: JScript Enumerator Object moveFirst Method
If there are no items in the collection, the current item is set to undefined.

 JScript Enumerator Object moveNext Method
Moves the current item to the next item in the collection.

Syntax: JScript Enumerator Object moveNext Method
myEnum.moveNext()

Arguments: JScript Enumerator Object moveNext Method
myEnum

Any Enumerator object.

Remarks: JScript Enumerator Object moveNext Method
If the enumerator is at the end of the collection or the collection is empty, the current item is set
to undefined.

Sun Chili!Soft ASP 3.6.2 Product Documentation 605

JScript File Object

 JScript File Object
The File object provides access to all the properties of a file.

Methods: JScript File Object
JScript File Object OpenAsTextStream
Method

Opens a file and returns a TextStream object.

JScript File Object Copy Method Copies a file from one location to another.

JScript File Object Delete Method Deletes a file.

JScript File Object Move Method Moves a file from one location to another.

Properties: JScript File Object
JScript File Object Attributes Property The file system attributes of a file.

JScript File Object DateCreated Property The date and time that a file was created.

JScript File Object DateLastAccessed
Property

The date and time that a file was last accessed.

JScript File Object DateLastModified
Property

The date and time that a file was last modified.

JScript File Object Drive Property The drive letter of the drive on which the file
resides. On UNIX, this property is always ‘/’.

JScript File Object Name Property The name of a file.

JScript File Object ParentFolder Property The Folder object containing the file.

JScript File Object Path Property The file system path for the file.

JScript File Object ShortName Property The short name used by programs that require
8.3 file names. This property is not currently
supported on UNIX.

JScript File Object ShortPath Property The short path used by programs that require
8.3 file names. This property is not currently
supported on UNIX.

JScript File Object Size Property The size, in bytes, of a file.

JScript File Object Type Property Information about the type of a file. This
property is not currently supported on UNIX.

Remarks: JScript File Object
The following code illustrates how to obtain a File object and how to view one of its properties.

function ShowFileInfo(filespec)

{

Sun Chili!Soft ASP 3.6.2 Product Documentation 606

var fs, file, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

file = fs.GetFile(filespec);

s = file.DateCreated;

Response.Write(s);

}

 JScript File Object Attributes Property
Sets or returns the file system attributes of files. Read/write or read-only, depending on the
attribute.

Note
This property depends on the underlying operating system for its behavior. If the OS file
system does not support the file attribute requested, an error will be returned.

Syntax: JScript File Object Attributes Property
object.Attributes [= newattributes]

Arguments: JScript File Object Attributes Property
object

The name of a File object. Required.

newattributes

If provided, newattributes is the new value for the attributes of the specified object. Optional.

Settings: JScript File Object Attributes Property
The newattributes argument can have any of the following values or any logical combination of
the following values:

Constant Value Description

Normal 0 Normal file. No attributes are set.

ReadOnly 1 Read-only file. Attribute is read/write.

Hidden 2 Hidden file. Attribute is read/write.

System 4 System file. Attribute is read/write.

Volume 8 Disk drive volume label. Attribute is read-only.

Directory 16 Folder or directory. Attribute is read-only.

Archive 32 File has changed since last backup. Attribute is
read/write.

Sun Chili!Soft ASP 3.6.2 Product Documentation 607

Alias 64 Link or shortcut. Attribute is read-only.

Compressed 128 Compressed file. Attribute is read-only.

Remarks: JScript File Object Attributes Property
The following code illustrates the use of the Attributes property with a file:

function ToggleArchiveBit(filespec)

{

var fs, f, r, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFile(filespec)

if (f.attributes && 32)

{

f.attributes = f.attributes - 32;

s = "Archive bit is cleared.";

}

else

{

f.attributes = f.attributes + 32;

s = "Archive bit is set.";

}

return s;

}

 JScript File Object Copy Method
Copies a specified file from one location to another.

Syntax: JScript File Object Copy Method
object.Copy(destination[, overwrite]);

Arguments: JScript File Object Copy Method
object

The name of a File object. Required.

destination

The destination where the file is to be copied. Wildcard characters are not allowed. Required.

overwrite

Sun Chili!Soft ASP 3.6.2 Product Documentation 608

A Boolean value that is True (default) if existing files are to be overwritten; False if they are not.
Optional.

Remarks: JScript File Object Copy Method
The results of the Copy method on a File are identical to operations performed using CopyFile
where the file referred to by object is passed as an argument. You should note, however, that the
alternative method is capable of copying multiple files.

 JScript File Object DateCreated Property
Returns the date and time that the specified file was created. Read-only.

Syntax: JScript File Object DateCreated Property
object.DateCreated

Arguments: JScript File Object DateCreated Property
object

A File object.

Remarks: JScript File Object DateCreated Property
The following code illustrates the use of the DateCreated property with a file:

function ShowFileInfo(filespec)

{

var fs, f, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFile(filespec);

s = "Created: " + f.DateCreated;

Response.Write(s);

}

 JScript File Object DateLastAccessed Property
Returns the date and time that the specified file was last accessed. Read-only.

Syntax: JScript File Object DateLastAccessed Property
object.DateLastAccessed

Arguments: JScript File Object DateLastAccessed Property
object

A File object.

Sun Chili!Soft ASP 3.6.2 Product Documentation 609

Remarks: JScript File Object DateLastAccessed Property
The following code illustrates the use of the DateLastAccessed property with a file:

function ShowFileAccessInfo(filespec)

{

var fs, f, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFile(filespec);

s = filespec.toUpperCase() + "
";

s += "Created: " + f.DateCreated + "
";

s += "Last Accessed: " + f.DateLastAccessed + "
";

s += "Last Modified: " + f.DateLastModified;

Response.Write(s);

}

Note
This method depends on the underlying operating system for its behavior. If the operating
system does not support providing time information, none will be returned.

 JScript File Object DateLastModified Property
Returns the date and time that the specified file was last modified. Read-only.

Syntax: JScript File Object DateLastModified Property
object.DateLastModified

Arguments: JScript File Object DateLastModified Property
object

A File object.

Remarks: JScript File Object DateLastModified Property
The following code illustrates the use of the DateLastModified property with a file:

function ShowFileAccessInfo(filespec)

{

var fs, f, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFile(filespec);

s = filespec.toUpperCase() + "
";

Sun Chili!Soft ASP 3.6.2 Product Documentation 610

s += "Created: " + f.DateCreated + "
";

s += "Last Accessed: " + f.DateLastAccessed + "
";

s += "Last Modified: " + f.DateLastModified;

Response.Write(s);

}

 JScript File Object Delete Method
Deletes a specified file or folder.

Syntax: JScript File Object Delete Method
object.Delete(force);

Arguments: JScript File Object Delete Method
object

Required. Always the name of a File object.

force

Optional. Boolean value that is True if files with the read-only attribute set are to be deleted,
False (default) if they are not.

Remarks: JScript File Object Delete Method
An error occurs if the specified file does not exist.

The results of the Delete method on a File are identical to operations performed using DeleteFile.

 JScript File Object Drive Property
Returns the drive letter of the drive on which the specified file resides. Read-only.

Syntax: JScript File Object Drive Property
object.Drive

Arguments: JScript File Object Drive Property
object

A File object.

Remarks: JScript File Object Drive Property
On UNIX systems, the Drive property is always "/".

The following code illustrates the use of the Drive property on Windows systems:

function ShowFileAccessInfo(filespec)

{

Sun Chili!Soft ASP 3.6.2 Product Documentation 611

var fs, f, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFile(filespec);

s = f.Name + " on Drive " + f.Drive + "
";

s += "Created: " + f.DateCreated + "
";

s += "Last Accessed: " + f.DateLastAccessed + "
";

s += "Last Modified: " + f.DateLastModified;

Response.Write(s);

}

 JScript File Object Move Method
Moves a specified file from one location to another.

Syntax: JScript File Object Move Method
object.Move(destination);

Arguments: JScript File Object Move Method
object

The name of a File object. Required.

destination

Destination where the file is to be moved. Wildcard characters are not allowed. Required.

Remarks: JScript File Object Move Method
The results of the Move method on a File are identical to operations performed using MoveFile.
You should note, however, that the alternative method is capable of moving multiple files.

 JScript File Object Name Property
Sets or returns the name of a specified file. Read/write.

Syntax: JScript File Object Name Property
object.Name [= newname]

Arguments: JScript File Object Name Property
object

The name of a File object. Required.

newname

The new name of the specified object, if provided. Optional.

Sun Chili!Soft ASP 3.6.2 Product Documentation 612

Remarks: JScript File Object Name Property
The following code illustrates the use of the Name property:

function ShowFileAccessInfo(filespec)

{

var fs, f, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFile(filespec);

s = f.Name + " on Drive " + f.Drive + "
";

s += "Created: " + f.DateCreated + "
";

s += "Last Accessed: " + f.DateLastAccessed + "
";

s += "Last Modified: " + f.DateLastModified;

Response.Write(s);

}

 JScript File Object OpenAsTextStream Method
Opens a specified file and returns a TextStream object that can be used to read from, write to, or
append to the file.

Syntax: JScript File Object OpenAsTextStream Method
object.OpenAsTextStream([iomode, [format]])

Arguments: JScript File Object OpenAsTextStream Method
object

The name of a File object. Required.

iomode

Indicates input/output mode. Can be one of three constants: ForReading, ForWriting, or
ForAppending. Optional.

format

One of three Tristate values used to indicate the format of the opened file. If omitted, the file is
opened as ASCII. Optional.

Settings: JScript File Object OpenAsTextStream Method
The iomode argument can have any of the following settings:

Constant Value Description

ForReading 1 Open a file for reading only. You can't write
to this file.

Sun Chili!Soft ASP 3.6.2 Product Documentation 613

ForWriting 2 Open a file for writing. If a file with the
same name exists, its previous contents are
overwritten.

ForAppending 8 Open a file and write to the end of the file.

The format argument can have any of the following settings:

Constant Value Description

TristateUseDefault -2 Opens the file using the system default.

TristateTrue -1 Opens the file as Unicode.

TristateFalse 0 Opens the file as ASCII.

Remarks: JScript File Object OpenAsTextStream Method
The OpenAsTextStream method provides the same functionality as the OpenTextFile method
of the FileSystemObject. In addition, the OpenAsTextStream method can be used to write to a
file.

The following code illustrates the use of the OpenAsTextStream method:

function TextStreamTest()

{

var ForReading = 1, ForWriting = 2, ForAppending = 3;

var TristateUseDefault = -2, TristateTrue = -1, TristateFalse = 0;

var fs, f, ts, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

fs.CreateTextFile("test1.txt"); // Create a file

f = fs.GetFile("test1.txt");

ts = f.OpenAsTextStream(ForWriting, TristateUseDefault);

ts.Write("Hello World");

ts.Close();

ts = f.OpenAsTextStream(ForReading, TristateUseDefault);

s = ts.ReadLine();

ts.Close();

Response.Write(s);

}

 JScript File Object ParentFolder Property
Returns the folder object for the parent of the specified file. Read-only.

Sun Chili!Soft ASP 3.6.2 Product Documentation 614

Syntax: JScript File Object ParentFolder Property
object.ParentFolder

Arguments: JScript File Object ParentFolder Property
object

A File object.

Remarks: JScript File Object ParentFolder Property
The following code illustrates the use of the ParentFolder property with a file:

function ShowFileAccessInfo(filespec)

{

var fs, f, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFile(filespec);

s = f.Name + " in " + f.ParentFolder + "
";

s += "Created: " + f.DateCreated + "
";

s += "Last Accessed: " + f.DateLastAccessed + "
";

s += "Last Modified: " + f.DateLastModified;

Response.Write(s);

}

 JScript File Object Path Property
Returns the path for a specified file.

Syntax: JScript File Object Path Property
object.Path

Arguments: JScript File Object Path Property
object

A File object.

Remarks: JScript File Object Path Property
The following code illustrates the use of the Path property with a File object:

function ShowFileAccessInfo(filespec)

{

var fs, d, f, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

Sun Chili!Soft ASP 3.6.2 Product Documentation 615

f = fs.GetFile(filespec);

s = f.Path.toUpperCase() + "
";

s += "Created: " + f.DateCreated + "
";

s += "Last Accessed: " + f.DateLastAccessed + "
";

s += "Last Modified: " + f.DateLastModified

Response.Write(s);

}

 JScript File Object ShortName Property
Returns the short name used by programs that require the earlier 8.3 naming convention. This
property is not available under UNIX.

Syntax: JScript File Object ShortName Property
object.ShortName

Arguments: JScript File Object ShortName Property
object

A File object.

Remarks: JScript File Object ShortName Property
The following code illustrates the use of the ShortName property with a File object:

function ShowShortName(filespec)

{

var fs, f, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFile(filespec);

s = "The short name for " + "" + f.Name;

s += "" + "
";

s += "is: " + "" + f.ShortName + "";

Response.Write(s);

}

 JScript File Object ShortPath Property
Returns the short path used by programs that require the earlier 8.3 file naming convention. This
property is not available under UNIX.

Sun Chili!Soft ASP 3.6.2 Product Documentation 616

Syntax: JScript File Object ShortPath Property
object.ShortPath

object

A File object.

Remarks: JScript File Object ShortPath Property
The following code illustrates the use of the ShortPath property with a File object:

function ShowShortPath(filespec);

{

var fs, f, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFile(filespec);

s = "The short path for " + "" + f.Name;

s += "" + "
";

s += "is: " + "" + f.ShortPath + "";

Response.Write(s);

}

 JScript File Object Size Property
The size, in bytes, of the specified file

Syntax: JScript File Object Size Property
object.Size

Arguments: JScript File Object Size Property
object

A File object.

Remarks: JScript File Object Size Property
The following code illustrates the use of the Size property with a File object:

function ShowFolderSize(filespec)

{

var fs, f, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFile(filespec);

s = f.Name + " uses " + f.size + " bytes.";

Sun Chili!Soft ASP 3.6.2 Product Documentation 617

Response.Write(s);

}

 JScript File Object Type Property
Returns information about the type of a file. For example, for files ending in .TXT, "Text
Document" is returned. This property is not available under UNIX.

Syntax: JScript File Object Type Property
object.Type

Arguments: JScript File Object Type Property
object

A File object.

Remarks: JScript File Object Type Property
The following code illustrates the use of the Type property to return a file type.

function ShowFileType(filespec)

{

var fs, f, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

if (fs.FolderExists(filespec))

f = fs.GetFolder(filespec);

else if (fs.FileExists(filespec))

f = fs.GetFile(filespec);

else

s = "File or Folder does not exist.";

s = f.Name + " is a " + f.Type;

Response.Write(s);

}

JScript FileSystemObject Object

 JScript FileSystemObject Object
The FileSystemObject provides access to a computer's file system.

Methods: JScript FileSystemObject Object

Sun Chili!Soft ASP 3.6.2 Product Documentation 618

JScript FileSystemObject Object BuildPath
Method

Appends a name to an existing path.

JScript FileSystemObject Object CopyFile
Method

Copies one or more files from one location to
another.

JScript FileSystemObject Object CopyFolder
Method

Copies one or more folders and their contents
from one location to another.

JScript FileSystemObject Object CreateFolder
Method

Creates a folder

JScript FileSystemObject Object CreateTextFile
Method

Creates a text file with a specified name and
returns a TextStream object.

JScript FileSystemObject Object DeleteFile
Method

Deletes a specified file.

JScript FileSystemObject Object DeleteFolder
Method

Deletes a specified folder and its contents.

JScript FileSystemObject Object DriveExists
Method

Returns a Boolean value indicating the
existence of a drive.

JScript FileSystemObject Object FileExists
Method

Returns a Boolean value indicating the
existence of a file.

JScript FileSystemObject Object FolderExists
Method

Returns a Boolean value indicating the
existence of a folder.

JScript FileSystemObject Object
GetAbsolutepathname Method

Returns a complete and unambiguous path
from a provided path specification.

JScript FileSystemObject Object GetBaseName
Method

Returns a string containing the base name of
the last component, less any extension, in a
path.

JScript FileSystemObject Object GetDrive
Method

Returns a Drive object corresponding to the
drive in a specified path.

JScript FileSystemObject Object GetDriveName
Method

Returns a string containing the name of a drive
for a specified path.

JScript FileSystemObject Object
GetExtensionName Method

Returns a string containing the extension name
for the last component in a path.

JScript FileSystemObject Object GetFile Method Returns a File object corresponding to the file
in a specified path.

JScript FileSystemObject Object GetFileName
Method

Returns the last component of the specified
path that is not part of the drive specification.

JScript FileSystemObject Object GetFolder
Method

Returns a Folder object corresponding to the
folder in a specified path.

JScript FileSystemObject Object Returns a string containing the name of the

Sun Chili!Soft ASP 3.6.2 Product Documentation 619

GetParentFolderName Method parent folder of the last component in a
specified path.

JScript FileSystemObject Object
GetSpecialFolder Method

Returns the special folder specified.

JScript FileSystemObject Object GetTempName
Method

Returns a randomly generated temporary file or
folder name.

JScript FileSystemObject Object MoveFile
Method

Moves one or more files from one location to
another.

JScript FileSystemObject Object MoveFolder
Method

Moves one or more folders and their contents
from one location to another.

JScript FileSystemObject Object OpenTextFile
Method

Opens a specified file and returns a
TextStream object.

Properties: JScript FileSystemObject Object
JScript FileSystemObject Object Drives Property A collection of all Drive objects available on

the local machine. See the Drives collection
section.

Note
Collections returned by FileSystemObject method calls reflect the state of the file
system when the collection was created. Changes to the file system after creation are not
reflected in the collection. If the file system might be changed during the lifetime of the
collection object, the method returning the collection should be called again to ensure that
the contents are current.

Remarks: JScript FileSystemObject Object
The following code illustrates how the FileSystemObject is used to return a TextStream object
that can be read from or written to:

var fs = new ActiveXObject("Scripting.FileSystemObject");

var a = fs.CreateTextFile("c:\testfile.txt", true);

a.WriteLine("This is a test.");

a.Close();

 JScript FileSystemObject Object BuildPath Method
Appends a name to an existing path.

Syntax: JScript FileSystemObject Object BuildPath Method
object.BuildPath(path, name)

Sun Chili!Soft ASP 3.6.2 Product Documentation 620

Arguments: JScript FileSystemObject Object BuildPath Method
object

Always the name of a FileSystemObject object. Required.

path

Existing path to which name is appended. Path can be absolute or relative and need not specify an
existing folder. Required.

name

Name being appended to the existing path. Required.

Remarks: JScript FileSystemObject Object BuildPath Method
The BuildPath method inserts an additional path separator between the existing path and the
name, only if necessary.

 JScript FileSystemObject Object CopyFile Method
Copies one or more files from one location to another.

Syntax: JScript FileSystemObject Object CopyFile Method
object.CopyFile (source, destination[, overwrite])

Arguments: JScript FileSystemObject Object CopyFile Method
object

The name of a FileSystemObject object. Required.

source

A character string file specification, which can include wildcard characters, for one or more files
to be copied. Required.

destination

A character string destination where the file or files from source are to be copied. Wildcard
characters are not allowed. Required.

overwrite

A Boolean value that indicates if existing files are to be overwritten. If true, files are overwritten;
if false, they are not. The default is true.

Note

CopyFile will fail if destination has the read-only attribute set, regardless of the value of
overwrite. Optional.

Remarks: JScript FileSystemObject Object CopyFile Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 621

Wildcard characters can only be used in the last path component of the source argument. For
example, you can use:

fs = new ActiveXObject("Scripting.FileSystemObject");

fs.CopyFile ("c:\\mydocuments\\letters*.doc",

 "c:\\tempfolder\\")

But you can't use:

fs = new ActiveXObject("Scripting.FileSystemObject");

fs.CopyFile ("c:\\mydocuments*\\R1???97.xls",

 "c:\\tempfolder")

If source contains wildcard characters or destination ends with a path separator (\), it is assumed
that destination is an existing folder in which to copy matching files. Otherwise, destination is
assumed to be the name of a file to create. In either case, three things can happen when an
individual file is copied:

� If destination does not exist, source gets copied. This is the usual case.

� If destination is an existing file, an error occurs if overwrite is false. Otherwise, an attempt
is made to copy source over the existing file.

� If destination is a directory, an error occurs.

An error also occurs if a source using wildcard characters doesn't match any files. The CopyFile
method stops on the first error it encounters. No attempt is made to roll back or undo any changes
made before an error occurs.

 JScript FileSystemObject Object CopyFolder Method
Recursively copies a folder from one location to another.

Syntax: JScript FileSystemObject Object CopyFolder Method
object.CopyFolder (source, destination[, overwrite]);

Arguments: JScript FileSystemObject Object CopyFolder Method
object

The name of a FileSystemObject. Required.

source

A character string folder specification, which can include wildcard characters, for one or more
folders to be copied. Required.

destination

A character string destination where the folder and subfolders from source are to be copied.
Wildcard characters are not allowed. Required.

overwrite

Sun Chili!Soft ASP 3.6.2 Product Documentation 622

A Boolean value that indicates if existing folders are to be overwritten. If True, files are
overwritten; if False, they are not. The default is True. Optional.

Remarks: JScript FileSystemObject Object CopyFolder Method
Wildcard characters can only be used in the last path component of the source argument. For
example, you can use:

fs = new ActiveXObject("Scripting.FileSystemObject");

fs.CopyFolder ("c:\\mydocuments\\letters*",

"c:\\tempfolder\\")

But you can't use:

fs = new ActiveXObject("Scripting.FileSystemObject");

fs.CopyFolder ("c:\\mydocuments**", "c:\\tempfolder\\")

If source contains wildcard characters or destination ends with a path separator (\), it is assumed
that destination is an existing folder in which to copy matching folders and subfolders. Otherwise,
destination is assumed to be the name of a folder to create. In either case, four things can happen
when an individual folder is copied:

� If destination does not exist, the source folder and all its contents gets copied. This is the
usual case.

� If destination is an existing file, an error occurs.

� If destination is a directory, an attempt is made to copy the folder and all its contents. If a
file contained in source already exists in destination, an error occurs if overwrite is false.
Otherwise, it will attempt to copy the file over the existing file.

� If destination is a read-only directory, an error occurs if an attempt is made to copy an
existing read-only file into that directory and overwrite is false.

An error also occurs if a source using wildcard characters doesn't match any folders.

The CopyFolder method stops on the first error it encounters. No attempt is made to roll back
any changes made before an error occurs.

 JScript FileSystemObject Object CreateFolder Method
Creates a folder.

Syntax: JScript FileSystemObject Object CreateFolder Method
object.CreateFolder(foldername)

Arguments: JScript FileSystemObject Object CreateFolder Method
object

The name of a FileSystemObject object. Required.

foldername

Sun Chili!Soft ASP 3.6.2 Product Documentation 623

Required. String expression that identifies the folder to create.

Remarks: JScript FileSystemObject Object CreateFolder Method
An error occurs if the specified folder already exists.

The following code illustrates how to use the CreateFolder method to create a folder:

var fs = new ActiveXObject("Scripting.FileSystemObject");

var a = fs.CreateFolder("c:\\new folder");

 JScript FileSystemObject Object CreateTextFile Method
Creates a specified file name and returns a TextStream object that can be used to read from or
write to the file.

Syntax: JScript FileSystemObject Object CreateTextFile Method
object.CreateTextFile(filename[, overwrite[, unicode]])

Arguments: JScript FileSystemObject Object CreateTextFile Method
object

The name of a FileSystemObject object. Required.

filename

A String expression that identifies the file to create. Required.

overwrite

A Boolean value that indicates whether you can overwrite an existing file. The value is true if the
file can be overwritten, false if it can't be overwritten. If omitted, existing files are not
overwritten. Optional.

unicode

A Boolean value that indicates whether the file is created as a Unicode or ASCII file. The value
is true if the file is created as a Unicode file, false if it's created as an ASCII file. If omitted, an
ASCII file is assumed. Optional.

Remarks: JScript FileSystemObject Object CreateTextFile Method
The following code illustrates how to use the CreateTextFile method to create and open a text
file:

var fs = new ActiveXObject("Scripting.FileSystemObject");

var a = fs.CreateTextFile("c:\\testfile.txt", true);

a.WriteLine("This is a test.");

a.Close();

If the overwrite argument is False, or is not provided, for a filename that already exists, an error
occurs.

Sun Chili!Soft ASP 3.6.2 Product Documentation 624

 JScript FileSystemObject Object DeleteFile Method
Deletes a specified file.

Syntax: JScript FileSystemObject Object DeleteFile Method
object.DeleteFile (filespec[, force]);

Arguments: JScript FileSystemObject Object DeleteFile Method
object

The name of a FileSystemObject object. Required.

filespec

The name of the file to delete. The filespec can contain wildcard characters in the last path
component. Required.

force

A Boolean value that is true if files with the read-only attribute set are to be deleted; false
(default) if they are not. Optional.

Remarks: JScript FileSystemObject Object DeleteFile Method
An error occurs if no matching files are found. The DeleteFile method stops on the first error it
encounters. No attempt is made to roll back or undo any changes that were made before an error
occurred.

 JScript FileSystemObject Object DeleteFolder Method
Deletes a specified folder and its contents.

Syntax: JScript FileSystemObject Object DeleteFolder Method
object.DeleteFolder (folderspec[, force]);

Arguments: JScript FileSystemObject Object DeleteFolder Method
object

The name of a FileSystemObject object. Required.

folderspec

The name of the folder to delete. The folderspec can contain wildcard characters in the last path
component. Required.

force

A Boolean value that is true if folders with the read-only attribute set are to be deleted; false
(default) if they are not. Optional.

Remarks: JScript FileSystemObject Object DeleteFolder Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 625

The DeleteFolder method does not distinguish between folders that have contents and those that
do not. The specified folder is deleted regardless of whether or not it has contents.

An error occurs if no matching folders are found. The DeleteFolder method stops on the first
error it encounters. No attempt is made to roll back or undo any changes that were made before
an error occurred.

 JScript FileSystemObject Object DriveExists Method
Returns True if the specified drive exists; False if it does not.

Syntax: JScript FileSystemObject Object DriveExists Method
object.DriveExists(drivespec)

Arguments: JScript FileSystemObject Object DriveExists Method
object

Required. Always the name of a FileSystemObject object.

drivespec

Required. A drive letter or a complete path specification.

Remarks: JScript FileSystemObject Object DriveExists Method
For drives with removable media, the DriveExists method returns True even if there are no
media present. Use the IsReady property of the Drive object to determine if a drive is ready.

 JScript FileSystemObject Object Drives Property
Returns a Drives collection consisting of all Drive objects available on the local machine.

Syntax: JScript FileSystemObject Object Drives Property
object.Drives

Arguments: JScript FileSystemObject Object Drives Property
object

A FileSystemObject.

Remarks: JScript FileSystemObject Object Drives Property
Removable-media drives need not have media inserted for them to appear in the Drives
collection.

You can iterate the members of the Drives collection using the Enumerator object and the for
statement:

function ShowDriveList()

{

Sun Chili!Soft ASP 3.6.2 Product Documentation 626

var fs, s, n, e, x;

fs = new ActiveXObject("Scripting.FileSystemObject");

e = new Enumerator(fs.Drives);

s = "";

for (; !e.atEnd(); e.moveNext())

{

x = e.item();

s = s + x.DriveLetter;

s += " - ";

if (x.DriveType == 3)

n = x.ShareName;

else if (x.IsReady)

n = x.VolumeName;

else

n = "[Drive not ready]";

s += n + "
";

}

Response.Write(s);

}

Under UNIX the Drives collection has only one member, "/".

 JScript FileSystemObject Object FileExists Method
Returns True if a specified file exists, False if it does not.

Syntax: JScript FileSystemObject Object FileExists Method
object.FileExists(filespec)

Arguments: JScript FileSystemObject Object FileExists Method
object

The name of a FileSystemObject object. Required.

filespec

The name of the file whose existence is to be determined. A complete path specification (either
absolute or relative) must be provided if the file isn't expected to exist in the current folder.
Required.

Sun Chili!Soft ASP 3.6.2 Product Documentation 627

 JScript FileSystemObject Object FolderExists Method
Returns True if a specified folder exists; False if it does not.

Syntax: JScript FileSystemObject Object FolderExists Method
object.FolderExists(folderspec)

Arguments: JScript FileSystemObject Object FolderExists Method
object

The name of a FileSystemObject object. Required.

folderspec

The name of the folder whose existence is to be determined. A complete path specification (either
absolute or relative) must be provided if the folder isn't expected to exist in the current folder.
Required.

 JScript FileSystemObject Object GetAbsolutepathname[0] Method
Returns a complete and unambiguous path from a provided path specification.

Syntax: JScript FileSystemObject Object GetAbsolutepathname Method
object.GetAbsolutepathname(pathspec)

Arguments: JScript FileSystemObject Object GetAbsolutepathname Method
object

The name of a FileSystemObject object. Required.

pathspec

The path specification to change to a complete and unambiguous path. Required.

Remarks: JScript FileSystemObject Object GetAbsolutepathname Method
A path is complete and unambiguous if it provides a complete reference from the root of the
specified drive. A complete path can only end with a path separator character (\) if it specifies the
root folder of a mapped drive.

Assuming the current directory is c:\mydocuments\reports, the following table illustrates the
behavior of the GetAbsolutepathname method.

pathspec Returned path

"c:" "c:\mydocuments\reports"

"c:.." "c:\mydocuments"

"c:\\\\\\" "c:\"

"c:*.*\\may97" "c:\mydocuments\reports*.*\may97"

"region1" "c:\mydocuments\reports\region1"

Sun Chili!Soft ASP 3.6.2 Product Documentation 628

"c:\\..\\..\\mydocuments" "c:\mydocuments"

 JScript FileSystemObject Object GetBaseName Method
Returns a string containing the base name of the last component, less any file extension, in a path.

Syntax: JScript FileSystemObject Object GetBaseName Method
object.GetBaseName(path)

Arguments: JScript FileSystemObject Object GetBaseName Method
object

The name of a FileSystemObject/ object. Required.

path

The path specification for the component whose base name is to be returned. Required.

Remarks: JScript FileSystemObject Object GetBaseName Method
The GetBaseName method returns a zero-length string ("") if no component matches the path
argument.

Note
The GetBaseName method works only on the provided path string. It does not attempt to
resolve the path, nor does it check for the existence of the specified path.

 JScript FileSystemObject Object GetDrive Method
Returns a Drive object corresponding to the drive in a specified path.

Syntax: JScript FileSystemObject Object GetDrive Method
object.GetDrive (drivespec);

Arguments: JScript FileSystemObject Object GetDrive Method
object

The name of a FileSystemObject object. Required.

drivespec

For Windows, the drivespec argument can be a drive letter (c), a drive letter with a colon
appended (c:), a drive letter with a colon and path separator appended (c:\), or any network share
specification (\\computer2\share1). For UNIX servers the only valid drivespec is "/". Required.

Remarks: JScript FileSystemObject Object GetDrive Method
For network shares, a check is made to ensure that the share exists.

Sun Chili!Soft ASP 3.6.2 Product Documentation 629

An error occurs if drivespec does not conform to one of the accepted forms or does not exist.

To call the GetDrive method on a normal path string, use the following sequence to get a string
that is suitable for use as drivespec:

DriveSpec = GetDriveName(GetAbsolutepathname(Path))

Under UNIX, the GetDrive method always returns a Drive object for ‘/’.

 JScript FileSystemObject Object GetDriveName Method
Returns a string containing the name of the drive for a specified path.

Syntax: JScript FileSystemObject Object GetDriveName Method
object.GetDriveName(path)

Arguments: JScript FileSystemObject Object GetDriveName Method
object

The name of a FileSystemObject. Required.

path

The path specification for the component whose drive name is to be returned. Required.

Remarks: JScript FileSystemObject Object GetDriveName Method
The GetDriveName method returns a zero-length string ("") if the drive can't be determined.

On UNIX systems the GetDriveName method always returns "/".

Note
The GetDriveName method works only on the provided path string. It does not attempt
to resolve the path, nor does it check for the existence of the specified path.

 JScript FileSystemObject Object GetExtensionName Method
Returns a string containing the extension name for the last component in a path.

Syntax: JScript FileSystemObject Object GetExtensionName Method
object.GetExtensionName(path)

Arguments: JScript FileSystemObject Object GetExtensionName Method
object

The name of a FileSystemObject. Required.

path

The path specification for the component whose extension name is to be returned. Required.

Sun Chili!Soft ASP 3.6.2 Product Documentation 630

Remarks: JScript FileSystemObject Object GetExtensionName Method
For network drives, the root directory (\) is considered to be a component.

The GetExtensionName method returns a zero-length string ("") if no component matches the
path argument.

 JScript FileSystemObject Object GetFile Method
Returns a File object corresponding to the file in a specified path.

Syntax: JScript FileSystemObject Object GetFile Method
object.GetFile(filespec)

Arguments: JScript FileSystemObject Object GetFile Method
object

The name of a FileSystemObject. Required.

filespec

The path (absolute or relative) to a specific file. Required.

Remarks: JScript FileSystemObject Object GetFile Method
An error occurs if the specified file does not exist.

 JScript FileSystemObject Object GetFileName Method
Returns the last component of specified path that is not part of the drive specification.

Syntax: JScript FileSystemObject Object GetFileName Method
object.GetFileName(pathspec)

Arguments: JScript FileSystemObject Object GetFileName Method
object

The name of a FileSystemObject. Required.

pathspec

The path (absolute or relative) to a specific file. Required.

Remarks: JScript FileSystemObject Object GetFileName Method
The GetFileName method returns a zero-length string ("") if pathspec does not end with the
named component.

Note
The GetFileName method works only on the provided path string. It does not attempt to
resolve the path, nor does it check for the existence of the specified path.

Sun Chili!Soft ASP 3.6.2 Product Documentation 631

 JScript FileSystemObject Object GetFolder Method
Returns a Folder object corresponding to the folder in a specified path.

Syntax: JScript FileSystemObject Object GetFolder Method
object.GetFolder(folderspec)

Arguments: JScript FileSystemObject Object GetFolder Method
object

The name of a FileSystemObject. Required.

folderspec

The path (absolute or relative) to a specific folder. Required.

Remarks: JScript FileSystemObject Object GetFolder Method
An error occurs if the specified folder does not exist.

 JScript FileSystemObject Object GetParentFolderName Method
Returns a string containing the name of the parent folder of the last component in a specified
path.

Syntax: JScript FileSystemObject Object GetParentFolderName Method
object.GetParentFolderName(path)

Arguments: JScript FileSystemObject Object GetParentFolderName Method
object

The name of a FileSystemObject. Required.

path

The path specification for the component whose parent folder name is to be returned. Required.

Remarks: JScript FileSystemObject Object GetParentFolderName Method
The GetParentFolderName method returns a zero-length string ("") if there is no parent folder
for the component specified in the path argument.

Note
The GetParentFolderName method works only on the provided path string. It does not
attempt to resolve the path, nor does it check for the existence of the specified path.

 JScript FileSystemObject Object GetSpecialFolder Method
Returns the special folder specified.

Sun Chili!Soft ASP 3.6.2 Product Documentation 632

Syntax: JScript FileSystemObject Object GetSpecialFolder Method
object.GetSpecialFolder(folderspec)

Arguments: JScript FileSystemObject Object GetSpecialFolder Method
object

The name of a FileSystemObject. Required.

folderspec

The name of the special folder to be returned. Can be any of the constants shown in the Settings
section. Required.

Settings: JScript FileSystemObject Object GetSpecialFolder Method
The folderspec argument can have any of the following values:

Constant Value Description

WindowsFolder 0 The Windows folder contains files installed by the
Windows operating system. Not available on Unix.

SystemFolder 1 The System folder contains libraries, fonts, and
device drivers. Not available on Unix.

TemporaryFolder 2 The Temp folder is used to store temporary files. Its
path is found in the TMP environment variable.

 JScript FileSystemObject Object GetTempName Method
Returns a randomly generated temporary file or folder name that is useful for performing
operations that require a temporary file or folder.

Syntax: JScript FileSystemObject Object GetTempName Method
object.GetTempName ();

Arguments: JScript FileSystemObject Object GetTempName Method
object

The name of a FileSystemObject. Optional.

Remarks: JScript FileSystemObject Object GetTempName Method
The GetTempName method does not create a file. It provides only a temporary file name that
can be used with CreateTextFile to create a file.

 JScript FileSystemObject Object MoveFile Method
Moves one or more files from one location to another.

Sun Chili!Soft ASP 3.6.2 Product Documentation 633

Syntax: JScript FileSystemObject Object MoveFile Method
object.MoveFile (source, destination);

Arguments: JScript FileSystemObject Object MoveFile Method
object

The name of a FileSystemObject. Required.

source

The path to the file or files to be moved. The source argument string can contain wildcard
characters in the last path component only. Required.

destination

The path where the file or files are to be moved. The destination argument can’t contain wildcard
characters. Required.

Remarks: JScript FileSystemObject Object MoveFile Method
If source contains wildcards or destination ends with a path separator (\), it is assumed that
destination specifies an existing folder in which to move the matching files. Otherwise,
destination is assumed to be the name of a destination file to create. In either case, three things
can happen when an individual file is moved:

� If destination does not exist, the file gets moved. This is the usual case.

� If destination is an existing file, an error occurs.

� If destination is a directory, an error occurs.

An error also occurs if a wildcard character that is used in source doesn't match any files. The
MoveFile method stops on the first error it encounters. No attempt is made to roll back any
changes made before the error occurs.

Important
This method allows moving files between volumes only if supported by the operating
system.

 JScript FileSystemObject Object MoveFolder Method
Moves one or more folders from one location to another.

Syntax: JScript FileSystemObject Object MoveFolder Method
object.MoveFolder (source, destination);

Arguments: JScript FileSystemObject Object MoveFolder Method
object

The name of a FileSystemObject. Required.

source

Sun Chili!Soft ASP 3.6.2 Product Documentation 634

The path to the folder or folders to be moved. The source argument string can contain wildcard
characters in the last path component only. Required.

destination

The path where the folder or folders are to be moved. The destination argument can't contain
wildcard characters. Required.

Remarks: JScript FileSystemObject Object MoveFolder Method
If source contains wildcards or destination ends with a path separator (\), it is assumed that
destination specifies an existing folder in which to move the matching files. Otherwise,
destination is assumed to be the name of a destination folder to create. In either case, three things
can happen when an individual folder is moved:

� If destination does not exist, the folder gets moved. This is the usual case.

� If destination is an existing file, an error occurs.

� If destination is a directory, an error occurs.

An error also occurs if a wildcard character that is used in source doesn't match any folders. The
MoveFolder method stops on the first error it encounters. No attempt is made to roll back any
changes made before the error occurs.

Important
This method allows moving folders between volumes only if supported by the operating
system.

 JScript FileSystemObject Object OpenTextFile Method
Opens a specified file and returns a TextStream object that can be used to read from or append to
the file.

Syntax: JScript FileSystemObject Object OpenTextFile Method
object.OpenTextFile(filename[, iomode[, create[, format]]])

Arguments: JScript FileSystemObject Object OpenTextFile Method
object

The name of a FileSystemObject. Required.

filename

A String expression that identifies the file to open. Required.

iomode

Indicates input/output mode. Can be one of three constants: ForReading, ForWriting, or
ForAppending. Optional.

create

Sun Chili!Soft ASP 3.6.2 Product Documentation 635

A Boolean value that indicates whether a new file can be created if the specified filename doesn't
exist. The value is True if a new file is to be created, False if it isn't to be created. If omitted, a
new file isn't created. Optional.

format

One of three Tristate values used to indicate the format of the opened file. If omitted, the file is
opened as ASCII. Optional.

Settings: JScript FileSystemObject Object OpenTextFile Method
The iomode argument can have any of the following settings:

Constant Value Description

ForReading 1 Open a file for reading only. You can't write
to this file.

ForWriting 2 Open a file for writing. If a file with the
same name exists, its previous contents are
overwritten.

ForAppending 8 Open a file and write to the end of the file.

The format argument can have any of the following settings:

Constant Value Description

TristateUseDefault -2 Opens the file using the system default.

TristateTrue -1 Opens the file as Unicode.

TristateFalse 0 Opens the file as ASCII.

Remarks: JScript FileSystemObject Object OpenTextFile Method
The following code illustrates the use of the OpenTextFile method to open a file for appending
text:

var fs, a, ForAppending;

ForAppending = 8;

fs = new ActiveXObject("Scripting.FileSystemObject");

a = fs.OpenTextFile("c:\\testfile.txt", ForAppending, false);

...

a.Close();

JScript Folder Object

 JScript Folder Object
The Folder object provides access to all the properties of a folder.

Sun Chili!Soft ASP 3.6.2 Product Documentation 636

Methods: JScript Folder Object
JScript Folder Object Copy Method Copies a folder and its contents from one

location to another.

JScript Folder Object CreateTextFile Method Creates a file with a specified name and returns
a TextStream object.

JScript Folder Object Delete Method Deletes a folder and its contents.

JScript Folder Object Move Method Moves a folder and its contents from one
location to another.

Properties: JScript Folder Object
JScript Folder Object Attributes Property The file system attributes of the folder.

JScript Folder Object DateCreated Property The date and time that a folder was created.

JScript Folder Object DateLastAccessed
Property

The date and time that a folder was last
accessed.

JScript Folder Object DateLastModified
Property

The date and time that a folder was last
modified.

JScript Folder Object Drive Property The drive letter of the drive on which the file
resides. On UNIX, this property is always ‘/’.

JScript Folder Object Files Property A collection of all File objects contained in the
folder. See the Files collection section for
details.

JScript Folder Object IsRootFolderProperty Boolean indicating whether this folder is the
root folder of a drive.

JScript Folder Object Name Property The name of the folder.

JScript Folder Object ParentFolder Property The Folder object that contains this folder.

JScript Folder Object Path Property The file system path to this folder.

JScript Folder Object ShortName Property The short name used by programs that require
8.3 file names. This property is not currently
supported on UNIX.

JScript Folder Object ShortPath Property The short path used by programs that require
8.3 file names This property is not currently
supported on UNIX.

JScript Folder Object Size Property The size, in bytes, of all files and subfolders
contained in the folder.

JScript Folder Object SubFolders Property A collection of all Folder objects contained in
the folder. See the Folders collection for
details.

JScript Folder Object Type Property Information about the type of a folder. This

Sun Chili!Soft ASP 3.6.2 Product Documentation 637

property is not currently supported on UNIX.

Remarks: JScript Folder Object
The following code illustrates how to obtain a Folder object and how to return one of its
properties:

function ShowFolderInfo(folderspec)

{

var fs, folder, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

folder = fs.GetFolder(folderspec);

s = folder.DateCreated;

Response.Write(s);

}

 JScript Folder Object Attributes Property
Sets or returns the attributes of folders. Read/write or read-only, depending on the attribute.

Note
This property depends on the underlying operating system for its behavior. If the OS file
system does not support the folder attribute requested, an error will be returned.

Syntax: JScript Folder Object Attributes Property
object.Attributes [= newattributes]

Arguments: JScript Folder Object Attributes Property
object

The name of a Folder object. Required.

newattributes

If provided, newattributes is the new value for the attributes of the specified object. Optional.

Settings: JScript Folder Object Attributes Property
The newattributes argument can have any of the following values or any logical combination of
the following values:

Constant Value Description

Normal 0 Normal file. No attributes are set.

ReadOnly 1 Read-only file. Attribute is read/write.

Hidden 2 Hidden file. Attribute is read/write.

Sun Chili!Soft ASP 3.6.2 Product Documentation 638

System 4 System file. Attribute is read/write.

Volume 8 Disk drive volume label. Attribute is read-only.

Directory 16 Folder or directory. Attribute is read-only.

Archive 32 File has changed since last backup. Attribute is
read/write.

Alias 64 Link or shortcut. Attribute is read-only.

Compressed 128 Compressed file. Attribute is read-only.

Remarks: JScript Folder Object Attributes Property
The following code illustrates the use of the Attributes property with a folder:

function ToggleArchiveBit(filespec)

{

var fs, f, r, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFolder(filespec)

if (f.attributes && 32)

{

f.attributes = f.attributes - 32;

s = "Archive bit is cleared.";

}

else

{

f.attributes = f.attributes + 32;

s = "Archive bit is set.";

}

return s;

}

 JScript Folder Object Copy Method
Copies a specified folder from one location to another.

Syntax: JScript Folder Object Copy Method
object.Copy(destination[, overwrite]);

Arguments: JScript Folder Object Copy Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 639

object

The name of a Folder object. Required.

destination

The destination where the folder is to be copied. Wildcard characters are not allowed. Required.

overwrite

A Boolean value that is True (default) if existing folders are to be overwritten; False if they are
not. Optional.

Remarks: JScript Folder Object Copy Method
The results of the Copy method on a Folder are identical to operations performed using
CopyFolder where the folder referred to by object is passed as an argument. You should note,
however, that the alternative method is capable of copying multiple folders.

 JScript Folder Object CreateTextFile Method
Creates a specified file name and returns a TextStream object that can be used to read from or
write to the file.

Syntax: JScript Folder Object CreateTextFile Method
object.CreateTextFile(filename[, overwrite[, unicode]])

Arguments: JScript Folder Object CreateTextFile Method
object

The name of a Folder object. Required.

filename

A String expression that identifies the file to create. Required.

overwrite

A Boolean value that indicates whether you can overwrite an existing file. The value is true if the
file can be overwritten, false if it can't be overwritten. If omitted, existing files are not
overwritten. Optional.

unicode

A Boolean value that indicates whether the file is created as a Unicode or ASCII file. The value
is true if the file is created as a Unicode file, false if it's created as an ASCII file. If omitted, an
ASCII file is assumed. Optional.

 JScript Folder Object DateCreated Property
Returns the date and time that the specified folder was created. Read-only.

Syntax: JScript Folder Object DateCreated Property

Sun Chili!Soft ASP 3.6.2 Product Documentation 640

object.DateCreated

Arguments: JScript Folder Object DateCreated Property
object

A File or Folder object.

Remarks: JScript Folder Object DateCreated Property
The following code illustrates the use of the DateCreated property with a folder:

function ShowFileInfo(filespec)

{

var fs, f, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFolder(filespec);

s = "Created: " + f.DateCreated;

Response.Write(s);

}

 JScript Folder Object DateLastAccessed Property
Returns the date and time that the specified folder was last accessed. Read-only.

Syntax: JScript Folder Object DateLastAccessed Property
object.DateLastAccessed

Arguments: JScript Folder Object DateLastAccessed Property
object

A File or Folder object.

Remarks: JScript Folder Object DateLastAccessed Property
The following code illustrates the use of the DateLastAccessed property with a folder:

function ShowFileAccessInfo(filespec)

{

var fs, f, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFolder(filespec);

s = filespec.toUpperCase() + "
";

s += "Created: " + f.DateCreated + "
";

s += "Last Accessed: " + f.DateLastAccessed + "
";

Sun Chili!Soft ASP 3.6.2 Product Documentation 641

s += "Last Modified: " + f.DateLastModified;

Response.Write(s);

}

Note
This method depends on the underlying operating system for its behavior. If the operating
system does not support providing time information, none will be returned.

 JScript Folder Object DateLastModified Property
Returns the date and time that the specified folder was last modified. Read-only.

Syntax: JScript Folder Object DateLastModified Property
object.DateLastModified

Arguments: JScript Folder Object DateLastModified Property
object

A File or Folder object.

Remarks: JScript Folder Object DateLastModified Property
The following code illustrates the use of the DateLastModified property with a folder:

function ShowFileAccessInfo(filespec)

{

var fs, f, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFolder(filespec);

s = filespec.toUpperCase() + "
";

s += "Created: " + f.DateCreated + "
";

s += "Last Accessed: " + f.DateLastAccessed + "
";

s += "Last Modified: " + f.DateLastModified;

Response.Write(s);

}

 JScript Folder Object Delete Method
Deletes a specified folder.

Syntax: JScript Folder Object Delete Method
object.Delete(force);

Sun Chili!Soft ASP 3.6.2 Product Documentation 642

Arguments: JScript Folder Object Delete Method
object

Required. Always the name of a Folder object.

force

Optional. Boolean value that is True if folders with the read-only attribute set are to be deleted,
False (default) if they are not.

Remarks: JScript Folder Object Delete Method
An error occurs if the specified folder does not exist.

The results of the Delete method on a Folder are identical to operations performed using
DeleteFolder.

The Delete method does not distinguish between folders that have contents and those that do not.
The specified folder is deleted regardless of whether or not it has contents.

 JScript Folder Object Drive Property
Returns the drive letter of the drive on which the specified folder resides. Read-only.

Syntax: JScript Folder Object Drive Property
object.Drive

Arguments: JScript Folder Object Drive Property
object

A Folder object.

Remarks: JScript Folder Object Drive Property
On UNIX systems, the Drive property is always "/".

The following code illustrates the use of the Drive property on Windows systems:

function ShowFileAccessInfo(filespec)

{

var fs, f, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFolder(filespec);

s = f.Name + " on Drive " + f.Drive + "
";

s += "Created: " + f.DateCreated + "
";

s += "Last Accessed: " + f.DateLastAccessed + "
";

s += "Last Modified: " + f.DateLastModified;

Response.Write(s);

Sun Chili!Soft ASP 3.6.2 Product Documentation 643

}

 JScript Folder Object Files Property
Returns a Files collection consisting of all File objects contained in the specified folder, including
those with hidden and system file attributes set.

Syntax: JScript Folder Object Files Property
object.Files

Arguments: JScript Folder Object Files Property
object

A Folder object.

Remarks: JScript Folder Object Files Property
The following code illustrates the use of the Files property:

function ShowFolderFileList(folderspec)

{

var fs, f, f1, fc, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFolder(folderspec);

fc = new Enumerator(f.files);

s = "";

for (; !fc.atEnd(); fc.moveNext())

{

s += fc.item();

s += "
";

}

Response.Write(s);

}

 JScript Folder Object IsRootFolder Property
Returns True if the specified folder is the root folder; False if it is not.

Syntax: JScript Folder Object IsRootFolder Property
object.IsRootFolder

Arguments: JScript Folder Object IsRootFolder Property

Sun Chili!Soft ASP 3.6.2 Product Documentation 644

object

A Folder object.

Remarks: JScript Folder Object IsRootFolder Property
The following code illustrates the use of the IsRootFolder property:

function DisplayLevelDepth(pathspec)

{

var fs, f, n;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFolder(pathspec);

n = 0;

if (f.IsRootFolder)

Response.Write("The specified folder is the root folder.")

else

{

do

{

f = f.ParentFolder;

n++;

}

while (!f.IsRootFolder)

Response.Write("The specified folder is nested " + n + " levels
deep.")

}

}

 JScript Folder Object Move Method
Moves a specified folder from one location to another.

Syntax: JScript Folder Object Move Method
object.Move(destination);

Arguments: JScript Folder Object Move Method
object

The name of a Folder object. Required.

Sun Chili!Soft ASP 3.6.2 Product Documentation 645

destination

Destination where the folder is to be moved. Wildcard characters are not allowed. Required.

Remarks: JScript Folder Object Move Method
The results of the Move method on a Folder are identical to operations performed using
MoveFolder. You should note, however, that the alternative method is capable of moving
multiple folders.

 JScript Folder Object Name Property
Sets or returns the name of a specified folder. Read/write.

Syntax: JScript Folder Object Name Property
object.Name [= newname]

Arguments: JScript Folder Object Name Property
object

The name of a Folder object. Required.

newname

The new name of the specified object, if provided. Optional.

Remarks: JScript Folder Object Name Property
The following code illustrates the use of the Name property:

function ShowFileAccessInfo(filespec)

{

var fs, f, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFolder(filespec);

s = f.Name + " on Drive " + f.Drive + "
";

s += "Created: " + f.DateCreated + "
";

s += "Last Accessed: " + f.DateLastAccessed + "
";

s += "Last Modified: " + f.DateLastModified;

Response.Write(s);

}

 JScript Folder Object ParentFolder Property
Returns the folder object for the parent of the specified folder. Read-only.

Sun Chili!Soft ASP 3.6.2 Product Documentation 646

Syntax: JScript Folder Object ParentFolder Property
object.ParentFolder

Arguments: JScript Folder Object ParentFolder Property
object

A Folder object.

Remarks: JScript Folder Object ParentFolder Property
The following code illustrates the use of the ParentFolder property with a folder:

function ShowFileAccessInfo(filespec)

{

var fs, f, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFolder(filespec);

s = f.Name + " in " + f.ParentFolder + "
";

s += "Created: " + f.DateCreated + "
";

s += "Last Accessed: " + f.DateLastAccessed + "
";

s += "Last Modified: " + f.DateLastModified;

Response.Write(s);

}

 JScript Folder Object Path Property
Returns the path for a specified folder.

Syntax: JScript Folder Object Path Property
object.Path

Arguments: JScript Folder Object Path Property
object

A Folder object.

 JScript Folder Object ShortName Property
Returns the short name used by programs that require the earlier 8.3 naming convention. This
property is not available under UNIX.

Syntax: JScript Folder Object ShortName Property
object.ShortName

Sun Chili!Soft ASP 3.6.2 Product Documentation 647

Arguments: JScript Folder Object ShortName Property
object

A Folder object.

Remarks: JScript Folder Object ShortName Property
The following code illustrates the use of the ShortName property with a Folder object:

function ShowShortName(filespec)

{

var fs, f, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFolder(filespec);

s = "The short name for " + "" + f.Name;

s += "" + "
";

s += "is: " + "" + f.ShortName + "";

Response.Write(s);

}

 JScript Folder Object ShortPath Property
Returns the short path used by programs that require the earlier 8.3 file naming convention. This
property is not available under UNIX.

Syntax: JScript Folder Object ShortPath Property
object.ShortPath

Arguments: JScript Folder Object ShortPath Property
object

A Folder object.

Remarks: JScript Folder Object ShortPath Property
The following code illustrates the use of the ShortPath property with a Folder object:

function ShowShortPath(filespec);

{

var fs, f, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFolder(filespec);

s = "The short path for " + "" + f.Name;

Sun Chili!Soft ASP 3.6.2 Product Documentation 648

s += "" + "
";

s += "is: " + "" + f.ShortPath + "";

Response.Write(s);

}

 JScript Folder Object Size Property
The size, in bytes, of all files and subfolders contained in the folder.

Syntax: JScript Folder Object Size Property
object.Size

Arguments: JScript Folder Object Size Property
object

A Folder object.

Remarks: JScript Folder Object Size Property
The following code illustrates the use of the Size property with a Folder object:

function ShowFolderSize(filespec)

{

var fs, f, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFolder(filespec);

s = f.Name + " uses " + f.size + " bytes.";

Response.Write(s);

}

 JScript Folder Object SubFolders Property
Returns a Folders collection consisting of all folders contained in a specified folder, including
those with Hidden and System file attributes set.

Syntax: JScript Folder Object SubFolders Property
object.SubFolders

Arguments: JScript Folder Object SubFolders Property
object

A Folder object.

Remarks: JScript Folder Object SubFolders Property

Sun Chili!Soft ASP 3.6.2 Product Documentation 649

The following code illustrates the use of the SubFolders property:

function ShowFolderList(folderspec)

{

var fs, f, f1, fc, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFolder(folderspec);

fc = new Enumerator(f.SubFolders);

s = "";

for (;!fc.atEnd(); fc.moveNext())

{

s += fc.item();

s += "
";

}

Response.Write(s);

}

 JScript Folder Object Type Property
Returns information about the type of a folder. This property is not available under UNIX.

Syntax: JScript Folder Object Type Property
object.Type

Arguments: JScript Folder Object Type Property
object

A Folder object.

Remarks: JScript Folder Object Type Property
The following code illustrates the use of the Type property to return a folder type. In this
example, try providing the path of the Recycle Bin or other unique folder to the procedure.

function ShowFileType(filespec)

{

var fs, f, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

if (fs.FolderExists(filespec))

f = fs.GetFolder(filespec);

Sun Chili!Soft ASP 3.6.2 Product Documentation 650

else if (fs.FileExists(filespec))

f = fs.GetFile(filespec);

else

s = "File or Folder does not exist.";

s = f.Name + " is a " + f.Type;

Response.Write(s);

}

JScript Function Object

 JScript Function Object
The Function object creates a new function.

Properties: JScript Function Object
JScript Function Object arguments Property An array containing each argument passed to

the currently executing function.

JScript Function Object caller Property A reference to the function that invoked the
current function.

JScript Function Object length Property The number of arguments to the function.

Syntax 1: JScript Function Object
function functionname([argname1 [, ... argnameN]])

{

body

}

Syntax 2: JScript Function Object
var functionname = new Function([argname1, [... argnameN,]] body);

Arguments: JScript Function Object
functionname

The name of the newly created function

argname1...argnameN

An optional list of arguments that the function accepts.

body

A string that contains the block of JScript code to be executed when the function is called.

Remarks: JScript Function Object

Sun Chili!Soft ASP 3.6.2 Product Documentation 651

Syntax 1 is the standard way to create new functions in JScript. Syntax 2 is an alternative form
used to create Function objects explicitly.

The function is a basic data type in JScript. Syntax 1 creates a function value that JScript converts
into a Function object when necessary. JScript converts Function objects created by Syntax 2
into function values at the time the function is called.

For example, if you want to create a function that adds the two arguments passed to it, you can do
it in either of two ways:

Example 1
function add(x, y)

{

return x + y;

}

Example 2
var add = new Function("x", "y", "return x+y");

In either case, you call the function with a line of code similar to the following:

add(2, 3);

 JScript Function Object arguments Property
An array containing each argument passed to the currently executing function.

Syntax: JScript Function Object arguments Property
function.arguments[]

Arguments: JScript Function Object arguments Property
function

The name of the currently executing function.

Remarks: JScript Function Object arguments Property
The arguments property allows a graceful way for functions to handle a variable number of
arguments. The length property of the array contains the number of arguments passed to the
function.

 JScript Function Object caller Property
Contains a reference to the function that invoked the current function.

Syntax: JScript Function Object caller Property
functionname.caller

Sun Chili!Soft ASP 3.6.2 Product Documentation 652

Arguments: JScript Function Object caller Property
functionname

The name of the currently executing function.

Remarks: JScript Function Object caller Property
The caller property is only defined for a function while that function is executing. If the function
is called from the top level of a JScript program, caller contains null.

 JScript Function Object length Property
Contains the number of arguments a function is defined with.

Syntax: JScript Function Object length Property
functionname.length

Arguments: JScript Function Object length Property
functionname

The name of the function.

Remarks: JScript Function Object length Property
The length property of a function is initialized by the scripting engine to the number of
arguments in the function's definition when an instance of the function is created.

What happens when a function is called with a number of arguments different from the value of
its length property depends on the function.

JScript Global Object

 JScript Global Object
The Global object is an intrinsic object whose purpose is to collect global methods into one
object.

Methods: JScript Global Object
JScript Global Object escape Method Encodes String objects so that they can be read

on all computers.

JScript Global Object eval Method Evaluates JScript code.

JScript Global Object isFinite Method Determines if a supplied number is finite.

JScript Global Object isNaN Method Determines is a supplied number is the
reserved value NaN (Not a Number).

JScript Global Object parseFloat Method Converts strings to floating point numbers.

JScript Global Object parseInt Method Converts strings to integer numbers.

Sun Chili!Soft ASP 3.6.2 Product Documentation 653

JScript Global Object unescape Method Decodes String objects encoded with the
escape method.

Properties: JScript Global Object
JScript Global Object Infinity Property An initial value of

Number.POSITIVE_INFINITY.

JScript Global Object NaN Property An initial value of Number.NaN.

Syntax: JScript Global Object
The Global object has no syntax. You call its methods directly.

Remarks: JScript Global Object
The Global object is never used directly, and cannot be created using the new operator. It is
created when the scripting engine is initialized, thus making its methods and properties available
immediately.

 JScript Global Object escape Method
Encodes String objects so they can be read on all computers.

Syntax: JScript Global Object escape Method
escape(charstring)

Arguments: JScript Global Object escape Method
charstring

A String object to be encoded.

Remarks: JScript Global Object escape Method
The escape method returns a new String object (in Unicode format) that contains the contents of
charstring. All spaces, punctuation, accented characters, and any other non-ASCII characters are
replaced with %xx encoding, where xx is equivalent to the hexadecimal number representing the
character. For example, a space is returned as "%20."

Characters with a value greater than 255 are stored using the %uxxxx format.

 JScript Global Object eval Method
Evaluates JScript code.

Syntax: JScript Global Object eval Method
eval(codestring)

Arguments: JScript Global Object eval Method
codestring

Sun Chili!Soft ASP 3.6.2 Product Documentation 654

A String object that contains valid JScript code. This string is parsed by the JScript parser and
executed.

Remarks: JScript Global Object eval Method
The eval function allows dynamic execution of JScript source code. For example, the following
code creates a new variable mydate that contains a Date object:

eval("var mydate = new Date();");

The code passed to the eval method is executed in the same context as the call to the eval method.

 JScript Global Object Infinity Property
Contains an initial value of Number.POSITIVE_INFINITY.

Syntax: JScript Global Object Infinity Property
Infinity

Remarks: JScript Global Object Infinity Property
The Infinity property is a member of the Global object, and is made available when the scripting
engine is initialized.

 JScript Global Object isFinite Method
Determines if a supplied number is finite.

Syntax: JScript Global Object isFinite Method
isFinite(number)

Arguments: JScript Global Object isFinite Method
number

Required numeric value.

Remarks: JScript Global Object isFinite Method
The isFinite method returns true if number is any value other than NaN, negative infinity, or
positive infinity. In those three cases, it returns false.

 JScript Global Object isNaN Method
Determines whether a value is the reserved value NaN (not a number).

Syntax: JScript Global Object isNaN Method
isNaN(numvalue)

Arguments: JScript Global Object isNaN Method
numvalue

Sun Chili!Soft ASP 3.6.2 Product Documentation 655

The value to be tested against NaN.

Remarks: JScript Global Object isNaN Method
The isNaN function returns True if the value is NaN, and false otherwise. You typically use this
function to test return values from the parseInt and parseFloat methods.

Alternatively, a variable could be compared to itself. If it compares as unequal, it is NaN. This is
because NaN is the only value which is not equal to itself.

 JScript Global Object NaN Property
Contains an initial value of NaN.

Syntax: JScript Global Object NaN Property
NaN

Remarks: JScript Global Object NaN Property
The NaN property (not a number) is a member of the Global object, and is made available when
the scripting engine is initialized.

 JScript Global Object parseFloat Method
Converts strings into floating point numbers.

Syntax: JScript Global Object parseFloat Method
parseFloat(numstring)

Arguments: JScript Global Object parseFloat Method
numstring

A string that contains a floating point number.

Remarks: JScript Global Object parseFloat Method
The parseFloat method returns an numerical value equal to the number contained in numstring.
If no prefix of numstring can be successfully parsed into a floating-point number, NaN (not a
number) is returned.

parseFloat("abc") // Returns NaN.

parseFloat("1.2abc") // Returns 1.2.

You can test for NaN using the isNaN method.

 JScript Global Object parseInt Method
Converts strings into integers.

Syntax: JScript Global Object parseInt Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 656

parseInt(numstring, [radix])

Arguments: JScript Global Object parseInt Method
numstring

A string to convert into a number. Required.

radix

A value between 2 and 36 indicating the base of the number contained in numstring. If not
supplied, strings with a prefix of '0x' are considered hexidecimal and strings with a prefix of '0'
are considered octal. All other strings are considered decimal. Optional.

Remarks: JScript Global Object parseInt Method
The parseInt method returns an integer value equal to the number contained in numstring. If no
prefix of numstring can be successfully parsed into an integer, NaN (not a number) is returned.

parseInt("abc") // Returns NaN.

parseInt("12abc") // Returns 12.

You can test for NaN using the isNaN method.

 JScript Global Object unescape Method
Decodes String objects encoded with the escape method.

Syntax: JScript Global Object unescape Method
unescape(charstring)

Arguments: JScript Global Object unescape Method
charstring

A String object to be decoded.

Remarks: JScript Global Object unescape Method
The unescape method returns a new String object that contains the contents of charstring. All
characters encoded with the %xx hexadecimal form are replaced by their ASCII character set
equivalents.

Characters encoded in %uxxxx format (Unicode characters) are replaced with the Unicode
character with hexadecimal encoding xxxx.

JScript Math Object

 JScript Math Object
The Math object is a built-in object that provides basic mathematics functionality and constants.

Methods: JScript Math Object

Sun Chili!Soft ASP 3.6.2 Product Documentation 657

JScript Math Object abs Method Determines the absolute value of its numeric
argument.

JScript Math Object acos Method Computes the arccosine of its numeric
argument.

JScript Math Object asin Method Computes the arcsine of its numeric argument.

JScript Math Object atan Method Computes the arctangent of its numeric
argument.

JScript Math Object atan2 Method Returns the angle (in radians) from the X axis
to a point.

JScript Math Object ceil Method Determines the smallest integer greater than or
equal to its numeric argument.

JScript Math Object cos Method Computes the cosine of its numeric argument.

JScript Math Object exp Method Computes e to the power of the numeric
argument.

JScript Math Object floor Method Determines the greatest integer that is less than
or equal to its numeric argument.

JScript Math Object log Method Computes the natural logarithm of its numeric
argument.

JScript Math Object max Method Returns the greater of two numeric expressions.

JScript Math Object min Method Returns the lesser of two numeric expressions.

JScript Math Object pow Method Returns the value of a base expression taken to
a specified power.

JScript Math Object random Method Returns a pseudo-random number.

JScript Math Object round Method Rounds the supplied numeric expression to the
nearest integer.

JScript Math Object sin Method Returns the sin of its numeric argument.

JScript Math Object sqrt Method Returns the square root of a number.

JScript Math Object tan Method Returns the tangent of its numeric argument.

Properties: JScript Math Object
JScript Math Object E Property Euler’s constant.

JScript Math Object LN2 Property The natural logarithm of 2.

JScript Math Object LN10 Property The natural logarithm of 10.

JScript Math Object LOG2E Property The base 2 logarithm of e.

JScript Math Object LOG10E Property The base 10 logarithm of e.

JScript Math Object PI Property The ratio of the circumference of a circle to its

Sun Chili!Soft ASP 3.6.2 Product Documentation 658

diameter.

JScript Math Object SQRT1_2 Property The square root of 0.5, or 1 divided by the
square root of 2.

JScript Math Object SQRT2 Property The square root of 2.

Syntax: JScript Math Object
Math.[{property | method}]

Arguments: JScript Math Object
property

Name of Math object property.

method

Name of Math object method.

Remarks: JScript Math Object
The Math object cannot be created using the new operator, and gives an error if you attempt to
do so. It is created by the scripting engine when the engine is loaded. All of its methods and
properties are available to your script at all times.

 JScript Math Object abs Method
Determines the absolute value of its numeric argument.

Syntax: JScript Math Object abs Method
Math.abs(number)

Arguments: JScript Math Object abs Method
number

A numeric expression for which the absolute value is sought.

 JScript Math Object acos Method
Computes the arccosine of its numeric argument.

Syntax: JScript Math Object acos Method
Math.acos(number)

Arguments: JScript Math Object acos Method
number

A numeric expression for which the arccosine is sought.

Sun Chili!Soft ASP 3.6.2 Product Documentation 659

 JScript Math Object asin Method
Computes the arcsine of its numeric argument.

Syntax: JScript Math Object asin Method
Math.asin(number)

Arguments: JScript Math Object asin Method
number

A numeric expression for which the arcsine is sought.

 JScript Math Object atan Method
Computes the arctangent of its numeric argument.

Syntax: JScript Math Object atan Method
Math.atan(number)

Arguments: JScript Math Object atan Method
number

A numeric expression for which the arctangent is sought.

 JScript Math Object atan2 Method
Returns the angle (in radians) from the X axis to a point (y,x).

Syntax: JScript Math Object atan2 Method
Math.atan2(y, x)

Arguments: JScript Math Object atan2 Method
x

A numeric expression representing the cartesian x-coordinate. Required.

y

A numeric expression representing the cartesian y-coordinate. Required.

Remarks: JScript Math Object atan2 Method
The return value is between -pi and pi, representing the angle of the supplied (y,x) point.

 JScript Math Object ceil Method
Determines the smallest integer greater than or equal to its numeric argument.

Syntax: JScript Math Object ceil Method
Math.ceil(number)

Sun Chili!Soft ASP 3.6.2 Product Documentation 660

Arguments: JScript Math Object ceil Method
number

A numeric expression.

 JScript Math Object cos Method
Computes the cosine of its numeric argument.

Syntax: JScript Math Object cos Method
Math.cos(number)

Arguments: JScript Math Object cos Method
number

A numeric expression for which the cosine is sought.

 JScript Math Object E Property
Euler's constant, the base of natural algorithms. The E property is approximately equal to 2.718.

Example: JScript Math Object E Property
var numVar

numVar = Math.E

 JScript Math Object exp Method
Computes e to the power of the supplied numeric argument.

Syntax: JScript Math Object exp Method
Math.exp(number)

Arguments: JScript Math Object exp Method
number

A numeric expression representing the power of e.

Remarks: JScript Math Object exp Method
The return value is enumber. The constant e is Euler's constant, approximately equal to 2.178 and
number is the supplied argument.

 JScript Math Object floor Method
Computes the greatest integer less than or equal to its numeric argument.

Syntax: JScript Math Object floor Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 661

Math.floor(number)

Arguments: JScript Math Object floor Method
number

A numeric expression.

 JScript Math Object LN2 Property
The natural logarithm of 2.

Applies To: JScript Math Object LN2 Property
Math

Syntax: JScript Math Object LN2 Property

var numVar

numVar = Math.LN2

Remarks: JScript Math Object LN2 Property
The LN2 property is approximately equal to 0.693.

 JScript Math Object LN10 Property
The natural logarithm of 10.

Applies To: JScript Math Object LN10 Property
Math

Syntax: JScript Math Object LN10 Property
var numVar

numVar = Math.LN10

Remarks: JScript Math Object LN10 Property
The LN10 property is approximately equal to 2.302.

 JScript Math Object log Method
Computes the natural logarithm of a numeric expression.

Applies To: JScript Math Object log Method
Math

Syntax: JScript Math Object log Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 662

Math.log(number)

Arguments: JScript Math Object log Method
number

A numeric expression for which the natural logarithm is sought.

Return Value: JScript Math Object log Method
The return value is the natural logarithm of number. The base is e.

 JScript Math Object LOG2E Property
The base 2 logarithm of e, Euler's constant.

Applies To: JScript Math Object LOG2E Property
Math

Syntax: JScript Math Object LOG2E Property
var varName

varName = Math.LOG2E

Remarks: JScript Math Object LOG2E Property
The LOG2E property, a constant, is approximately equal to 1.442.

 JScript Math Object LOG10E Property
The base 10 logarithm of e, Euler's constant.

Applies To: JScript Math Object LOG10E Property
Math

Syntax: JScript Math Object LOG10E Property
var varName

varName = objName.LOG10E

Remarks: JScript Math Object LOG10E Property
The LOG10E property, a constant, is approximately equal to 0.434.

 JScript Math Object max Method
Returns the greater of two supplied numeric expressions.

Syntax: JScript Math Object max Method
retVal = Math.max(number1, number2)

Sun Chili!Soft ASP 3.6.2 Product Documentation 663

Arguments: JScript Math Object max Method
retVal

The greater of number1 or number2.

number1

A numeric expression to be compared to number2.

number2

A numeric value to be compared to number1.

 JScript Math Object min Method
Returns the lesser of two supplied numbers.

Syntax: JScript Math Object min Method
retVal = Math.min(number1, number2)

Arguments: JScript Math Object min Method
retVal

The lesser of number1 or number2.

number1

A numeric expression to be compared to number2.

number2

A numeric value to be compared to number1.

 JScript Math Object PI Property
The ratio of the circumference of a circle to its diameter.

Syntax: JScript Math Object PI Property
var numVar

numVar = Math.PI

Remarks: JScript Math Object PI Property
The PI property, a constant, is approximately equal to 3.14159.

 JScript Math Object pow Method
Returns the value of a base expression taken to a specified power.

Syntax: JScript Math Object pow Method
Math.pow(base, exponent)

Sun Chili!Soft ASP 3.6.2 Product Documentation 664

Arguments: JScript Math Object pow Method
base

The base value of the expression.

exponent

The exponent value of the expression.

Remarks: JScript Math Object pow Method
In the following example, a numeric expression equal to baseexponent returns 1000.

Math.pow(10,3);

 JScript Math Object random Method
Returns a pseudorandom number between 0 and 1.

Syntax: JScript Math Object random Method
Math.random()

Remarks: JScript Math Object random Method
The pseudorandom number generated is between 0 and 1 inclusive. The random number
generator is seeded automatically when JScript is first loaded.

 JScript Math Object round Method
Rounds a supplied numeric expression to the nearest integer.

Syntax: JScript Math Object round Method
Math.round(number)

Arguments: JScript Math Object round Method
number

The value to be rounded to the nearest integer.

Remarks: JScript Math Object round Method
If the decimal portion of number is 0.5 or greater, the return value is equal to the smallest integer
greater than number. Otherwise, round returns the largest integer less than or equal to number.

 JScript Math Object sin Method
Returns the sine of its numeric argument.

Syntax: JScript Math Object sin Method
Math.sin(number)

Sun Chili!Soft ASP 3.6.2 Product Documentation 665

Arguments: JScript Math Object sin Method
number

A numeric expression for which the sine is sought.

 JScript Math Object sqrt Method
Returns the square root of a number.

Syntax: JScript Math Object sqrt Method
Math.sqrt(number)

Arguments: JScript Math Object sqrt Method
number

A numeric expression.

Remarks: JScript Math Object sqrt Method
If number is negative, the return value is zero.

 JScript Math Object SQRT1_2 Property
The square root of 0.5, or 1 divided by the square root of 2.

Syntax: JScript Math Object SQRT1_2 Property
var numVar

numVar = Math.SQRT1_2

Remarks: JScript Math Object SQRT1_2 Property
The SQRT1_2 property, a constant, is approximately equal to 0.707.

 JScript Math Object SQRT2 Property
The square root of 2.

Syntax: JScript Math Object SQRT2 Property
var numVar

numVar = Math.SQRT2

Remarks: JScript Math Object SQRT2 Property
The SQRT2 property, a constant, is approximately equal to 1.414.

 JScript Math Object tan Method
Computes the tangent of a number.

Sun Chili!Soft ASP 3.6.2 Product Documentation 666

Syntax: JScript Math Object tan Method
Math.tan(number)

Arguments: JScript Math Object tan Method
number

A numeric expression for which the tangent is sought.

JScript Number Object

 JScript Number Object
The Number object is an object representation of the number data type and placeholder for
numeric constants.

Methods: JScript Number Object
JScript Number Object toString Method Converts a Number object or variable to a

string using the specified radix.

Properties: JScript Number Object
JScript Number Object MAX_VALUE
Property

The largest number that can be represented in
JScript.

JScript Number Object MIN_VALUE
Property

The number closest to zero that can be
represented in JScript.

JScript Number Object NaN Property A special value that indicates an expression
returned a value that was not a number.

JScript Number Object
NEGATIVE_INFINITY Property

A value larger than the largest negative number
that can be represented in JScript.

JScript Number Object
POSITIVE_INFINITY Property

A value larger than the largest positive number
that can be represented in JScript.

Syntax: JScript Number Object
new Number(value)

Arguments: JScript Number Object
value

is the sought numerical value for the object.

Remarks: JScript Number Object
JScript creates Number objects as required from numerical values. It is rarely necessary to create
Number objects explicitly.

The primary purposes for the Number object are to collect its properties into one object, and to
allow numbers to be converted into strings via the toString method.

Sun Chili!Soft ASP 3.6.2 Product Documentation 667

 JScript Number Object MAX_VALUE Property
The largest number that can be represented in JScript. Equal to approximately 1.79E+308.

Syntax: JScript Number Object MAX_VALUE Property
Number.MAX_VALUE

Arguments: JScript Number Object MAX_VALUE Property
number

The Number object.

Remarks: JScript Number Object MAX_VALUE Property
The Number object does not have to be created before the MAX_VALUE property can be
accessed.

 JScript Number Object MIN_VALUE Property
The number closest to zero that can be represented in JScript. Equal to approximately 2.22E-308.

Syntax: JScript Number Object MIN_VALUE Property
Number.MIN_VALUE

Arguments: JScript Number Object MIN_VALUE Property
number

The Number object.

Remarks: JScript Number Object MIN_VALUE Property
The Number object does not have to be created before the MIN_VALUE property can be
accessed.

 JScript Number Object NaN Property
A special value that indicates an arithmetic expression returned a value that was not a number.

Syntax: JScript Number Object NaN Property
Number.NaN

Arguments: JScript Number Object NaN Property
number

The Number object.

Remarks: JScript Number Object NaN Property
The Number object does not have to be created before the NaN property can be accessed.

Sun Chili!Soft ASP 3.6.2 Product Documentation 668

NaN does not compare equal to any value, including itself. To test if a value is equivalent to
NaN, use the isNaN function.

 JScript Number Object NEGATIVE_INFINITY Property
A value more negative than the largest negative number (-Number.MAX_VALUE) that can be
represented in JScript.

Syntax: JScript Number Object NEGATIVE_INFINITY Property
Number.NEGATIVE_INFINITY

Arguments: JScript Number Object NEGATIVE_INFINITY Property
number

The Number object.

Remarks: JScript Number Object NEGATIVE_INFINITY Property
The Number object does not have to be created before the NEGATIVE_INFINITY property
can be accessed.

JScript displays NEGATIVE_INFINITY values as -infinity. This value behaves mathematically
as infinity.

 JScript Number Object POSITIVE_INFINITY Property
A value larger than the largest number (Number.MAX_VALUE) that can be represented in
JScript.

Syntax: JScript Number Object POSITIVE_INFINITY Property
Number.POSITIVE_INFINITY

Arguments: JScript Number Object POSITIVE_INFINITY Property
number

The Number object.

Remarks: JScript Number Object POSITIVE_INFINITY Property
The Number object does not have to be created before the POSITIVE_INFINITY property can
be accessed.

JScript displays POSITIVE_INFINITY values as infinity. This value behaves mathematically as
infinity.

 JScript Number Object toString Method
Converts a Number object or variable into a string using the specified radix.

Syntax: JScript Number Object toString Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 669

number.toString([radix])

Arguments: JScript Number Object toString Method
number

A Number object or variable. Cannot be a numeric literal

radix

An optional argument specifying the base to use when converting the number. Values between 2
and 16 inclusive are accepted. If not supplied, base 10 is used.

Remarks: JScript Number Object toString Method
Due to syntax restrictions, the toString method cannot be used on numeric literals. Values must
be assigned to variables first. For example, the following code is invalid:

str=1997.toString();

This code must be rewritten:

var yr = 1997

str = yr.toString()

JScript RegExp Object

 JScript RegExp Object
The RegExp object stores information on regular expression pattern searches.

Properties: JScript RegExp Object
JScript RegExp Object $1. . . $9 Property The nine most-recently used memorized

portions found during pattern matching.

JScript RegExp Object index Property The location where the first successful match
begins.

JScript RegExp Object input Property The string against which a search was
performed.

JScript RegExp Object lastIndex Property Where the last successful match begins.

JScript RegExp Object lastMatch Property The last matched characters.

JScript RegExp Object lastParen Property The last parenthesized substring match, if any.

JScript RegExp Object leftContext Property The input string up to the most recent match.

JScript RegExp Object multiline Property Indicates whether searching continued across
line breaks.

JScript RegExp Object rightContext Property The input string past the most recent match.

Syntax: JScript RegExp Object

Sun Chili!Soft ASP 3.6.2 Product Documentation 670

RegExp.propertyname

Arguments: JScript RegExp Object
propertyname

One of the RegExp object properties.

Remarks: JScript RegExp Object
The RegExp object cannot be created directly, but is always available for use. Its properties have
undefined as their value until a successful regular expression search has been completed.

 JScript RegExp Object $1. . . $9 Property
Specifies the nine most-recently memorized portions found during pattern matching. Read-only.

Syntax: JScript RegExp Object $1. . . $9 Property
RegExp.$n

Arguments: JScript RegExp Object $1. . . $9 Property
n

A number between 1 and 9.

Remarks: JScript RegExp Object $1. . . $9 Property
The value of the $1...$9 property is modified whenever a successful parenthesized match is made.
Any number of parenthesized substrings may be specified in a regular expression pattern, but
only the nine most recent can be stored.

 JScript RegExp Object index Property
Indicates where the first successful match begins in a string that was searched.

Syntax: JScript RegExp Object index Property
RegExp.index

Arguments: JScript RegExp Object index Property
RegExp

A RegExp object.

Remarks: JScript RegExp Object index Property
The index property is zero-based. Its value is modified whenever a successful match is made.

 JScript RegExp Object input Property
Contains the string against which a search was performed. Read-only.

Sun Chili!Soft ASP 3.6.2 Product Documentation 671

Syntax: JScript RegExp Object input Property
RegExp.input

Short Syntax: JScript RegExp Object input Property
RegExp.$_

Arguments: JScript RegExp Object input Property
RegExp

A RegExp object.

Remarks: JScript RegExp Object input Property
The value of the input property is modified whenever a successful match is made.

 JScript RegExp Object lastIndex Property
Indicates where the last successful match begins in a string that was searched.

Syntax: JScript RegExp Object lastIndex Property
RegExp.lastIndex

Arguments: JScript RegExp Object lastIndex Property
RegExp

The name of the RegExp object.

Remarks: JScript RegExp Object lastIndex Property
The lastIndex property is zero-based. Its value is modified whenever a successful match is made.

 JScript RegExp Object lastMatch Property
Specifies the last matched characters. Read-only.

Syntax: JScript RegExp Object lastMatch Property
RegExp.lastMatch

Short Syntax: JScript RegExp Object lastMatch Property
RegExp.$&

Remarks: JScript RegExp Object lastMatch Property
The value of the lastMatch property is modified whenever a successful match is made.

 JScript RegExp Object lastParen Property
Specifies the last parenthesized substring match, if any. Read-only.

Sun Chili!Soft ASP 3.6.2 Product Documentation 672

Syntax: JScript RegExp Object lastParen Property
RegExp.lastParen

Short Syntax: JScript RegExp Object lastParen Property
RegExp.$+

Remarks: JScript RegExp Object lastParen Property
The value of the lastParen property is modified whenever a successful parenthesized match is
made.

 JScript RegExp Object leftContext Property
Specifies the input string up to the most recent match. Read-only.

Syntax: JScript RegExp Object leftContext Property
RegExp.leftContext

Short Syntax: JScript RegExp Object leftContext Property
RegExp.$`

Remarks: JScript RegExp Object leftContext Property
The value of the leftContext property is modified whenever a successful match is made.

 JScript RegExp Object multiline Property
Indicates whether searching continued across line breaks. Read-only.

Syntax: JScript RegExp Object multiline Property
RegExp.multiline

Short Syntax: JScript RegExp Object multiline Property
RegExp.$*

Remarks: JScript RegExp Object multiline Property
The value of the multiline property is modified whenever a successful match is made. If
multiline is True, searching was performed across line breaks; otherwise, multiline returns
False.

 JScript RegExp Object rightContext Property
Specifies the input string past the most recent match. Read-only.

Syntax: JScript RegExp Object rightContext Property
RegExp.rightContext

Sun Chili!Soft ASP 3.6.2 Product Documentation 673

Short Syntax: JScript RegExp Object rightContext Property
RegExp.$'

Remarks: JScript RegExp Object rightContext Property
The value of the rightContext property is modified whenever a successful match is made.

JScript Regular Expression Object

 JScript Regular Expression Object
The Regular Expression object contains a regular expression pattern.

Methods: JScript Regular Expression Object
JScript Regular Expression Object compile Method Compiles a regular expression into an

internal format.

JScript Regular Expression Object exec Method Executes a search for a match in a
specified string.

JScript Regular Expression Object test Method Tests whether a pattern exists in a string.

Properties: JScript Regular Expression Object
JScript Regular Expression Object global Property Indicates whether the global switch (g)

has been used.

JScript Regular Expression Object ignoreCase
Property

Indicates whether the ignore case switch
(i) has been used.

JScript Regular Expression Object lastIndex
Property

The index to start the next match.

JScript Regular Expression Object source Property The text of the regular expression
pattern.

Syntax 1: JScript Regular Expression Object
var regularexpression = /pattern/[switch]

Syntax 2: JScript Regular Expression Object
var regularexpression = new RegExp("pattern",["switch"])

Arguments: JScript Regular Expression Object
pattern

The regular expression pattern to use. If you use Syntax 1, delimit the pattern by "/" characters. If
you use Syntax 2, enclose the pattern in quotes. Required.

switch

Enclose switch in quotes if you use Syntax 2. Available switches are: i (ignore case) g (global
search for all occurrences of pattern) gi (global search, ignore case). Optional.

Sun Chili!Soft ASP 3.6.2 Product Documentation 674

Remarks: JScript Regular Expression Object
Regular Expression objects store patterns used when searching strings for character
combinations. After the Regular Expression object is created, it is either passed to a string
method, or a string is passed to one of the regular expression methods. Information about the
most recent search performed is stored in the RegExp object.

Use Syntax 1 when you know the search string ahead of time. Use Syntax 2 when the search
string is changing frequently, or is unknown, such as strings taken from user input.

The pattern argument is compiled into an internal format before use. For Syntax 1, pattern is
compiled as the script is loaded. For Syntax 2, pattern is compiled just before use, or when the
compile method is called.

 JScript Regular Expression Object compile Method
Compiles a regular expression into an internal format.

Syntax: JScript Regular Expression Object compile Method
rgexp.compile(pattern)

Arguments: JScript Regular Expression Object compile Method
rgexp

A RegularExpression object. Can be a variable name or a literal. Required.

pattern

A String expression containing a regular expression pattern to be compiled. Required.

Remarks: JScript Regular Expression Object compile Method
The compile method converts pattern into an internal format for faster execution. This allows for
more efficient use of regular expressions in loops, for example.

 JScript Regular Expression Object exec Method
Executes a search for a match in a specified string.

Syntax: JScript Regular Expression Object exec Method
rgexp.exec(str)

Arguments: JScript Regular Expression Object exec Method
rgexp

A RegularExpression object. Can be a variable name or a literal. Required.

str

The string to perform a search on. Required.

Remarks: JScript Regular Expression Object exec Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 675

The results of an exec method search are placed into an array.

If the exec method does not find a match, it returns null. If it finds one or more matches, the exec
method returns an array, and the RegExp object is updated to reflect the results of the search.

 JScript Regular Expression Object global Property
Indicates whether the global switch (g) has been used. Read-only.

Syntax: JScript Regular Expression Object global Property
rgexp.global

Arguments: JScript Regular Expression Object global Property
rgexp

A Regular Expression object.

Remarks: JScript Regular Expression Object global Property
The global property contains True if the global (g) switch is used with a regular expression, and
False if not.

 JScript Regular Expression Object ignoreCase Property
Indicates whether the ignore case (i) switch has been used. Read-only.

Syntax: JScript Regular Expression Object ignoreCase Property
rgexp.ignoreCase

Arguments: JScript Regular Expression Object ignoreCase Property
rgexp

A Regular Expression object.

Remarks: JScript Regular Expression Object ignoreCase Property
The ignoreCase property contains True if the ignore case (i) switch is used with a regular
expression, and False if not.

 JScript Regular Expression Object lastIndex Property
Specifies the index at which to start the next match.

Syntax: JScript Regular Expression Object lastIndex Property
rgexp.lastIndex [= index]

Arguments: JScript Regular Expression Object lastIndex Property
rgexp

Sun Chili!Soft ASP 3.6.2 Product Documentation 676

A Regular Expression object. Can be a variable name or a literal. Required.

index

The index from which to begin the next search.

Remarks: JScript Regular Expression Object lastIndex Property
The lastIndex property is modified by the exec method, and the match, replace, and split
methods of the String object.

The following rules apply to values of lastIndex:

� If lastIndex is greater than the length of the string, the test and exec methods fail, and
lastIndex is set to zero.

� If lastIndex is equal to the length of the string, the regular expression matches if the
pattern matches the empty string. Otherwise, the match fails and lastIndex is reset to zero.

� Otherwise, lastIndex is set to the next position following the most recent match.

 JScript Regular Expression Object source Property
Contains the text of the regular expression pattern. Read-only.

Syntax: JScript Regular Expression Object source Property
rgexp.source

Arguments: JScript Regular Expression Object source Property
rgexp

A Regular Expression object. It can be a variable name or a literal.

 JScript Regular Expression Object test Method
Tests whether a pattern exists in a string.

rgexp.test(str)

Arguments: JScript Regular Expression Object test Method
rgexp

A Regular Expression object. Can be a variable name or a literal. Required.

str

The string to test a search on. Required.

Remarks: JScript Regular Expression Object test Method
The test method checks to see if a pattern exists within a string and returns True if so, and False
otherwise.

The RegExp object is not modified by the test method.

Sun Chili!Soft ASP 3.6.2 Product Documentation 677

JScript String Object

 JScript String Object
The String object enables manipulation and formatting of text strings and determination and
location of substrings within strings.

Methods: JScript String Object
JScript String Object anchor Method Places an HTML anchor tag (<A>) with a

NAME attribute around text.

JScript String Object big Method Places HTML <BIG> tags around text.

JScript String Object blink Method Places HTML <BLINK> tags around text.

JScript String Object bold Method Places HTML tags around text.

JScript String Object charAt Method Retrieves the character as the specified index.

JScript String Object charCodeAt Method Returns the Unicode encoding of the specified
character.

JScript String Object concat Method Combines two strings into one String object.

JScript String Object fixed Method Places HTML <TT> tags around text.

JScript String Object fontcolor Method Places an HTML tag with the
COLOR attribute around text.

JScript String Object fontsize Method Places an HTML tag with the SIZE
attribute around text.

JScript String Object fromCharCode Method Creates a string from a number of Unicode
character values.

JScript String Object indexOf Method Finds the first occurrence of a substring within
a String object.

JScript String Object italics Method Places HTML <I> tags around text.

JScript String Object lastIndexOf Method Finds the last occurrence of a substring.

JScript String Object link Method Places an HTML anchor tag (<A>) with an
HREF attribute around text.

JScript String Object match Method Performs a search on a string using the
supplied Regular Expression object.

JScript String Object replace Method Replaces the text found by a regular expression
with other text.

JScript String Object search Method Searches a string for matches to a regular
expression.

JScript String Object slice Method Returns a section of a string.

Sun Chili!Soft ASP 3.6.2 Product Documentation 678

JScript String Object small Method Places HTML <SMALL> tags around text.

JScript String Object split Method Removes text from a string.

JScript String Object strike Method Places HTML <STRIKE> tags around text.

JScript String Object sub Method Places HTML <SUB> tags around text.

JScript String Object substr Method Returns a substring beginning at a specified
location and having a specified length.

JScript String Object substring Method Returns the substring at a specified location.

JScript String Object sup Method Places HTML <SUP> tags around text.

JScript String Object toLowerCase Method Converts text to lowercase letters.

JScript String Object toUpperCase Method Converts text to uppercase letters.

Properties: JScript String Object
JScript String Object length Property The length of a String object.

Syntax: JScript String Object
StringObj[.method]

"String Literal"[.method]

Arguments: JScript String Object
method

A String object method.

Remarks: JScript String Object
String objects can be created implicitly using string literals. String objects created in this fashion
(referred to as standard strings) are treated differently than String objects created using the new
operator. All string literals share a common, global string object. So, if a property is added to a
string literal, it is available to all standard string objects:

var alpha, beta;

alpha = "This is a string";

beta = "This is also a string";

alpha.test = 10;

In this example, test is now defined for beta and all future string literals. In the following
example, however, added properties are treated differently:

var gamma, delta;

gamma = new String("This is a string");

delta = new String("This is also a string");

gamma.test = 10;

Sun Chili!Soft ASP 3.6.2 Product Documentation 679

In this case, test is not defined for delta. Each String object declared as a new String object has
its own set of members. This is the only case where String objects and string literals are handled
differently.

 JScript String Object anchor Method
Places an HTML anchor <A> with a NAME attribute around specified text in the object.

Syntax: JScript String Object anchor Method
strVariable.anchor(anchorstring)

"String Literal".anchor(anchorstring)

Arguments: JScript String Object anchor Method
strVariable

The name of a String object.

anchorstring

Text you want to place in the NAME attribute of an HTML anchor.

Remarks: JScript String Object anchor Method
Call the anchor method to create a named anchor out of a String object. The following example
demonstrates how the anchor method accomplishes this:

var strVariable = "This is an anchor" ;

strVariable = strVariable.anchor("Anchor1");

The value of strVariable after the last statement is:

This is an anchor

No checking is done to see if the tag already exists.

 JScript String Object big Method
Places HTML <BIG> tags around text in a String object.

Syntax: JScript String Object anchor Method
strVariable.big()

"String Literal".big()

Arguments: JScript String Object anchor Method
strVariable

The name of a String object.

Remarks: JScript String Object anchor Method
The example that follows shows how the big method works:

Sun Chili!Soft ASP 3.6.2 Product Documentation 680

var strVariable = "This is a string object";

strVariable = strVariable.big();

The value of strVariable after the last statement is:

<BIG>This is a string object</BIG>

No checking is done to see if the tag already exists.

 JScript String Object blink Method
Places HTML <BLINK> tags around text in a String object.

Syntax: JScript String Object blink Method
strVariable.blink()

"String Literal".blink()

Arguments: JScript String Object blink Method
strVariable

The name of a String object.

Remarks: JScript String Object blink Method
The example that follows demonstrates how the blink method works:

var strVariable = "This is a string object";

strVariable = strVariable.blink();

The value of strVariable after the last statement is:

<BLINK>This is a string object</BLINK>

No checking is done to see if the tag already exists.

The <BLINK> tag is not supported in Microsoft Internet Explorer.

 JScript String Object bold Method
Places HTML tags around text in a String object.

Syntax: JScript String Object bold Method
strVariable.bold()

"String Literal".bold()

Arguments: JScript String Object bold Method
strVariable

The name of a String object.

Sun Chili!Soft ASP 3.6.2 Product Documentation 681

Remarks: JScript String Object bold Method
The example that follows demonstrates how the bold method works:

var strVariable = "This is a string object";

strVariable = strVariable.bold();

The value of strVariable after the last statement is:

This is a string object

No checking is done to see if the tag already exists.

 JScript String Object charAt Method
Retrieves the character at the index specified.

Syntax: JScript String Object charAt Method
strVariable.charAt(index)

"String Literal".charAt(index)

Arguments: JScript String Object charAt Method
strVariable

The name of a String object.

index

The zero-based index of the desired character. Valid values are between 0 and the length of the
string minus 1.

Remarks: JScript String Object charAt Method
The charAt method returns a character value equal to the character at the specified index. The
first character in a string is at index 0, the second is at index 1, and so forth. Values of index out
of valid range return undefined.

 JScript String Object charCodeAt Method
Returns the Unicode encoding of the specified character.

Syntax: JScript String Object charCodeAt Method
stringObj.charCodeAt(index)

Arguments: JScript String Object charCodeAt Method
stringObj

The name of a String object.

index

The zero-based index of the specified character. Required.

Sun Chili!Soft ASP 3.6.2 Product Documentation 682

Remarks: JScript String Object charCodeAt Method
If there is no character at the specified index, NaN is returned.

 JScript String Object concat Method
Returns a String object containing the concatenation of two supplied strings.

Syntax: JScript String Object concat Method
string1.concat(string2)

Arguments: JScript String Object concat Method
string1

The String object or literal to concatenate with string2. Required.

string2

A String object or literal to concatenate to the end of string1. Required.

Remarks: JScript String Object concat Method
The result of the concat method is equivalent to: result = string1 + string2.

 JScript String Object fixed Method
Places HTML <TT> tags around text in a String object.

Syntax: JScript String Object fixed Method
strVariable.fixed()

"String Literal".fixed()

Arguments: JScript String Object fixed Method
strVariable

A String object.

Remarks: JScript String Object fixed Method
The example that follows demonstrates how the fixed method works:

var strVariable = "This is a string object";

strVariable = strVariable.fixed();

The value of strVariable after the last statement is:

<TT>This is a string object</TT>

No check is done to see if the tag already exists.

 JScript String Object fontcolor Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 683

Places an HTML tag with the COLOR attribute around the text in a String object.

Syntax: JScript String Object fontcolor Method
strVariable.fontcolor(colorval)

"String Literal".fontcolor(colorval)

Arguments: JScript String Object fontcolor Method
strVariable

A String object.

colorval

A string containing a color value. This can either be the hexadecimal value for a color, or the
predefined name for a color.

Remarks: JScript String Object fontcolor Method
The following example demonstrates the fontcolor method:

var strVariable = "This is a string";

strVariable = strVariable.fontcolor("red");

The value of strVariable after the last statement is:

This is a string

Valid predefined color names depend on your JScript host (browser, server, and so forth). They
may also vary from version to version of your host. Check your host documentation for more
information.

No checking is done to see if the tag has already been applied to the string.

 JScript String Object fontsize Method
Places an HTML tag with the SIZE attribute around the text in a String object.

Syntax: JScript String Object fontsize Method
strVariable.fontsize(intSize)

"String Literal".fontsize(intSize)

Arguments: JScript String Object fontsize Method
strVariable

A String object.

intSize

An integer value that determines the size of the text.

Remarks: JScript String Object fontsize Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 684

The following example demonstrates the fontsize method:

var strVariable = "This is a string";

strVariable = strVariable.fontsize(-1);

The value of strVariable after the last statement is:

This is a string

Valid integer values depend on your Microsoft JScript host. See your host documentation for
more information.

No checking is done to see if the tag already exists

 JScript String Object fromCharCode Method
Creates a string from a number of Unicode character values.

Syntax: JScript String Object fromCharCode Method
String.fromCharCode(code1, code2, ..., coden)

Arguments: JScript String Object fromCharCode Method
code1, code2, …coden

The series of Unicode character values to convert into a string.

Remarks: JScript String Object fromCharCode Method
A String object need not be created before calling fromCharCode.

In the following example, test contains the string "plain":

var test = String.fromCharCode(112, 108, 97, 105, 110);

 JScript String Object indexOf Method
Finds the first occurrence of a substring within a String object.

Syntax: JScript String Object indexOf Method
strVariable.indexOf(substring, startindex)

"String Literal".indexOf(substring, startindex)

Arguments: JScript String Object indexOf Method
strVariable

The name of a String object.

substring

The substring to search for within the String object.

startindex

Sun Chili!Soft ASP 3.6.2 Product Documentation 685

An optional integer value specifying the index to begin searching within the String object. If
omitted, searching begins at the beginning of the string.

Remarks: JScript String Object indexOf Method
The indexOf method returns an integer value indicating the beginning of the substring within the
String object. If the substring is not found, a -1 is returned.

If startindex is negative, startindex is treated as zero. If it is larger than the greatest character
position index, it is treated as the largest possible index.

Searching is performed from left to right. Otherwise, this method is identical to the lastIndexOf
method.

 JScript String Object italics Method
Places HTML <I> tags around text in a String object.

Syntax: JScript String Object italics Method
strVariable.italics()

"String Literal".italics()

Arguments: JScript String Object italics Method
strVariable

The name of a String object.

Remarks: JScript String Object italics Method
The example that follows demonstrates how the italics method works:

var strVariable = "This is a string";

strVariable = strVariable.italics();

The value of strVariable after the last statement is:

<I>This is a string</I>

No check is done to see if the tag already exists.

 JScript String Object lastIndexOf Method
Finds the last occurrence of a substring within a String object.

Syntax: JScript String Object lastIndexOf Method
strVariable.lastIndexOf(substring, startindex)

"String Literal".lastIndexOf(substring, startindex)

Arguments: JScript String Object lastIndexOf Method
strVariable

Sun Chili!Soft ASP 3.6.2 Product Documentation 686

The name of a String object.

substring

The substring to search for within the String object.

startindex

An optional integer value specifying the index to begin searching within the String object. If
omitted, searching begins at the end of the string.

Remarks: JScript String Object lastIndexOf Method
The lastIndexOf method returns an integer value indicating the beginning of the substring within
the String object. If the substring is not found, a -1 is returned.

If startindex is negative, startindex is treated as zero. If it is larger than the greatest character
position index, it is treated as the largest possible index.

Searching is performed right to left. Otherwise, this method is identical to the indexOf method.

 JScript String Object length Property
Contains the length of a String object.

Syntax: JScript String Object length Property
strVariable.length

"String Literal".length

Remarks: JScript String Object length Property
The length property contains an integer that indicates the number of characters in the String
object. The last character in the String object has an index of length - 1.

 JScript String Object link Method
Places an HTML anchor <A> with an HREF attribute around the text in a String object.

Syntax: JScript String Object link Method
strVariable.link(linkstring)

"String Literal".link(linkstring)

Arguments: JScript String Object link Method
strVariable

The name of a String object.

linkstring

The text that you want to place in the HREF attribute of the HTML anchor.

Remarks: JScript String Object link Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 687

Call the link method to create a hyperlink out of a String object. The following is an example of
how the method accomplishes this:

var strVariable = "This is a hyperlink";

strVariable = strVariable.link("http://www.microsoft.com");

The value of strVariable after the last statement is:

This is a hyperlink

No check is done to see if the tag already exists

 JScript String Object match Method
Performs a search on a string using the supplied Regular Expression object.

Syntax: JScript String Object match Method
stringObj.match(rgExp)

Arguments: JScript String Object match Method
strObj

The name of a String object. Required.

rgExp

The Regular Expression object to use in the search. Required.

Remarks: JScript String Object match Method
The match method, which behaves like the exec method, returns an array of values.

Element zero of the array contains the last matched characters. Elements 1...n contain matches to
any parenthesized substrings in the regular expression.

The method updates the contents of the RegExp object.

 JScript String Object replace Method
Replaces the text found by a regular expression with other text.

Syntax: JScript String Object replace Method
stringObj.match(rgExp, replaceText)

Arguments: JScript String Object replace Method
stringObj

The name of a String object. Required.

rgExp

A Regular Expression object describing what to search for. Required.

Sun Chili!Soft ASP 3.6.2 Product Documentation 688

replaceText

A String object or literal containing the text to replace for every successful match of rgExp in
stringObj.

Remarks: JScript String Object replace Method
The result of the replace method is a copy of stringObj after all replacements have been made.

The method updates the contents of the RegExp object.

 JScript String Object search Method
Searches a string for matches to a regular expression.

Syntax: JScript String Object search Method
stringObj.search(rgexp)

Arguments: JScript String Object search Method
stringObj

The name of a String object. Required.

rgExp

A Regular Expression object containing the pattern to search for. Required.

Remarks: JScript String Object search Method
The search method indicates if a match is present or not. It returns True if a match is found, and
False otherwise. To get further information, use the match method.

 JScript String Object slice Method
Returns a section of a string.

Syntax: JScript String Object slice Method
stringObj.slice(start, [end])

Arguments: JScript String Object slice Method
stringObj

A String object or literal. Required.

start

The zero-based index of the beginning of the specified portion of stringObj. Required.

end

The zero-based index of the end of the specified portion of stringObj. Optional.

Remarks: JScript String Object slice Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 689

The slice method returns a String object containing the specified portion of stringObj.

If negative, end indicates an offset from the end of stringObj. In addition, it is not zero-based. If
omitted, extraction continues to the end of stringObj.

In the example that follows, the two uses of the slice method return the same thing. Negative one
in the second example points to the last character in str1 as the ending point:

str1.slice(0)

str2.slice(0,-1)

 JScript String Object small Method
Places HTML <SMALL> tags around text in a String object.

Syntax: JScript String Object small Method
strVariable.small()

"String Literal".small()

Arguments: JScript String Object small Method
strVariable

The name of a String object.

Remarks: JScript String Object small Method
The example that follows demonstrates how the small method works:

var strVariable = "This is a string";

strVariable = strVariable.small();

The value of strVariable after the last statement is:

<SMALL>This is a string</SMALL>

No checking is done to see if the tag already exists.

 JScript String Object split Method
Removes text from a string.

Syntax: JScript String Object split Method
stringObj.split(rgExp)

Arguments: JScript String Object split Method
stringObj

The name of a String object. Required.

rgExp

Sun Chili!Soft ASP 3.6.2 Product Documentation 690

A Regular Expression object containing the pattern to search for. Required.

Remarks: JScript String Object split Method
The result of the split method is a copy of stringObj after all successful matches have been
removed.

The method updates the RegExp object.

 JScript String Object strike Method
Places HTML <STRIKE> tags around text in a String object.

Syntax: JScript String Object strike Method
strVariable.strike()

"String Literal".strike()

Arguments: JScript String Object strike Method
strVariable

The name of a String object.

Remarks: JScript String Object strike Method
The example that follows demonstrates how the strike method works:

var strVariable = "This is a string object";

strVariable = strVariable.strike();

The value of strVariable after the last statement is:

<STRIKE>This is a string object</STRIKE>

No check is done to see if the tag already exists.

 JScript String Object sub Method
Places HTML <SUB> tags around text in a String object.

Syntax: JScript String Object sub Method
strVariable.sub()

"String Literal".sub()

Arguments: JScript String Object sub Method
strVariable

The name of a String object.

Remarks: JScript String Object sub Method
The example that follows demonstrates how the sub method works:

Sun Chili!Soft ASP 3.6.2 Product Documentation 691

var strVariable = "This is a string object"

strVariable = strVariable.sub();

The value of strVariable after the last statement is:

_{This is a string object}

No checking is done to see if the tag already exists.

 JScript String Object substr Method
Returns a substring beginning at a specified location and having a specified length.

Syntax: JScript String Object substr Method
stringvar.substr(start [, length])

Arguments: JScript String Object substr Method
stringvar

A string literal or String object from which the substring is extracted. Required.

start

The starting position of the desired substring. The index of the first character in the string is zero.
Required.

length

The number of characters to include in the returned substring. Optional.

Remarks: JScript String Object substr Method
If length is zero or negative, an empty string is returned. If not specified, the substring continues
to the end of stringvar.

 JScript String Object substring Method
Retrieves the substring at the specified location within a String object.

Syntax: JScript String Object substring Method
strVariable.substring(start, end)

"String Literal".substring(start, end)

Arguments: JScript String Object substring Method
strVariable

The name of a String object.

start

The zero-based index indicating the beginning of the substring.

Sun Chili!Soft ASP 3.6.2 Product Documentation 692

end

The zero-based index indicating the end of the substring.

Remarks: JScript String Object substring Method
The substring method returns a String object containing the substring derived from the original
object.

The substring method uses the lower of start and end as the beginning point of the substring. For
example, strvar.substring(0, 3) and strvar.substring(3, 0) return the same substring.

The only exception to this is for negative parameters. If the first parameter is less than zero, it is
treated as zero. If the second parameter is negative, it is set to the value of the first parameter.

The length of the substring is equal to the absolute value of the difference between start and end.
For example, the length of the substring returned in strvar.substring(0, 3) and strvar.substring(3,
0) is three.

Finally, start and end can be strings. If so, these strings are coerced into integers if possible. If
not, the value of the parameter is treated as zero.

 JScript String Object sup Method
Places HTML <SUP> tags around text in a String object.

Syntax: JScript String Object sup Method
strVariable.sup()

"String Literal".sup()

Arguments: JScript String Object sup Method
strVariable

The name of a String object.

Remarks: JScript String Object sup Method
The example that follows demonstrates how the sup method works:

var strVariable = "This is a string object";

strVariable = strVariable.sup();

The value of strVariable after the last statement is:

^{This is a string object}

No check is done to see if the tag already exists.

 JScript String Object toLowerCase Method
Places the text in a String object in lowercase characters.

Sun Chili!Soft ASP 3.6.2 Product Documentation 693

Syntax: JScript String Object toLowerCase Method
strVariable.toLowerCase()

"String Literal".toLowerCase()

Arguments: JScript String Object toLowerCase Method
strVariable

The name of a String object.

Remarks: JScript String Object toLowerCase Method
The toLowerCase method has no effect on nonalphabetic characters.

The following example demonstrates the effects of the toLowerCase method:

var strVariable = "This is a STRING object";

strVariable = strVariable.toLowerCase();

The value of strVariable after the last statement is:

this is a string object

 JScript String Object toUpperCase Method
Places the text in a String object in uppercase characters.

Syntax: JScript String Object toUpperCase Method
strVariable.toUpperCase()

"String Literal".toUpperCase()

Arguments: JScript String Object toUpperCase Method
strVariable

The name of a String object.

Remarks: JScript String Object toUpperCase Method
The toUpperCase method has no effect on nonalphabetic characters.

The following example demonstrates the effects of the toUpperCase method:

var strVariable = "This is a STRING object";

strVariable = strVariable.toUpperCase();

The value of strVariable after the last statement is:

THIS IS A STRING OBJECT

JScript TextStream Object

Sun Chili!Soft ASP 3.6.2 Product Documentation 694

 JScript TextStream Object
The TextStream object facilitates sequential access to file.

Methods: JScript TextStream Object
JScript TextStream Object TextStream Close
Method

Closes an open TextStream file.

JScript TextStream Object TextStream Read
Method

Reads a specified number of characters.

JScript TextStream Object ReadAll Method Reads an entire TextStream.

JScript TextStream Object ReadLine Method Reads an entire line.

JScript TextStream Object Skip Method Skips a specified number of characters.

JScript TextStream Object SkipLine Method Skips the next line.

JScript TextStream Object Write Method Writes a specified string.

JScript TextStream Object WriteBlankLines
Method

Writes a specified number of newline
characters.

JScript TextStream Object WriteLine Method Writes a specified string and newline character.

Properties: JScript TextStream Object
JScript TextStream Object AtEndOfLine
Property

True if the file pointer is before the end-of-line
marker.

JScript TextStream Object AtEndOfStream
Property

True if the file pointer is at the end of a file.

JScript TextStream Object Column Property The column number of the current character
position.

JScript TextStream Object Line Property The current line number.

Syntax: JScript TextStream Object
TextStream.{property | method()}

Arguments: JScript TextStream Object
The property and method arguments can be any of the properties and methods associated with the
TextStream object.

Note
In actual usage, TextStream is replaced by a variable placeholder representing the
TextStream object returned from the FileSystemObject.

Remarks: JScript TextStream Object
In the following code, a is the TextStream object returned by the CreateTextFile method on the
FileSystemObject:

Sun Chili!Soft ASP 3.6.2 Product Documentation 695

var fs = new ActiveXObject("Scripting.FileSystemObject")

var a = fs.CreateTextFile("c:\\testfile.txt", true)

a.WriteLine("This is a test.")

a.Close

WriteLine and Close are two methods of the TextStream object.

 JScript TextStream Object AtEndOfLine Property
Returns True if the file pointer is positioned immediately before the end-of-line marker in a
TextStream file, False if it is not. Read-only.

Syntax: JScript TextStream Object AtEndOfLine Property
object.AtEndOfLine

Arguments: JScript TextStream Object AtEndOfLine Property
object

The name of a TextStream object.

Remarks: JScript TextStream Object AtEndOfLine Property
The AtEndOfLine property applies only to TextStream files that are open for reading;
otherwise, an error occurs.

The following code illustrates the use of the AtEndOfLine property:

function GetALine(filespec)

{

var fs, a, s, ForReading;

ForReading = 1, s = "";

fs = new ActiveXObject("Scripting.FileSystemObject");

a = fs.OpenTextFile(filespec, ForReading, false);

while (!a.AtEndOfLine)

{

s += a.Read(1);

}

a.Close();

return s;

}

 JScript TextStream Object AtEndOfStream Property

Sun Chili!Soft ASP 3.6.2 Product Documentation 696

Returns true if the file pointer is at the end of a TextStream file; false if it is not. Read-only.

Syntax: JScript TextStream Object AtEndOfStream Property
object.AtEndOfStream

Arguments: JScript TextStream Object AtEndOfStream Property
object

The name of a TextStream object.

Remarks: JScript TextStream Object AtEndOfStream Property
The AtEndOfStream property applies only to TextStream files that are open for reading,
otherwise, an error occurs.

The following code illustrates the use of the AtEndOfStream property:

function GetALine(filespec)

{

var fs, f, s, ForReading;

ForReading = 1, s = "";

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.OpenTextFile(filespec, ForReading, false);

while (!f.AtEndOfStream)

s += f.ReadLine();

f.Close();

return s;

}

 JScript TextStream Object TextStream Close Method
Closes an open TextStream file.

Syntax: JScript TextStream Object TextStream Close Method
object.Close();

Arguments: JScript TextStream Object TextStream Close Method
object

The name of a TextStream object.

 JScript TextStream Object Column Property

Sun Chili!Soft ASP 3.6.2 Product Documentation 697

Read-only property that returns the column number of the current character position in a
TextStream file.

Syntax: JScript TextStream Object Column Property
object.Column

Arguments: JScript TextStream Object Column Property
object

The name of a TextStream object.

Remarks: JScript TextStream Object Column Property
After a newline character has been written, but before any other character is written, Column is
equal to 1.

 JScript TextStream Object Line Property
Read-only property that returns the current line number in a TextStream file.

Syntax: JScript TextStream Object Line Property
object.Line

Arguments: JScript TextStream Object Line Property
object

The name of a TextStream object.

Remarks: JScript TextStream Object Line Property
After a file is initially opened and before anything is written, Line is equal to 1.

 JScript TextStream Object TextStream Read Method
Reads a specified number of characters from a TextStream file and returns the resulting string.

Syntax: JScript TextStream Object TextStream Read Method
object.Read(characters)

Arguments: JScript TextStream Object TextStream Read Method
object

The name of a TextStream object. Required.

characters

The number of characters you want to read from the file. Required.

 JScript TextStream Object ReadAll Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 698

Reads an entire TextStream file and returns the resulting string.

Syntax: JScript TextStream Object ReadAll Method
object.ReadAll();

Arguments: JScript TextStream Object ReadAll Method
object

The name of a TextStream object.

 JScript TextStream Object ReadLine Method
Reads an entire line (up to, but not including, the newline character) from a TextStream file and
returns the resulting string.

Syntax: JScript TextStream Object ReadLine Method
object.ReadLine()

Arguments: JScript TextStream Object ReadLine Method
object

The name of a TextStream object.

 JScript TextStream Object Skip Method
Skips a specified number of characters when reading a TextStream file.

Syntax: JScript TextStream Object Skip Method
object.Skip(characters)

Arguments: JScript TextStream Object Skip Method
object

The name of a TextStream object. Required.

characters

Number of characters to skip when reading a file. Required.

Remarks: JScript TextStream Object Skip Method
Skipped characters are discarded.

 JScript TextStream Object SkipLine Method
Skips the next line when reading a TextStream file.

Syntax: JScript TextStream Object SkipLine Method
object.SkipLine()

Sun Chili!Soft ASP 3.6.2 Product Documentation 699

Arguments: JScript TextStream Object SkipLine Method
object

The name of a TextStream object.

 JScript TextStream Object Write Method
Writes a specified string to a TextStream file.

Syntax: JScript TextStream Object Write Method
object.Write(string)

Arguments: JScript TextStream Object Write Method
object

The name of a TextStream object. Required.

string

The text you want to write to the file. Required.

Remarks: JScript TextStream Object Write Method
Specified strings are written to the file with no intervening spaces or characters between each
string. Use the WriteLine method to write a newline character or a string that ends with a
newline character.

 JScript TextStream Object WriteBlankLines Method
Writes a specified number of newline characters to a TextStream file.

Syntax: JScript TextStream Object WriteBlankLines Method
object.WriteBlankLines(lines)

Arguments: JScript TextStream Object WriteBlankLines Method
object

The name of a TextStream object. Required.

lines

The number of newline characters you want to write to the file. Required.

Remarks: JScript TextStream Object WriteBlankLines Method
For Windows systems, WriteBlankLines uses <CR><LF> as the newline character. On UNIX
systems, WriteBlankLines uses <LF>.

 JScript TextStream Object WriteLine Method
Writes a specified string and newline character to a TextStream file.

Sun Chili!Soft ASP 3.6.2 Product Documentation 700

Syntax: JScript TextStream Object WriteLine Method
object.WriteLine([string])

Arguments: JScript TextStream Object WriteLine Method
object

The name of a TextStream object. Required.

string

The text you want to write to the file. If omitted, a newline character is written to the file.
Optional.

Remarks: JScript TextStream Object WriteLine Method
For Windows systems, WriteBlankLines uses <CR><LF> as the newline character. On UNIX
systems, WriteBlankLines uses <LF>.

JScript VBArray Object

 JScript VBArray Object
The VBArray object provides access to Visual Basic safe arrays.

Methods: JScript VBArray Object
JScript VBArray Object Dimensions Method The number of dimensions in a VBArray.

JScript VBArray Object getItem Method Retrieves an item from a VBArray.

JScript VBArray Object lbound Method The lowest index value used in a specified
dimension.

JScript VBArray Object toArray Method Converts the VBArray to a standard JScript
array.

JScript VBArray Object ubound Method The highest index value used in a specified
dimension.

Syntax: JScript VBArray Object
new VBArray(safeArray)

Arguments: JScript VBArray Object
safeArray

A VBArray value.

Remarks: JScript VBArray Object
VBArray objects are read-only, and cannot be created directly. The safeArray argument must
have obtained a VBArray value before being passed to the VBArray constructor. This can only
be done by retrieving the value from an existing ActiveX or other object.

Sun Chili!Soft ASP 3.6.2 Product Documentation 701

VBArrays can have multiple dimensions. The indices of each dimension can be different. The
dimensions method retrieves the number of dimensions in the array; the lbound and ubound
methods retrieve the range of indices used by each dimension.

 JScript VBArray Object Dimensions Method
Returns the number of dimensions in a VBArray object.

Syntax: JScript VBArray Object Dimensions Method
array.dimensions()

Arguments: JScript VBArray Object Dimensions Method
array

A VBArray object.

Remarks: JScript VBArray Object Dimensions Method
The dimensions method provides a way to retrieve the number of dimensions in a specified
VBArray object.

 JScript VBArray Object getItem Method
Retrieves the item at the specified location.

Syntax: JScript VBArray Object getItem Method
safeArray.getItem(dimension1[, dimension2, ...], dimensionN)

Arguments: JScript VBArray Object getItem Method
safeArray

A VBArray object. Required.

dimension1, ..., dimensionN

Specifies the exact location of the desired element of the VBArray. N equals the number of
dimensions in the VBArray.

 JScript VBArray Object lbound Method
Returns the lowest index value used in the specified dimension of a VBArray.

Syntax: JScript VBArray Object lbound Method
safeArray.lbound(dimension)

Arguments: JScript VBArray Object lbound Method
safeArray

A VBArray object. Required.

Sun Chili!Soft ASP 3.6.2 Product Documentation 702

dimension

The dimension of the VBArray for which the lower bound index is wanted. If omitted, the
lbound method behaves as if a 1 was passed. Optional.

Remarks: JScript VBArray Object lbound Method
If the VBArray is empty, the lbound method returns undefined. If dimension is greater than the
number of dimensions in the VBArray, or is negative, the method generates a "Subscript out of
range" error.

 JScript VBArray Object toArray Method
Converts a VBArray to a standard JScript array.

Syntax: JScript VBArray Object toArray Method
safeArray.toArray()

Arguments: JScript VBArray Object toArray Method
safeArray

A VBArray object.

Remarks: JScript VBArray Object toArray Method
The conversion translates the multidimensional VBArray object into a single dimensional JScript
array. Each successive dimension is appended to the end of the previous one. For example, a
VBArray object with three dimensions and three elements in each dimension is converted into a
JScript array as follows

Suppose the VBArray object contains: (1, 2, 3), (4, 5, 6), (7, 8, 9). After translation, the JScript
array contains: 1, 2, 3, 4, 5, 6, 7, 8, 9.

There is currently no way to convert a JScript array into a VBArray object.

 JScript VBArray Object ubound Method
Returns the highest index value used in the specified dimension of the VBArray.

Syntax: JScript VBArray Object ubound Method
safeArray.ubound(dimension)

Arguments: JScript VBArray Object ubound Method
safeArray

A VBArray object. Required.

dimension

The dimension of the VBArray object for which the higher bound index is wanted. If omitted,
ubound behaves as if a 1 was passed. Optional.

Sun Chili!Soft ASP 3.6.2 Product Documentation 703

Remarks: JScript VBArray Object ubound Method
If the VBArray object is empty, the ubound method returns undefined. If dimension is greater
than the number of dimensions in the VBArray object, or is negative, the method generates a
"Subscript out of range" error.

JScript FileSystemObject Collections

Collections: JScript Collections
JScript Collections Drives Collection Collection of available drives.

JScript Collections Files Collection Collection of all File objects in a Folder
object.

JScript Folders Collection Collection of all Folder objects in a Folder
object.

Methods: JScript Collections
JScript Collections Add Method Adds a new Folder object to a Folders

collection.

Properties: JScript Collections
JScript Collections Count Property The number of items in a collection.

JScript Collections Item Property An item in a collection.

Note
Collections returned by FileSystemObject method calls reflect the state of the file
system when the collection was created. Changes to the file system after creation are not
reflected in the collection. If the file system might be changed during the lifetime of the
collection object, the method returning the collection should be called again to ensure that
the contents are current.

 JScript Collections Drives Collection

Syntax: JScript Collections Drives Collection
object.Drives

Arguments: JScript Collections Drives Collection
object

A FileSystemObject.

Remarks: JScript Collections Drives Collection
Removable-media drives need not have media inserted for them to appear in the Drives
collection.

Sun Chili!Soft ASP 3.6.2 Product Documentation 704

You can iterate the members of the Drives collection using the Enumerator object and the for
statement:

function ShowDriveList()

{

var fs, s, n, e, x;

fs = new ActiveXObject("Scripting.FileSystemObject");

e = new Enumerator(fs.Drives);

s = "";

for (; !e.atEnd(); e.moveNext())

{

x = e.item();

s = s + x.DriveLetter;

s += " - ";

if (x.DriveType == 3)

n = x.ShareName;

else if (x.IsReady)

n = x.VolumeName;

else

n = "[Drive not ready]";

s += n + "
";

}

Response.Write(s);

}

Under UNIX the Drives collection has only one member, "/".

 JScript Collections Files Collection
Collection of all File objects within a folder.

Remarks: JScript Collections Files Collection
The following code illustrates how to get a Files collection and iterate the collection using the
Enumerator object and the for statement:

function ShowFolderFileList(folderspec)

{

var fs, f, f1, fc, s;

Sun Chili!Soft ASP 3.6.2 Product Documentation 705

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFolder(folderspec);

fc = new Enumerator(f.files);

s = "";

for (; !fc.atEnd(); fc.moveNext())

{

s += fc.item();

s += "
";

}

Response.Write(s);

}

 JScript Folders Collection
Collection of all Folder objects contained within a Folder object.

Remarks: JScript Folders Collection
The following code illustrates how to get a Folders collection and how to iterate the collection
using the Enumerator object and the for statement:

function ShowFolderList(folderspec)

{

var fs, f, f1, fc, s;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFolder(folderspec);

fc = new Enumerator(f.SubFolders);

s = "";

for (; !fc.atEnd(); fc.moveNext())

{

s += fc.item();

s += "
";

}

Response.Write(s);

}

Sun Chili!Soft ASP 3.6.2 Product Documentation 706

 JScript Folders Collection Add Method
Adds a new Folder to a Folders collection.

Syntax: JScript Folders Collection Add Method
object.Add (folderName)

Arguments: JScript Folders Collection Add Method
object

The name of a Folders collection. Required.

folderName

The name of the new Folder object being added. Required.

Remarks: JScript Folders Collection Add Method
The following example illustrates the use of the Add method to create a new folder:

function AddNewFolder(path, folderName)

{

var fs, f, fc, nf;

fs = new ActiveXObject("Scripting.FileSystemObject");

f = fs.GetFolder(path);

fc = f.SubFolders;

if (folderName != "")

nf = fc.Add(folderName);

else

nf = fc.Add("New Folder");

}

An error occurs if the folderName already exists.

 JScript Collections Count Property
Returns the number of items in a collection. Read-only.

Syntax: JScript Collections Count Property
object.Count

Arguments: JScript Collections Count Property
object

The name of one of the collections.

Sun Chili!Soft ASP 3.6.2 Product Documentation 707

Remarks: JScript Collections Count Property
The following code illustrates use of the Count property:

var a, d, i, s; // Create some variables.

d = new ActiveXObject("Scripting.Dictionary");

d.Add ("a", "Athens"); // Add some keys and items

d.Add ("b", "Belgrade");

d.Add ("c", "Cairo");

a = (new VBArray(d.Keys())); // Get the keys.

s = "";

for (i = 0; i < d.Count; i++) //Iterate the dictionary.

{

s += a.getItem(i) + " - " + d(a.getItem(i)) + "
";

}

document.write(s); // Print item.

 JScript Collections Item Property
Returns an item based on the specified key. Read/write.

Syntax: JScript Collections Item Property
object.Item(key)[= newitem]

Arguments: JScript Collections Item Property
object

The name of a collection object. Required.

key

Index associated with the item being retrieved or added. Required.

Remarks: JScript Collections Item Property
If key is not found when attempting to return an existing item, a new key is created and its
corresponding item is left empty.

SpicePack Component Reference

Sun SpicePack is a set of COM components that handle commonly used ASP application
functionality. The components are Chili!Mail, Chili!POP3, and Chili!Upload. These components

Sun Chili!Soft ASP 3.6.2 Product Documentation 708

can be instantiated and called from ASP scripts to send and receive e-mail and upload files from
client browsers.

The components are installed with Sun Chili!Soft ASP and are enabled or disabled from the Sun
Chili!Soft ASP Administration Console. This section provides information about enabling and
disabling the SpicePack components, and reference information about using the components.

In this section:

� Enabling SpicePack Components

� Chili!Mail (SMTP) Component

� Chili!POP3 (POP3) Component

� Chili!Upload (File Upload) Component

 Enabling SpicePack Components
SpicePack components are enabled or disabled from the Sun Chili!Soft ASP Administration
Console, using the following procedure.

To enable or disable SpicePack components

1. If necessary, open the Administration Console by using the following URL:

http://[HOSTNAME]:[PORT}

where [HOSTNAME] is the hostname of your Web server and [PORT] is the port on which
the Administration Console is running (5100 by default).

2. On the ASP Server tab of the Server Management page (the first page to display when you
open the Administration Console), click Components.

The Components page displays.

Sun Chili!Soft ASP 3.6.2 Product Documentation 709

3. Click to select or clear (enable or disable) the Chili!Mail, Chili!POP3, and Chili!Upload
check boxes as desired.

4. Click Save to save your changes.

- or -

Click Cancel to revert to the last settings that were saved.

Note: If you enabled or disabled the Chili!Mail, Chili!POP3, or Chili!Upload components,
you do not need to restart the ASP Server.

See also:

SpicePack Component Reference in this chapter

Chili!Mail (SMTP) Component in this chapter

Chili!POP3 (POP3) Component in this chapter

Chili!Upload (File Upload) Component in this chapter

 Chili!Mail (SMTP) Component
The Chili!Mail component enables users to send e-mail messages from an ASP page to an SMTP
e-mail server. The Chili!Mail component is compatible with the NewMail object included with
the Microsoft Internet Information Services (IIS) CDONTS component. However, the Chili!Mail
component does not support the following properties and methods of the NewMail object:

� AttachURL

� ContentBase

� ContentLocation

� MailFormat

� SetLocaleIDs

� Version

Sun Chili!Soft ASP 3.6.2 Product Documentation 710

Other differences between the Microsoft NewMail object and the Chili!Mail component are
described in the property and method descriptions that follow.

Chili!Mail Registry Settings
The Chili!Mail component does not use registry settings.

Chili!Mail Syntax
The Chili!Mail component is registered with the ProgId of "CDONTS.NewMail".

The following ASP script written in VBScript creates an instance of the component:

Set mailer = Server.CreateObject("CDONTS.NewMail")

Chili!Mail Properties
The Chili!Mail component exposes the following properties:

� Bcc

� Body

� BodyFormat

� Cc

� From

� Host

� Importance

� Retain

� Subject

� To

� Value

� WrapLength

Chili!Mail Bcc Property (String: Read/Write)
The Bcc property specifies one or more recipients of a blind copy of the message. A full
messaging address must be provided for each recipient, as shown in the following example:

"useraddress@company.com"

Addresses must be separated by a semicolon (;), as shown in the following example:

"user1@company1.com;user2@company2.com;user3@company3.com"

Chili!Mail Body Property (String: Read/Write)
The Body property is a string that specifies the content of the message. Line breaks should be
sent as carriage return-linefeed pairs, for example, "Chr(13) & Chr(10)".

Sun Chili!Soft ASP 3.6.2 Product Documentation 711

Chili!Mail BodyFormat Property (Long: Write only)
The BodyFormat property specifies the message format available for the Chili!Mail Body
property. The values for the BodyFormat property can be set as follows:

� 0 indicates that the Body property can include HTML

� 1 indicates that the Body property can include plain text only (default)

Chili!Mail Cc Property (String: Read/Write)
The Cc property specifies one or more recipients of a copy of the message. A full messaging
address must be provided for each recipient, as shown in the following example:

 "useraddress@company.com"

Addresses must be separated by a semicolon (;), as shown in the following example:

 "user1@company1.com;user2@company2.com;user3@company3.com"

Chili!Mail From Property (String: Read/Write)
The From property is a string that specifies the content of the From field of the message header.
It cannot include spaces.

Note
The From field cannot exceed 255 characters, the limit for a single e-mail address. There
is no character limit for the To, Cc, and Bcc fields.

Chili!Mail Host Property (String: Read/Write)
The Host property is a string that specifies the valid DNS name (for example, "mail.myorg.com")
or IP address of the SMTP mail server. The default is "localhost".

Chili!Mail Importance Property (Long: Read/Write)
The Importance property specifies the importance of the message to be sent. Valid values are:

� 0 indicates low importance

� 1 indicates normal importance

� 2 indicates high importance

Chili!Mail Retain Property (BOOLEAN: Read/Write)
The Retain property specifies whether message properties are retained after the Send method is
called. If set to True, all properties are retained. If set to False (the default), all properties are
cleared.

Sun Chili!Soft ASP 3.6.2 Product Documentation 712

Chili!Mail Subject Property (String: Read/Write)
The Subject property is a string that specifies the content of the subject line of the message. This
property may be left empty.

Chili!Mail To Property (String: Read/Write)
The To property specifies one or more message recipients. A full messaging address must be
provided for each recipient, as shown in the following example:

 "useraddress@company.com"

Addresses must be separated by a semicolon (;), as shown in the following example:

 "user1@company1.com;user2@company2.com;user3@company3.com"

If both the To property and the To parameter of the Send method are supplied, the message is
sent to all recipients in both lists.

Chili!Mail Value Property (Read/Write)
The Value property adds one or more headers to the automatically generated headers, such as To,
From, Subject, and Date. Possibilities for additional headers include File, Keywords, and
Reference.

Certain headers, such as Reply-To, are widely accepted and used by various messaging systems.
For such a header to be recognized by recipients, the character string in the header name must
exactly match the accepted string.

In principle, you can put any combination of ASCII characters in the string, but some messaging
systems might restrict the character set. The safest procedure is to limit the string to alphanumeric
characters, dashes, and slashes, and in particular to avoid spaces.

You can set the Value property more than once. Each setting generates another header to be
included with the existing headers.

Chili!Mail WrapLength (Read/Write)
The WrapLength property applies to message content. It specifies the maximum number of
characters allowed in a line before the line wraps; in other words, before it breaks and continues
on the next line. The line breaks at the last space before the specified maximum number of
characters has been reached. The default setting is 76. The maximum is 1,000.

Chili!Mail Methods
The Chili!Mail component provides the following methods:

� AttachFile

� Send

Sun Chili!Soft ASP 3.6.2 Product Documentation 713

Chili!Mail AttachFile Method
The AttachFile method attaches a file to the message. Messages are multi-part mime encoded,
and attachments follow the text portion of the message.

Source A string containing the absolute path name of the file to attach.

CDONTS Note
All messages are Base64 encoded. There is no provision for specifying a different
encoding method.

Chili!Mail Send Method
The Send method sends the message using the properties previously set. All arguments to this
method are optional and override the properties previously set for the message (except for the To
argument, which is combined with any previously set To property).

Calling the Send method resets all message properties in preparation for the next message, unless
the Retain property is set to True. Multiple messages can be sent using the same instance of the
Chili!Mail component.

Chili!Mail Send Method Arguments
From See the description of the property of the same name above.

To See the description of the property of the same name above.

Subject See the description of the property of the same name above.

Body See the description of the property of the same name above.

Importance See the description of the property of the same name above.

Host See the description of the property of the same name above.

Chili!Mail Send Method Examples
Example 1:

Set mailmsg = Server.CreateObject("CDONTS.NewMail")

mailmsg.To = "youraccount@yourco.com"

mailmsg.From = "MailTest"

mailmsg.Body = "This is a test message." & Chr(13) & Chr(10) & "This
is the second line."

mailmsg.Host = "mail.yourco.com"

mailmsg.Send

Example 2:

Set mailmsg = Server.CreateObject("CDONTS.NewMail")

Sun Chili!Soft ASP 3.6.2 Product Documentation 714

Message = "This is a test message." & Chr(13) & Chr(10) & "This is
the second line."

mailmsg.Send "myaccount@yourco.com", "youraccount@yourco.com", "Test
Subject", Message, 2, "mail.yourco.com"

 Chili!POP3 (POP3) Component
The Chili!POP3 component retrieves e-mail messages from a POP3 server from an ASP script.
This component has two main interfaces. The POP3 interface creates and controls the connection
to a POP3 server. The Message interface exposes all of the properties of a single message.
Additional interfaces are exposed to support retrieval of message lists and message attachments.

Chili!POP3 Registry Settings
The Chili!POP3 component does not use registry settings.

Chili!POP3 Syntax
The Chili!POP3 component is registered with the ProgId of "CHILI.POP3.1."

The following ASP script written in VBScript creates an instance of the component:

Set pop3 = Server.CreateObject("CHILI.POP3.1")

Chili!POP3 POP3 Interface
The POP3 interface creates and controls a connection to a POP3 server.

POP3 Interface Properties
The POP3 interface exposes no properties.

POP3 Interface Collections
� Messages

POP3 Interface Messages Collection
The Messages collection is a collection of Message objects, as described later in "Chili!POP3
Message Interface." This collection is read-only and does not support the standard Append or
Delete collection methods.

POP3 Interface Methods
The following methods control a network connection to a POP3 server.

� Connect

� Delete

� Disconnect

Sun Chili!Soft ASP 3.6.2 Product Documentation 715

� Reset

POP3 Interface Connect Method
The Connect method establishes a network connection to a POP3 server.

Arguments:

Host The hostname of the server with which to connect.

UserId The User ID required for connecting with the server.

Password The password required for connecting with the
server.

Example:

See the following Disconnect example.

POP3 Interface Disconnect Method
The Disconnect method disconnects from the POP3 server.

Example:

Set pop3 = Server.CreateObject("CHILI.POP3.1")

pop3.Connect "mail.foo.com", "myuserid", "mypsswd"

pop3.Disconnect

POP3 Interface Delete Method
The Delete method deletes a message on the POP3 server. This does not delete the message from
the Messages collection.

Arguments:

Id 0-based index for the message in the message
collection.

Reset:

Returns the POP3 server to the beginning of the transaction state (Connected) and ignores any
commands and their effect on the connection. For example, any messages that were deleted from
the mailbox are restored to their un-deleted state.

Example:

Set pop3 = Server.CreateObject("CHILI.POP3.1")

pop3.Connect "mail.foo.com", "myuserid", "mypsswd"

pop3.Reset

pop3.Disconnect

Sun Chili!Soft ASP 3.6.2 Product Documentation 716

Chili!POP3 Message Interface
The Chili!POP3 component Message interface provides access to the messages currently in the
mail store on the connected server. The properties, methods, and collections of the Message
object are used to access those messages.

There are varying network costs associated with accessing the different properties of a message.
For POP3 servers that support the optional TOP command, accessing any header information and
the first few lines of the message can be accomplished without paying the data transfer overhead
of moving the entire message from the server to the client.

Note
When requesting any of the properties that can be gathered without retrieving the entire
message, the component first attempts the TOP command. If that command fails, the
component then attempts to fulfill the property request via the full message RETR
command.

Message Interface Properties
(LW means it can be "lightweight" on POP3 servers supporting the TOP command.)

� From(LW)

� Subject(LW)

� Size(LW)

� DateSent(LW)

� DateReceived(LW)

� MsgId(LW)

� MsgUID(LW)

� HasAttachments(LW)

� Message

Message Interface From Property (Read Only)
The From property is a string that indicates who sent the e-mail message.

Message Interface Subject Property (Read Only)
The Subject property is a string that indicates the subject of the message. It may be Null (empty
string).

Message Interface Size Property (Read Only)
The Size property indicates the total size of the current message in bytes.

Message Interface DateSent Property (Read Only)
The DateSent property indicates the date and time that the message was sent.

Sun Chili!Soft ASP 3.6.2 Product Documentation 717

Message Interface DateReceived Property (Read Only)
The DateReceived property indicates the date and time that the message was received.

Message Interface MsgId Property (Read Only)
The MsgId property indicates the message ID of the current message in the collection.

Message Interface MsgUID Property (Read Only)
The MsgUID property indicates whether the server supports the UIDL command. It returns 0 if
the server does not support this command.

Message Interface HasAttachments Property (Read Only)
The HasAttachments property provides an "educated guess" based on the message headers (to
be lightweight) as to whether the message has attachments.

Message Interface Message Property (Read Only)
The Message property is a string that specifies the content of the message.

Message Interface Collections
The Message interface collections are as follows:

� To(LW)

� CC(LW)

� Headers(LW)

� Attachments

Message Interface To Collection
The To collection is the list of e-mail addresses to which the message was sent. The collection is
read-only and does not support the standard Append or Delete methods.

Message Interface CC Collection
The CC collection is the list of e-mail addresses to which the message was sent as a carbon copy.
The collection is read-only and does not support the standard Append or Delete methods.

Message Interface Attachments Collection
The Attachments collection is the list of attachments to the current e-mail message, consisting of
file name(s) and description(s). The collection is read-only and does not support the standard
Append or Delete methods.

Message Interface Headers Collection
The Interface Headers collection is a collection of all message headers for the current e-mail
message. This includes headers that are also accessible via friendly named fields or other
collections, such as To, From, and DateSent. This collection can be accessed via the header
name or index. This collection is read-only and does not support the standard Append or Delete
methods.

Sun Chili!Soft ASP 3.6.2 Product Documentation 718

Message Interface Methods
� PreviewMessage

� SaveAttachments

Message Interface PreviewMessage Method
The PreviewMessage method returns the specified number of lines of the message body. For
servers that support the TOP command, this is performed without retrieving the entire message
body. For messages with attachments or messages that consist entirely of binary data (which may
be ascertained via the Headers collection) the first N lines of the message might not be
meaningful to a human reader.

Message Interface PreviewMessage Arguments
Lines The number of lines to return.

Message Interface SaveAttachments Method
The SaveAttachments method saves e-mail attachments to a specified directory on the server.

Message Interface SaveAttachments Arguments
Directory path on the
Server

The complete path name to the directory on
the server where attachments are to be saved.

Note
In a shared Web hosting environment, such as an ISP, you might not know the directory
structure above the document root for your virtual host. In this situation, you cannot
specify an absolute path name for the file, so you must use the Server.mapPath directive
instead.

Note about To, CC, and Headers
To, CC, BCC, and Headers are BSTR collections using the Count method to obtain the
total number of items in the collection and the Item method to obtain each item. The
difference is that for To, CC, and BCC, the first argument of Item is a 0-based index,
while for Headers, the first argument is a string that indicates the name of the header
item (for example, From, To, Subject, and so forth).

Message Interface SaveAttachments Example [0]
Set pop3 = Server.CreateObject("CHILI.POP3.1")

pop3.Connect "mail.foo.com", "myuserid", "mypsswd"

For each item in pop3.Messages

For each CC in Item.CC

MsgBox CC

next

Sun Chili!Soft ASP 3.6.2 Product Documentation 719

next

pop3.Reset

pop3.Disconnect

Chili!POP3 Attachment Interface
The Chili!POP3 Attachments collection of the Message object provides access to the
attachments currently in an e-mail. The properties and methods of the Attachment object are
used to access those attachments.

Attachment Interface Properties
� FileName

� ContentType

� FileSize

� Base64

Attachment Interface FileName Property (Read Only)
The FileName property is a string that indicates the name of the attachment.

Attachment Interface ContentType Property (Read Only)
The ContentType property is a string that indicates the content type of the attachment.

Attachment Interface FileSize Property (Read Only)
The FileSize property is a number that indicates the size of the attachment in bytes.

Attachment Interface Base64 Property (Read Only)
The Base64 property is a Boolean value that indicates whether the attachment is Base64 encoded.

Attachment Interface Methods
� SaveToFile

� Read

Attachment Interface SaveToFile Method
The SaveToFile method saves the attachment on the server.

Attachment Interface SaveToFile Arguments
Directory The full directory path on the server.

Sun Chili!Soft ASP 3.6.2 Product Documentation 720

Note
In a shared Web hosting environment, such as with an Internet Service Provider, you
might not know the directory structure above the document root for your virtual host. In
this situation, you cannot specify an absolute path name for the file, so you must use the
Server.mapPath directive instead.

Attachment Interface Read Method
The Read method reads the attachment.

Attachment Interface Read Arguments
Nsize The number of bytes to read from the attachment. This argument

is optional. If missing, the entire attachment is read.

Pbytes A safe array of bytes.

 Chili!Upload (File Upload) Component
The Chili!Upload component enables users to save files uploaded by site visitors to the server.

Chili!Upload Registry Settings
The component does not use registry settings.

Chili!Upload Syntax
The Chili!Upload component is registered with the ProgId of "Chili.Upload.1." The following
VBScript excerpt creates an instance of the control.

Set report = Server.CreateObject("Chili.Upload.1")

Chili!Upload Properties
The Chili!Upload component exposes the following properties:

� AllowOverwrite

� SizeLimit

� FileSize

� SourceFileName

� SourceFileExtension

Chili!Upload AllowOverwrite Property (Read /Write)
The AllowOverwrite property determines whether the component overwrites existing files saved
with the same absolute path name as the uploaded file.

Sun Chili!Soft ASP 3.6.2 Product Documentation 721

Chili!Upload SizeLimit Property (Read/Write)
The SizeLimit property sets the maximum file size in bytes of uploaded files.

Chili!Upload FileSize Property (Read Only)
The FileSize property indicates the size in bytes of the uploaded file.

Chili!Upload SourceFileName Property (Read Only)
The SourceFileName property indicates the file name of the uploaded file.

Chili!Upload SourceFileExtension Property (Read Only)
The SourceFileExtension property indicates the file extension of the uploaded file.

Chili!Upload Methods
The Chili!Upload component exposes the following method:

� SaveToFile

Chili!Upload SaveToFile Method
The SaveToFile method saves the uploaded file to the location specified by the absolute path
name provided by the user.

Chili!Upload SaveToFile Arguments
Path The absolute path name for the file, which specifies where it

is to be saved.

Example:

The following script uploads a file:

<FORM ACTION="fileupld.asp" METHOD="POST" ENCTYPE="multipart/form-
data">

<INPUT TYPE="FILE" NAME="FILE">

<INPUT TYPE="SUBMIT" VALUE="Send">

</FORM>

The following fileupld.asp script processes the upload:

<%

Response.Expires = 0

Set fbase = Server.CreateObject("Chili.Upload.1")

fbase.SizeLimit = 10000

fbase.SaveToFile("/opt/datafiles/test.dat")

%>

Sun Chili!Soft ASP 3.6.2 Product Documentation 722

Done writing <%=fbase.FileSize%> bytes from user file
<%=fbase.SourceFileName%> (of type <%=fbase.SourceFileExtension%>)

Note
In a shared Web hosting environment, such as with an Internet Service Provider, you
might not know the directory structure above the document root for your virtual host. In
this situation, you cannot specify an absolute path name for the file, so you must use the
Server.mapPath directive instead. The following example saves the uploaded file to the
document root of the virtual host:

<%

Response.Expires = 0

Set fbase = Server.CreateObject("Chili.Upload.1")

fbase.SizeLimit = 10000

fbase.SaveToFile("Server.mapPath("/") & "/" & "test.dat")

%>

Done writing <%=fbase.FileSize%> bytes from user file
<%=fbase.SourceFileName%> (of type
<%=fbase.SourceFileExtension%>)

VBScript Language Reference

Sun Chili!Soft ASP supports version 3.1 of Microsoft Visual Basic Scripting Edition (VBScript).

This section provides reference information on the following VBScript topics:

� VBScript Constants

� VBScript Operators

� VBScript Statements

� VBScript Functions

� VBScript Objects and Collections

VBScript Constants

The following is a list of VBScript constants:

� Color

� Comparison

� Date Format

Sun Chili!Soft ASP 3.6.2 Product Documentation 723

� Date/Time

� DriveType

� File Attribute

� File InputOutput

� Miscellaneous

� MsgBox

� SpecialFolder

� String

� Tristate

� VarType

 VBScript Color Constants
VBScript Color Constants are only available when your project has an explicit reference to the
appropriate type library containing these constant definitions. For VBScript, you must explicitly
declare these constants in your code.

Constant Value Description

vbBlack &h00 Black

vbRed &hFF Red

vbGreen &hFF00 Green

vbYellow &hFFFF Yellow

vbBlue &hFF0000 Blue

vbMagenta &hFF00FF Magenta

vbCyan &hFFFF00 Cyan

vbWhite &hFFFFFF White

 VBScript Comparison Constants
VBScript Comparison Constants are only available when your project has an explicit reference to
the appropriate type library containing these constant definitions. For VBScript, you must
explicitly declare these constants in your code.

Constant Value Description

vbBinaryCompare 0 Perform a binary comparison.

vbTextCompare 1 Perform a textual comparison.

Sun Chili!Soft ASP 3.6.2 Product Documentation 724

 VBScript Date/Time Constants
VBScript Date/Time Constants are only available when your project has an explicit reference to
the appropriate type library containing these constant definitions. For VBScript, you must
explicitly declare these constants in your code.

Constant Value Description

vbSunday 1 Sunday

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

vbFirstJan1 1 Use the week in which January 1 occurs
(default).

vbFirstFourDays 2 Use the first week that has at least four
days in the new year.

vbFirstFullWeek 3 Use the first full week of the year.

vbUseSystem 0 Use the date format contained in the
regional settings for your computer.

vbUseSystemDayOfWeek 0 Use the day of the week specified in your
system settings for the first day of the
week.

 VBScript Date Format Constants
VBScript Date Format Constants are only available when your project has an explicit reference to
the appropriate type library containing these constant definitions. For VBScript, you must
explicitly declare these constants in your code.

Constant Value Description

vbGeneralDate 0 Display a date and/or time. For real numbers,
display a data and time. If there is no
fractional part, display only a date. If there is
no integer part, display time only. Date and
time display is determined by your system

Sun Chili!Soft ASP 3.6.2 Product Documentation 725

settings.

vbLongDate 1 Display a date using the long date format
specified in your computer's regional settings.

vbShortDate 2 Display a date using the short date format
specified in your computer's regional settings.

vbLongTime 3 Display a time using the long time format
specified in your computer's regional settings.

vbShortTime 4 Display a time using the short time format
specified in your computer's regional settings.

 VBScript DriveType Constants
VBScript DriveType Constants are only available when your project has an explicit reference to
the appropriate type library containing these constant definitions. For VBScript, you must
explicitly declare these constants in your code.

Constant Value Description

Unknown 0 Drive type can't be determined.

Removable 1 Drive has removable media. This includes all
floppy drives and many other varieties of
storage devices.

Fixed 2 Drive has fixed (nonremovable) media. This
includes all hard drives, including hard drives
that are removable.

Remote 3 Network drives. This includes drives shared
anywhere on a network.

CDROM 4 Drive is a CD-ROM. No distinction is made
between read-only and read/write CD-ROM
drives.

RAMDisk 5 Drive is a block of Random Access Memory
(RAM) on the local computer that behaves
like a disk drive.

 VBScript File Attribute Constants
VBScript File Attribute Constants are only available when your project has an explicit reference
to the appropriate type library containing these constant definitions. For VBScript, you must
explicitly declare these constants in your code.

Sun Chili!Soft ASP 3.6.2 Product Documentation 726

Note
The applicability of these constants depends on the underlying operating system. If the
OS file system does not support the file attribute requested, an error will be returned.

Constant Value Description

Normal 0 Normal file. No attributes are set.

ReadOnly 1 Read-only file.

Hidden 2 Hidden file.

System 4 System file.

Volume 8 Disk drive volume label.

Directory 16 Folder or directory.

Archive 32 File has changed since last backup.

Alias 64 Link or shortcut.

Compressed 128 Compressed file.

 VBScript File InputOutput Constants
VBScript File InputOutput Constants are only available when your project has an explicit
reference to the appropriate type library containing these constant definitions. For VBScript, you
must explicitly declare these constants in your code.

Constant Value Description

ForReading 1 Open a file for reading only. You can't write
to this file.

ForWriting 2 Open a file for writing. If a file with the same
name exists, its previous contents are
overwritten.

ForAppending 8 Open a file and write to the end of the file.

 VBScript Miscellaneous Constants
VBScript Miscellaneous Constants are only available when your project has an explicit reference
to the appropriate type library containing these constant definitions. For VBScript, you must
explicitly declare these constants in your code.

Constant Value Description

vbObjectError -2147221504 User-defined error numbers should be greater

Sun Chili!Soft ASP 3.6.2 Product Documentation 727

than this value, for example,

Err.Raise Number = vbObjectError
+ 1000

 VBScript MsgBox Constants
The following VBScript MsgBox Constants are used with the MsgBox function to identify what
buttons and icons appear on a message box and which button is the default. In addition, the
modality of the MsgBox can be specified. These constants are only available when your project
has an explicit reference to the appropriate type library containing these constant definitions. For
VBScript, you must explicitly declare these constants in your code.

Constant Value Description

vbOKOnly 0 Display OK button only.

vbOKCancel 1 Display OK and Cancel buttons.

vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons.

vbYesNoCancel 3 Display Yes, No, and Cancel buttons.

vbYesNo 4 Display Yes and No buttons.

vbRetryCancel 5 Display Retry and Cancel buttons.

vbCritical 16 Display Critical Message icon.

vbQuestion 32 Display Warning Query icon.

vbExclamation 48 Display Warning Message icon.

vbInformation 64 Display Information Message icon.

vbDefaultButton1 0 First button is the default.

vbDefaultButton2 256 Second button is the default.

vbDefaultButton3 512 Third button is the default.

vbDefaultButton4 768 Fourth button is the default.

vbApplicationModal 0 Application modal. The user must
respond to the message box before
continuing work in the current
application.

vbSystemModal 4096 System modal. All applications are
suspended until the user responds to the
message box.

The following VBScript MsgBox Constants are used with the MsgBox function to identify which
button a user has selected. These constants are only available when your project has an explicit

Sun Chili!Soft ASP 3.6.2 Product Documentation 728

reference to the appropriate type library containing these constant definitions. For VBScript, you
must explicitly declare these constants in your code.

Constant Value Description

vbOK 1 OK button was clicked.

vbCancel 2 Cancel button was clicked.

vbAbort 3 Abort button was clicked.

vbRetry 4 Retry button was clicked.

vbIgnore 5 Ignore button was clicked.

vbYes 6 Yes button was clicked.

vbNo 7 No button was clicked.

 VBScript SpecialFolder Constants
VBScript SpecialFolder Constants are only available when your project has an explicit reference
to the appropriate type library containing these constant definitions. For VBScript, you must
explicitly declare these constants in your code.

Constant Value Description

WindowsFolder 0 The Windows folder contains files
installed by the Windows operating
system.

SystemFolder 1 The System folder contains libraries,
fonts, and device drivers.

TemporaryFolder 2 The Temp folder is used to store
temporary files. Its path is found in the
TMP environment variable.

 VBScript String Constants
The following VBScript String Constants can be used anywhere in your code in place of actual
values:

Constant Value Description

vbCr Chr(13) Carriage return

vbCrLf Chr(13) &
Chr(10)

Carriage return-linefeed combination

vbFormFeed Chr(12) Form feed; not useful in Microsoft

Sun Chili!Soft ASP 3.6.2 Product Documentation 729

Windows

vbLf Chr(10) Line feed

vbNewLine Chr(13) &
Chr(10) or
Chr(10)

Platform-specific newline character;
whatever is appropriate for the platform

vbNullChar Chr(0) Character having the value 0

vbNullString String
having value
0

Not the same as a zero-length string ("");
used for calling external procedures

vbTab Chr(9) Horizontal tab

vbVerticalTab Chr(11) Vertical tab; not useful in Microsoft
Windows

 VBScript Tristate Constants
VBScript Tristate Constants are only available when your project has an explicit reference to the
appropriate type library containing these constant definitions. For VBScript, you must explicitly
declare these constants in your code.

Constant Value Description

TristateTrue -1 True

TristateFalse 0 False

TristateUseDefault -2 Use default setting

 VBScript VarType Constants
VBScript VarType Constants are only available when your project has an explicit reference to the
appropriate type library containing these constant definitions. For VBScript, you must explicitly
declare these constants in your code.

Constant Value Description

vbEmpty 0 Uninitialized (default)

vbNull 1 Contains no valid data

vbInteger 2 Integer subtype

vbLong 3 Long subtype

vbSingle 4 Single subtype

Sun Chili!Soft ASP 3.6.2 Product Documentation 730

vbDouble 5 Double subtype

vbCurrency 6 Currency subtype

vbDate 7 Date subtype

vbString 8 String subtype

vbObject 9 Object

vbError 10 Error subtype

vbBoolean 11 Boolean subtype

vbVariant 12 Variant (used only for arrays of variants)

vbDataObject 13 Data access object

vbDecimal 14 Decimal subtype

vbByte 17 Byte subtype

vbArray 8192 Array

VBScript Operators

Operator Description

VBScript Addition Operator (+) Sum two numbers.

VBScript And Operator Perform a logical conjunction on two
expressions.

VBScript Assignment Operator (=)
[VBScript Assignment Operator
('equals')]

Assign a value to a variable or property.

VBScript Concatenation Operator (&) Force string concatenation of two
expressions.

VBScript Division Operator (/) Divide two numbers and return a floating
point result.

VBScript Eqv Operator Perform a logical equivalence on two
expressions.

VBScript Exponentiation Operator (^) Raise a number to the power of an
exponent.

VBScript Imp Operator Perform a logical implication on two
expressions.

VBScript Integer Division Operator (\) Divide two numbers and return an integer
result.

Sun Chili!Soft ASP 3.6.2 Product Documentation 731

VBScript Is Operator Compare two object reference values.

VBScript Mod Operator Divide two numbers and return the
remainder.

VBScript Muliplication Operator (*) Multiply two numbers.

VBScript Negation and Subtraction
Operator (-)

Indicate the negative value of a numeric
expression. Or find the difference between
two numbers.

VBScript Not Operator Perform logical negation of an expression.

VBScript Or Operator Perform logical disjunction on two
expressions.

VBScript Xor Operator Perform a logical exclusion on two
expressions.

 VBScript Operator Precedence
When several operations occur in an expression, each part is evaluated and resolved in a
predetermined order called operator precedence. Parentheses can be used to override the order of
precedence and force some parts of an expression to be evaluated before other parts. Operations
within parentheses are always performed before those outside. Within parentheses, however,
normal operator precedence is maintained.

When expressions contain operators from more than one category, arithmetic operators are
evaluated first, comparison operators are evaluated next, and logical operators are evaluated last.
Comparison operators all have equal precedence; that is, they are evaluated in the left-to-right
order in which they appear. Arithmetic and logical operators are evaluated in the following order
of precedence:

Arithmetic Comparison Logical

Exponentiation (^) Equality (=) Not

Negation (-) Inequality (<>) And

Multiplication and division (*, /) Less than (<) Or

Integer division (\) Greater than (>) Xor

Modulus arithmetic (Mod) Less than or equal to (<=) Eqv

Addition and subtraction (+, -) Greater than or equal to (>=) Imp

String concatenation (&) Is &

When multiplication and division occur together in an expression, each operation is evaluated as
it occurs from left to right. Likewise, when addition and subtraction occur together in an
expression, each operation is evaluated in order of appearance from left to right.

Sun Chili!Soft ASP 3.6.2 Product Documentation 732

The string concatenation operator (&) is not an arithmetic operator, but in precedence it does fall
after all arithmetic operators and before all comparison operators. The Is operator is an object
reference comparison operator. It does not compare objects or their values; it checks only to
determine if two object references refer to the same object.

 VBScript Addition Operator (+)
Used to sum two numbers.

Syntax: VBScript Addition Operator (+)
result = expression1 + expression2

Arguments: VBScript Addition Operator (+)
result

Any numeric variable.

expression1

Any expression.

expression2

Any expression.

Remarks: VBScript Addition Operator (+)
Although you can also use the + operator to concatenate two character strings, you should use the
& operator for concatenation to eliminate ambiguity and provide self-documenting code.

When you use the + operator, you may not be able to determine whether addition or string
concatenation will occur.

The underlying subtype of the expressions determines the behavior of the + operator in the
following way:

If Then

Both expressions are numeric Add.

Both expressions are strings Concatenate.

One expression is numeric and the other is a
string

Add.

If one or both expressions are Null expressions, result is Null. If both expressions are Empty,
result is an Integer subtype. However, if only one expression is Empty, the other expression is
returned unchanged as result.

 VBScript And Operator
Used to perform a logical conjunction on two expressions.

Sun Chili!Soft ASP 3.6.2 Product Documentation 733

Syntax: VBScript And Operator
result = expression1 And expression2

Arguments: VBScript And Operator
result

Any numeric variable.

expression1

Any expression.

expression2

Any expression.

Remarks: VBScript And Operator
If, and only if, both expressions evaluate to True, result is True. If either expression evaluates to
False, result is False. The following table illustrates how result is determined:

If expression1 is And expression2 is The result is

True True True

True False False

True Null Null

False True False

False False False

False Null False

Null True Null

Null False False

Null Null Null

The And operator also performs a bitwise comparison of identically positioned bits in two
numeric expressions and sets the corresponding bit in result according to the following table:

If bit in expression1 is And bit in expression2 is The result is

0 0 0

0 1 0

1 0 0

1 1 1

 VBScript Assignment Operator (=)
Used to assign a value to a variable or property.

Sun Chili!Soft ASP 3.6.2 Product Documentation 734

Syntax: VBScript Assignment Operator (=)
variable = value

Arguments: VBScript Assignment Operator (=)
variable

Any variable or any writable property.

value

Any numeric or string literal, constant, or expression.

Remarks: VBScript Assignment Operator (=) [VBScript Assignment Operator ('equals')]
The name on the left side of the equal sign can be a simple scalar variable or an element of an
array. Properties on the left side of the equal sign can only be those properties that are writable at
run time.

 VBScript Concatenation Operator (&)
Used to force string concatenation of two expressions.

Syntax: VBScript Concatenation Operator (&)
result = expression1 & expression2

Arguments: VBScript Concatenation Operator (&)
result

Any variable.

expression1

Any expression.

expression2

Any expression.

Remarks: VBScript Concatenation Operator (&)
Whenever an expression is not a string, it is converted to a String subtype. If both expressions are
Null, result is also Null. However, if only one expression is Null, that expression is treated as a
zero-length string ("") when concatenated with the other expression. Any expression that is
Empty is also treated as a zero-length string.

 VBScript Division Operator (/)
Used to divide two numbers and return a floating-point result.

Syntax: VBScript Division Operator (/)
result = number1/number2

Sun Chili!Soft ASP 3.6.2 Product Documentation 735

Arguments: VBScript Division Operator (/)
result

Any numeric variable.

number1

Any numeric expression.

number2

Any numeric expression.

Remarks: VBScript Division Operator (/)
If one or both expressions are Null expressions, result is Null. Any expression that is Empty is
treated as 0.

 VBScript Eqv Operator
Used to perform a logical equivalence on two expressions.

Syntax: VBScript Eqv Operator
result = expression1 Eqv expression2

Arguments: VBScript Eqv Operator
result

any numeric variable.

expression1

Any expression.

expression2

Any expression.

Remarks: VBScript Eqv Operator
If either expression is Null, result is also Null. When neither expression is Null, result is
determined according to the following table:

If expression1 is And expression2 is The result is

True True True

True False False

False True False

False False True

The Eqv operator performs a bitwise comparison of identically positioned bits in two numeric
expressions and sets the corresponding bit in result according to the following table:

Sun Chili!Soft ASP 3.6.2 Product Documentation 736

If bit in expression1 is And bit in expression2 is The result is

0 0 1

0 1 0

1 0 0

1 1 1

 VBScript Exponentiation Operator (^)
Used to raise a number to the power of an exponent.

Syntax: VBScript Exponentiation Operator (^)
result = number^exponent

Arguments: VBScript Exponentiation Operator (^)
result

Any numeric variable.

number

Any numeric expression.

exponent

Any numeric expression.

Remarks: VBScript Exponentiation Operator (^)
Number can be negative only if exponent is an integer value. When more than one exponentiation
is performed in a single expression, the ^ operator is evaluated as it is encountered from left to
right.

If either number or exponent is a Null expression, result is also Null.

 VBScript Imp Operator
Used to perform a logical implication on two expressions.

Syntax: VBScript Imp Operator
result = expression1 Imp expression2

Arguments: VBScript Imp Operator
result

Any numeric variable.

expression1

Sun Chili!Soft ASP 3.6.2 Product Documentation 737

Any expression.

expression2

Any expression.

Remarks: VBScript Imp Operator
The following table illustrates how result is determined:

If expression1 is And expression2 is Then result is

True True True

True False False

True Null Null

False True True

False False True

False Null True

Null True True

Null False Null

Null Null Null

The Imp operator performs a bitwise comparison of identically positioned bits in two numeric
expressions and sets the corresponding bit in result according to the following table:

If bit in expression1 is And bit in expression2 is Then result is

0 0 1

0 1 1

1 0 0

1 1 1

 VBScript Integer Division Operator (\)
Used to divide two numbers and returns an integer result.

Syntax: VBScript Integer Division Operator (\)
result = number1\number2

Arguments: VBScript Integer Division Operator (\)
result

Any numeric variable.

number1

Sun Chili!Soft ASP 3.6.2 Product Documentation 738

Any numeric expression.

number2

Any numeric expression.

Remarks: VBScript Integer Division Operator (\)
Before division is performed, numeric expressions are rounded to Byte, Integer, or Long subtype
expressions.

If any expression is Null, result is also Null. Any expression that is Empty is treated as 0.

 VBScript Is Operator
Used to compare two object reference variables.

Syntax: VBScript Is Operator
result = object1 Is object2

Arguments: VBScript Is Operator
result

Any numeric variable.

object1

Any object name.

object2

Any object name.

Remarks: VBScript Is Operator
If object1 and object2 both refer to the same object, result is True; if they do not, result is False.
Two variables can be made to refer to the same object in several ways.

In the following example, A has been set to refer to the same object as B:

Set A = B

The following example makes A and B refer to the same object as C:

Set A = C

Set B = C

 VBScript Mod Operator
Used to divide two numbers and return only the remainder.

Syntax: VBScript Mod Operator
result = number1 Mod number2

Sun Chili!Soft ASP 3.6.2 Product Documentation 739

Arguments: VBScript Mod Operator
result

Any numeric variable.

number1

Any numeric expression.

number2

Any numeric expression.

Remarks: VBScript Mod Operator
The modulus, or remainder, operator divides number1 by number2 (rounding floating-point
numbers to integers) and returns only the remainder as result. For example, in the following
expression, A (which is result) equals 5.

A = 19 Mod 6.7

If any expression is Null, result is also Null. Any expression that is Empty is treated as 0.

 VBScript Multiplication Operator (*)
Used to multiply two numbers.

Syntax: VBScript Multiplication Operator (*)
result = number1*number2

Arguments: VBScript Multiplication Operator (*)
result

Any numeric variable.

number1

Any numeric expression.

number2

Any numeric expression.

Remarks: VBScript Multiplication Operator (*)
If one or both expressions are Null expressions, result is Null. If an expression is Empty, it is
treated as if it were 0.

 VBScript Negation and Subtraction Operator (-)
Used to find the difference between two numbers or to indicate the negative value of a numeric
expression.

Sun Chili!Soft ASP 3.6.2 Product Documentation 740

Syntax: VBScript Negation and Subtraction Operator (-) 1
result = number1-number2

Syntax: VBScript Negation and Subtraction Operator (-) 2
-number

Arguments: VBScript Negation and Subtraction Operator (-)
result

Any numeric variable.

number

Any numeric expression.

number1

Any numeric expression.

number2

Any numeric expression.

Remarks: VBScript Negation and Subtraction Operator (-)
In Syntax 1, the - operator is the arithmetic subtraction operator used to find the difference
between two numbers. In Syntax 2, the - operator is used as the unary negation operator to
indicate the negative value of an expression.

If one or both expressions are Null expressions, result is Null. If an expression is Empty, it is
treated as if it were 0.

 VBScript Not Operator
Used to perform logical negation on an expression.

Syntax: VBScript Not Operator
result = Not expression

Arguments: VBScript Not Operator
result

Any numeric variable.

expression

Any expression.

Remarks: VBScript Not Operator
The following table illustrates how result is determined:

Sun Chili!Soft ASP 3.6.2 Product Documentation 741

If expression is Then result is

True False

False True

Null Null

In addition, the Not operator inverts the bit values of any variable and sets the corresponding bit
in result according to the following table:

Bit in expression Bit in result

0 1

1 0

 VBScript Or Operator
Used to perform a logical disjunction on two expressions.

Syntax: VBScript Or Operator
result = expression1 Or expression2

Arguments: VBScript Or Operator
result

Any numeric variable.

expression1

Any expression.

expression2

Any expression.

Remarks: VBScript Or Operator
If either or both expressions evaluate to True, result is True. The following table illustrates how
result is determined:

If expression1 is And expression2 is Then result is

True True True

True False True

True Null True

False True True

False False False

False Null Null

Sun Chili!Soft ASP 3.6.2 Product Documentation 742

Null True True

Null False Null

Null Null Null

The Or operator also performs a bitwise comparison of identically positioned bits in two numeric
expressions and sets the corresponding bit in result according to the following table:

If bit in expression1
is

And bit in expression2
is

Then result is

0 0 0

0 1 1

1 0 1

1 1 1

 VBScript Xor Operator
Used to perform a logical exclusion on two expressions.

Syntax: VBScript Xor Operator
result = expression1 Xor expression2

Arguments: VBScript Xor Operator
result

Any numeric variable.

expression1

Any expression.

expression2

Any expression.

Remarks: VBScript Xor Operator
If one, and only one, of the expressions evaluates to True, result is True. However, if either
expression is Null, result is also Null. When neither expression is Null, result is determined
according to the following table:

If expression1 is And expression2 is Then result is

True True False

True False True

False True True

False False False

Sun Chili!Soft ASP 3.6.2 Product Documentation 743

The Xor operator also performs a bitwise comparison of identically positioned bits in two
numeric expressions and sets the corresponding bit in result according to the following table:

If bit in
expression1 is

And bit in expression2 is Then result is

0 0 0

0 1 1

1 0 1

1 1 0

VBScript Statements

VBScript Statements [does this belong here?]

Statement Description

VBScript Call Statement Transfers control to a Sub procedure or Function
procedure.

VBScript Const Statement Declares constants for use in place of literal values.

VBScript Dim Statement Declares variables and allocates storage space.

VBScript Do. . . Loop Statement Repeats a block of statements while a condition is
True or until a condition becomes True.

VBScript Erase Statement Reinitializes fixed-size arrays and deallocates dynamic
array storage space.

VBScript Exit Statement Exits a block of Do…Loop, For…Next, Function, or
Sub code.

VBScript For. . . Next Statement Repeats a group of statements a specified number of
times.

VBScript For Each. . . Next
Statement

Repeats a group of statements for each element in an
array or collection.

VBScript Function Statement Declares the name, arguments, and code that form the
body of a Function procedure.

VBScript If. . . Then. . . Else
Statement

Conditionally executes a group of statements.

VBScript On Error Statement Enables error-handling.

VBScript Option Explicit Statement Used at script level to force explicit declaration of all
variables in that script.

VBScript Private Statement Used at script level to declare private variables and

Sun Chili!Soft ASP 3.6.2 Product Documentation 744

allocate storage space.

VBScript Public Statement Used at script level to declare public variables and
allocate storage space.

VBScript Randomize Statement Initializes the random-number generator.

VBScript ReDim Statement Used at procedure level to declare dynamic-array
variables and allocate or reallocate storage space.

VBScript Rem Statement Used to include explanatory remarks and comments in
a script.

VBScript Select Case Statement Executes one of several groups of statements based on
the value of an expression.

VBScript Set Statement Assigns an object reference to a variable or property.

VBScript Sub Statement Declares the name, arguments, and code that form the
body of a Sub procedure.

VBScript While. . . Wend
Statement

Executes a series of statements as long as a given
condition is True.

 VBScript Call Statement
Transfers control to a Sub procedure or Function procedure.

Syntax: VBScript Call Statement
[Call] name [argumentslist]

Arguments: VBScript Call Statement[0]
Call

A keyword. If specified, you must enclose argumentslist in parentheses. Optional. For example:

Call MyProc (0)

name

The name of the procedure to call. Required.

argumentslist

A comma-delimited list of variables, arrays, or expressions to pass to the procedure. Optional.

Remarks: VBScript Call Statement
You are not required to use the Call keyword when calling a procedure. However, if you use the
Call keyword to call a procedure that requires arguments, argumentslist must be enclosed in
parentheses. If you omit the Call keyword, you also must omit the parentheses around
argumentslist. If you use either Call syntax to call any intrinsic or user-defined function, the
function's return value is discarded.

Sun Chili!Soft ASP 3.6.2 Product Documentation 745

 VBScript Const Statement
Declares constants for use in place of literal values.

Syntax: VBScript Const Statement
[Public | Private] Const constname = expression

Arguments: VBScript Const Statement
Public

A keyword used at script level to declare constants that are available to all procedures in all
scripts. Not allowed in procedures. Optional.

Private

A keyword used at script level to declare constants that are available only within the script where
the declaration is made. Not allowed in procedures. Optional.

constname

The name of the constant; follows standard variable naming conventions. Required.

expression

A literal or other constant, or any combination that includes all arithmetic or logical operators
except Is. Required.

Remarks: VBScript Const Statement
Constants are public by default. Within procedures, constants are always private; their visibility
can't be changed. Within a script, the default visibility of a script-level constant can be changed
using the Private keyword.

To combine several constant declarations on the same line, separate each constant assignment
with a comma. When constant declarations are combined in this way, the Public or Private
keyword, if used, applies to all of them.

You can't use variables, user-defined functions, or intrinsic VBScript functions (such as Chr) in
constant declarations. By definition, they can't be constants. You also can't create a constant from
any expression that involves an operator; that is, only simple constants are allowed. Constants
declared in a Sub or Function procedure are local to that procedure. A constant declared outside
a procedure is defined throughout the script in which it is declared. You can use constants
anywhere you can use an expression. The following code illustrates the use of the Const
statement:

Const MyVar = 459 ' Constants are Public by default.

Private Const MyString = "HELP" ' Declare Private constant.

Const MyStr = "Hello", MyNumber = 3.4567 ' Declare multiple
constants on same line.

Sun Chili!Soft ASP 3.6.2 Product Documentation 746

Tip
Constants can make your scripts self-documenting and easy to modify. Unlike variables,
constants can't be inadvertently changed while your script is running.

 VBScript Dim Statement
Declares variables and allocates storage space.

Syntax: VBScript Dim Statement
Dim varname[([subscripts])][, varname[([subscripts])]] . . .

Arguments: VBScript Dim Statement
varname

Name of the variable; follows standard variable naming conventions.

subscripts

Dimensions of an array variable; up to 60 multiple dimensions may be declared. The subscripts
argument uses the following syntax:

upperbound [,upperbound] . . .

The lower bound of an array is always zero.

Remarks: VBScript Dim Statement
Variables declared with Dim at the script level are available to all procedures within the script. At
the procedure level, variables are available only within the procedure.

You can also use the Dim statement with empty parentheses to declare a dynamic array. After
declaring a dynamic array, use the ReDim statement within a procedure to define the number of
dimensions and elements in the array. If you try to redeclare a dimension for an array variable
whose size was explicitly specified in a Dim statement, an error occurs.

When variables are initialized, a numeric variable is initialized to 0 and a string is initialized to a
zero-length string (""). The following examples illustrate the use of the Dim statement:

Dim Names(9) ' Declare an array with 10 elements.

Dim Names() ' Declare a dynamic array.

Dim MyVar, MyNum ' Declare two variables.

Tip
When you use the Dim statement in a procedure, you generally put the Dim statement at
the beginning of the procedure.

Sun Chili!Soft ASP 3.6.2 Product Documentation 747

 VBScript Do. . . Loop Statement
Repeats a block of statements while a condition is True or until a condition becomes True.

Syntax: VBScript Do. . . Loop Statement
Do [{While | Until} condition]

[statements]

[Exit Do]

[statements]

Loop

Or, you can use this syntax:

Do

[statements]

[Exit Do]

[statements]

Loop [{While | Until} condition]

Arguments: VBScript Do. . . Loop Statement
condition

A numeric or string expression that is True or False. If condition is Null, condition is treated as
False.

statements

One or more statements that are repeated while or until condition is True.

Remarks: VBScript Do. . . Loop Statement
The Exit statement can only be used within a Do...Loop control structure to provide an alternate
way to exit a Do...Loop. Any number of Exit Do statements may be placed anywhere in the
Do...Loop. Often used with the evaluation of some condition (for example, If…Then…Else),
Exit Do transfers control to the statement immediately following the Loop.

When used within nested Do...Loop statements, Exit Do transfers control to the loop that is one
nested level above the loop where it occurs.

The following examples illustrate use of the Do...Loop statement:

Do Until DefResp = vbNo

 MyNum = Int (6 * Rnd + 1) ' Generate a random integer
between 1 and 6.

 DefResp = MsgBox (MyNum & " Do you want another number?",
vbYesNo)

Loop

Sun Chili!Soft ASP 3.6.2 Product Documentation 748

Dim Check, Counter

Check = True: Counter = 0 ' Initialize variables.

Do ' Outer
loop.

 Do While Counter < 20 ' Inner loop.

 Counter = Counter + 1 ' Increment Counter.

 If Counter = 10 Then ' If condition is True...

 Check = False ' set value of flag
to False.

 Exit Do ' Exit inner
loop.

 End If

 Loop

Loop Until Check = False ' Exit outer loop immediately.

 VBScript Erase Statement
Reinitializes the elements of fixed-size arrays and deallocates dynamic-array storage space.

Syntax: VBScript Erase Statement
Erase array

Arguments: VBScript Erase Statement
array

The name of the array variable to be erased.

Remarks: VBScript Erase Statement
It is important to know whether an array is fixed-size (ordinary) or dynamic because Erase
behaves differently depending on the type of array. Erase recovers no memory for fixed-size
arrays. Erase sets the elements of a fixed array as follows:

Type of array Effect of Erase on fixed-array elements

Fixed numeric array Sets each element to zero.

Fixed string array Sets each element to zero-length ("").

Array of objects Sets each element to the special value Nothing.

Erase frees the memory used by dynamic arrays. Before your program can refer to the dynamic
array again, it must redeclare the array variable's dimensions using a ReDim statement.

The following example illustrates the use of the Erase statement.

Sun Chili!Soft ASP 3.6.2 Product Documentation 749

Dim NumArray(9)

Dim DynamicArray()

ReDim DynamicArray(9) ' Allocate storage space.

Erase NumArray ' Each element is reinitialized.

Erase DynamicArray ' Free memory used by array.

 VBScript Exit Statement
Exits a block of Do...Loop, For...Next, Function, or Sub code.

Syntax: VBScript Exit Statement
Exit Do

Exit For

Exit Function

Exit Sub

Exit Do
Provides a way to exit a Do…Loop statement. It can be used only inside a Do...Loop statement.
Exit Do transfers control to the statement following the Loop statement. When used within nested
Do...Loop statements, Exit Do transfers control to the loop that is one nested level above the loop
where it occurs.

Exit For
Provides a way to exit a For loop. It can be used only in a For…Next or For Each…Next loop.
Exit For transfers control to the statement following the Next statement. When used within nested
For loops, Exit For transfers control to the loop that is one nested level above the loop where it
occurs.

Exit Function
Immediately exits the Function procedure in which it appears. Execution continues with the
statement following the statement that called the Function.

Exit Sub
Immediately exits the Sub procedure in which it appears. Execution continues with the statement
following the statement that called the Sub.

The following example illustrates the use of the Exit statement:

Sub RandomLoop

 Dim I, MyNum

 Do ' Set up infinite loop.

 For I = 1 To 1000 ' Loop 1000 times.

Sun Chili!Soft ASP 3.6.2 Product Documentation 750

 MyNum = Int(Rnd * 100) ' Generate random
numbers.

 Select Case MyNum ' Evaluate random number.

 Case 17: MsgBox "Case 17"

 Exit For ' If 17, exit
For...Next.

 Case 29: MsgBox "Case 29"

 Exit Do ' If 29, exit Do...Loop.

 Case 54: MsgBox "Case 54"

 Exit Sub ' If 54, exit Sub
procedure.

 End Select

 Next

 Loop

End Sub

 VBScript For. . . Next Statement
Repeats a group of statements a specified number of times.

Syntax: VBScript For. . . Next Statement
For counter = start To end [Step step]

[statements]

[Exit For]

[statements]

Next

Arguments: VBScript For. . . Next Statement
counter

A numeric variable used as a loop counter. The variable can't be an array element or an element
of a user-defined type.

start

The initial value of counter.

end

The final value of counter.

step

Sun Chili!Soft ASP 3.6.2 Product Documentation 751

The amount counter is changed each time through the loop. If not specified, step defaults to one.

statements

One or more statements between For and Next that are executed the specified number of times.

Remarks: VBScript For. . . Next Statement
The step argument can be either positive or negative. The value of the step argument determines
loop processing as follows:

Value Loop executes if

Positive or 0 counter <= end

Negative counter >= end

Once the loop starts and all statements in the loop have executed, step is added to counter. At this
point, either the statements in the loop execute again (based on the same test that caused the loop
to execute initially), or the loop is exited and execution continues with the statement following
the Next statement.

Tip
Changing the value of counter while inside a loop can make it more difficult to read and
debug your code.

Exit can only be used within a For Each…Next or For...Next control structure to
provide an alternate way to exit. Any number of Exit For statements may be placed
anywhere in the loop. Exit For is often used with the evaluation of some condition (for
example, If…Then…Else), and transfers control to the statement immediately following
Next.

You can nest For...Next loops by placing one For...Next loop within another. Give each
loop a unique variable name as its counter. The following construction is correct:

For I = 1 To 10

For J = 1 To 10

For K = 1 To 10

. . .

Next

Next

Next

 VBScript For Each. . . Next Statement
Repeats a group of statements for each element in an array or collection.

Sun Chili!Soft ASP 3.6.2 Product Documentation 752

Syntax: VBScript For Each. . . Next Statement
For Each element In group

[statements]

[Exit For]

[statements]

Next [element]

Arguments: VBScript For Each. . . Next Statement
element

A variable used to iterate through the elements of the collection or array. For collections, element
can only be a Variant variable, a generic Object variable, or any specific Automation object
variable. For arrays, element can only be a Variant variable.

group

The name of an object collection or array.

statements

One or more statements that are executed on each item in group.

Remarks: VBScript For Each. . . Next Statement
The For Each block is entered if there is at least one element in group. Once the loop has been
entered, all the statements in the loop are executed for the first element in group. As long as there
are more elements in group, the statements in the loop continue to execute for each element.
When there are no more elements in group, the loop is exited and execution continues with the
statement following the Next statement.

Exit FOR can only be used within a For Each…Next or For...Next control structure to provide
an alternate way to exit. Any number of Exit For statements may be placed anywhere in the loop.
Exit For is often used with the evaluation of some condition (for example, If…Then…Else), and
transfers control to the statement immediately following Next.

You can nest For Each...Next loops by placing one For Each...Next loop within another.
However, each loop element must be unique.

The following example illustrates use of the For Each...Next statement:

Function ShowFolderList(folderspec)

 Dim fso, f, f1, fc, s

 Set fso = CreateObject("Scripting.FileSystemObject")

 Set f = fso.GetFolder(folderspec)

 Set fc = f.Files

 For Each f1 in fc

 s = s & f1.name

Sun Chili!Soft ASP 3.6.2 Product Documentation 753

 s = s & "
"

 Next

 ShowFolderList = s

End Function

Note
If you omit element in a Next statement, execution continues as if you had included it. If
a Next statement is encountered before its corresponding For statement, an error occurs.

 VBScript Function Statement
Declares the name, arguments, and code that form the body of a Function procedure.

Syntax: VBScript Function Statement
[Public | Private] Function name [(arglist)]

[statements]

[name = expression]

[Exit Function]

[statements]

[name = expression]

End Function

Arguments: VBScript Function Statement
Public

The Function procedure is accessible to all other procedures in all scripts.

Private

The Function procedure is accessible only to other procedures in the script where it is declared
Static. Indicates that the Function procedure's local variables are preserved between calls. The
Static attribute doesn't affect variables that are declared outside the Function, even if they are
used in the procedure.

name

The name of the Function; follows standard variable naming conventions.

arglist

A list of variables representing arguments that are passed to the Function procedure when it is
called. Multiple variables are separated by commas.

The arglist argument has the following syntax and parts:

[ByVal | ByRef] varname[()]

Sun Chili!Soft ASP 3.6.2 Product Documentation 754

ByVal

The argument is passed by value.

ByRef

The argument is passed by reference.

varname

The name of the variable representing the arguments; follows standard variable naming
conventions.

statements

Any group of statements to be executed within the body of the Function procedure.

expression

Returns the value of the Function.

Remarks: VBScript Function Statement
If not explicitly specified using either Public or Private, Function procedures are public by
default, that is, they are visible to all other procedures in your script. The value of local variables
in a Function is not preserved between calls to the procedure.

All executable code must be contained in procedures. You can't define a Function procedure
inside another Function or Sub procedure.

The Exit statement causes an immediate exit from a Function procedure. Program execution
continues with the statement following the statement that called the Function procedure. Any
number of Exit Function statements can appear anywhere in a Function procedure.

Like a Sub procedure, a Function procedure is a separate procedure that can take arguments,
perform a series of statements, and change the values of its arguments. However, unlike a Sub
procedure, you can use a Function procedure on the right side of an expression in the same way
you use any intrinsic function, such as Sqr, Cos, or Chr, when you want to use the value returned
by the function.

Call a Function procedure in an expression using the function name followed by the argument
list in parentheses. See the Call statement for specific information on how to call Function
procedures.

Caution
Function procedures can be recursive; that is, they can call themselves to perform a
given task. However, recursion can lead to stack overflow.

To return a value from a function, assign the value to the function name. Any number of
such assignments can appear anywhere within the procedure. If no value is assigned to
name, the procedure returns a default value: a numeric function returns 0 and a string
function returns a zero-length string (""). A function that returns an object reference
returns Nothing if no object reference is assigned to name (using Set) within the
Function.

Sun Chili!Soft ASP 3.6.2 Product Documentation 755

The following example shows how to assign a return value to a function named
BinarySearch. In this case, False is assigned to the name to indicate that some value was
not found.

Function BinarySearch(. . .)

. . .

' Value not found. Return a value of False.

If lower > upper Then

BinarySearch = False

Exit Function

End If

. . .

End Function

Variables used in Function procedures fall into two categories: those that are explicitly
declared within the procedure and those that are not. Variables that are explicitly declared
in a procedure (using Dim or the equivalent) are always local to the procedure. Variables
that are used but not explicitly declared in a procedure are also local unless they are
explicitly declared at some higher level outside the procedure.

Caution
A procedure can use a variable that is not explicitly declared in the procedure, but a
naming conflict can occur if anything you have defined at the script level has the same
name. If your procedure refers to an undeclared variable that has the same name as
another procedure, constant, or variable, it is assumed that your procedure is referring to
that script-level name. Explicitly declare variables to avoid this kind of conflict. You can
use an Option Explicit statement to force explicit declaration of variables.

Caution
VBScript may rearrange arithmetic expressions to increase internal efficiency. Avoid
using a Function procedure in an arithmetic expression when the function changes the
value of variables in the same expression.

 VBScript If. . . Then. . . Else Statement
Conditionally executes a group of statements, depending on the value of an expression.

Syntax: VBScript If. . . Then. . . Else Statement
If condition Then statements [Else elsestatements]

Sun Chili!Soft ASP 3.6.2 Product Documentation 756

Or, you can use the block form syntax:

If condition Then

[statements]

[ElseIf condition-n Then

[elseifstatements]] . . .

[Else

[elsestatements]]

End If

Arguments: VBScript If. . . Then. . . Else Statement
condition

One or more of the following two types of expressions:

A numeric or string expression that evaluates to True or False. If condition is Null,
condition is treated as False.

An expression of the form TypeOf objectname Is objecttype. The objectname is any
object reference and objecttype is any valid object type. The expression is True if
objectname is of the object type specified by objecttype; otherwise it is False.

statements

One or more statements separated by colons; executed if condition is True.

condition-n

Same as condition.

elseifstatements

One or more statements executed if the associated condition-n is True.

elsestatements

One or more statements executed if no previous condition or condition-n expression is True.

Remarks: VBScript If. . . Then. . . Else Statement
You can use the single-line form (first syntax) for short, simple tests. However, the block form
(second syntax) provides more structure and flexibility than the single-line form and is usually
easier to read, maintain, and debug.

With the single-line syntax, it is possible to have multiple statements executed as the result of an
If...Then decision, but they must all be on the same line and separated by colons, as in the
following statement:

If A > 10 Then A = A + 1 : B = B + A : C = C + B

When executing a block If (second syntax), condition is tested. If condition is True, the
statements following Then are executed. If condition is False, each ElseIf (if any) is evaluated in
turn. When a True condition is found, the statements following the associated Then are executed.

Sun Chili!Soft ASP 3.6.2 Product Documentation 757

If none of the ElseIf statements are True (or there are no ElseIf clauses), the statements
following Else are executed. After executing the statements following Then or Else, execution
continues with the statement following End If.

The Else and ElseIf clauses are both optional. You can have as many ElseIf statements as you
want in a block If, but none can appear after the Else clause. Block If statements can be nested;
that is, contained within one another.

What follows the Then keyword is examined to determine whether or not a statement is a block
If. If anything other than a comment appears after Then on the same line, the statement is treated
as a single-line If statement.

A block If statement must be the first statement on a line. The block If must end with an End If
statement.

 VBScript On Error Statement
Enables error-handling.

Syntax: VBScript On Error Statement
On Error Resume Next

Remarks: VBScript On Error Statement
If you don't use an On Error Resume Next statement, any run-time error that occurs is fatal; that
is, an error message is displayed and execution stops.

On Error Resume Next causes execution to continue with the statement immediately following
the statement that caused the run-time error, or with the statement immediately following the
most recent call out of the procedure containing the On Error Resume Next statement. This
allows execution to continue despite a run-time error. You can then build the error-handling
routine inline within the procedure. An On Error Resume Next statement becomes inactive
when another procedure is called, so you should execute an On Error Resume Next statement in
each called routine if you want inline error-handling within that routine.

The following example illustrates use of the On Error Resume Next statement:

On Error Resume Next

Err.Raise 6 ' Raise an overflow error.

MsgBox "Error # " & CStr(Err.Number) & " " & Err.Description

Err.Clear ' Clear the error.

 VBScript Option Explicit Statement
Used at script level to force explicit declaration of all variables in that script.

Syntax: VBScript Option Explicit Statement
Option Explicit

Sun Chili!Soft ASP 3.6.2 Product Documentation 758

Remarks: VBScript Option Explicit Statement
If used, the Option Explicit statement must appear in a script before any procedures.

When you use the Option Explicit statement, you must explicitly declare all variables using the
Dim, Private, Public, or ReDim statements. If you attempt to use an undeclared variable name,
an error occurs.

The following example illustrates use of the Option Explicit statement:

Option Explicit ' Force explicit variable declaration.

Dim MyVar ' Declare variable.

MyInt = 10 ' Undeclared variable generates error.

MyVar = 10 ' Declared variable does not generate error.

Tip
Use Option Explicit to avoid incorrectly typing the name of an existing variable or to
avoid confusion in code where the scope of the variable is not clear.

 VBScript Private Statement
Used at script level to declare private variables and allocate storage space.

Syntax: VBScript Private Statement
Private varname[([subscripts])][, varname[([subscripts])]] . . .

Arguments: VBScript Private Statement
varname

The name of the variable; follows standard variable naming conventions.

subscripts

The dimensions of an array variable; up to 60 multiple dimensions may be declared. The
subscripts argument uses the following syntax:

upper [, upper] . . .

The lower bound of an array is always zero.

Remarks: VBScript Private Statement
Private variables are available only to the script in which they are declared.

A variable that refers to an object must be assigned an existing object using the Set statement
before it can be used. Until it is assigned an object, the declared object variable has the special
value Nothing.

You can also use the Private statement with empty parentheses to declare a dynamic array. After
declaring a dynamic array, use the ReDim statement within a procedure to define the number of

Sun Chili!Soft ASP 3.6.2 Product Documentation 759

dimensions and elements in the array. If you try to redeclare a dimension for an array variable
whose size was explicitly specified in a Private, Public, or Dim statement, an error occurs.

When variables are initialized, a numeric variable is initialized to 0 and a string is initialized to a
zero-length string ("").

The following example illustrates use of the Option Explicit statement:

Option Explicit ' Force explicit variable declaration.

Dim MyVar ' Declare variable.

MyInt = 10 ' Undeclared variable generates error.

MyVar = 10 ' Declared variable does not generate error.

Tip
When you use the Private statement in a procedure, you generally put the Private
statement at the beginning of the procedure.

 VBScript Public Statement
Used at script level to declare public variables and allocate storage space.

Syntax: VBScript Public Statement
Public varname[([subscripts])][, varname[([subscripts])]] . . .

Arguments: VBScript Public Statement
varname

The name of the variable; follows standard variable naming conventions.

subscripts

The dimensions of an array variable; up to 60 multiple dimensions may be declared. The
subscripts argument uses the following syntax:

upper [,upper] . . .

The lower bound of an array is always zero.

Remarks: VBScript Public Statement
Variables declared using the Public statement are available to all procedures in all scripts in all
projects.

A variable that refers to an object must be assigned an existing object using the Set statement
before it can be used. Until it is assigned an object, the declared object variable has the special
value Nothing.

You can also use the Public statement with empty parentheses to declare a dynamic array. After
declaring a dynamic array, use the ReDim statement within a procedure to define the number of

Sun Chili!Soft ASP 3.6.2 Product Documentation 760

dimensions and elements in the array. If you try to redeclare a dimension for an array variable
whose size was explicitly specified in a Private, Public, or Dim statement, an error occurs.

When variables are initialized, a numeric variable is initialized to 0 and a string is initialized to a
zero-length string ("").

The following example illustrates the use of the Public statement:

Public MyNumber ' Public Variant variable.

Public MyArray(9) ' Public array variable.

 ' Multiple Public declarations of Variant variables.

Public MyNumber, MyVar, YourNumber

 VBScript Randomize Statement
Initializes the random-number generator.

Syntax: VBScript Randomize Statement
Randomize [number]

Arguments: VBScript Randomize Statement
number

Any valid numeric expression.

Remarks: VBScript Randomize Statement
Randomize uses number to initialize the Rnd function random-number generator, giving it a new
seed value. If you omit number, the value returned by the system timer is used as the new seed
value.

If Randomize is not used, the Rnd function (with no arguments) uses the same number as a seed
the first time it is called, and thereafter uses the last generated number as a seed value.

The following example illustrates use of the Randomize statement.

Dim MyValue, Response

Randomize ' Initialize random-number generator.

Do Until Response = vbNo

 MyValue = Int((6 * Rnd) + 1) ' Generate random value
between 1 and 6.

 MsgBox MyValue

 Response = MsgBox ("Roll again? ", vbYesNo)

Loop

Sun Chili!Soft ASP 3.6.2 Product Documentation 761

Note
To repeat sequences of random numbers, call Rnd with a negative argument immediately
before using Randomize with a numeric argument. Using Randomize with the same
value for number does not repeat the previous sequence.

 VBScript ReDim Statement
Used at procedure level to declare dynamic-array variables and allocate or reallocate storage
space.

Syntax: VBScript ReDim Statement
ReDim [Preserve] varname(subscripts) [, varname(subscripts) . . .

Arguments: VBScript ReDim Statement
Preserve

Preserves the data in an existing array when you change the size of the last dimension.

varname

The name of the variable; follows standard variable naming conventions.

subscripts

The dimensions of an array variable; up to 60 multiple dimensions may be declared. The
subscripts argument uses the following syntax:

upper [,upper] . . .

The lower bound of an array is always zero.

Remarks: VBScript ReDim Statement
The ReDim statement is used to size or resize a dynamic array that has already been formally
declared using a Private, Public, or Dim statement with empty parentheses (without dimension
subscripts). You can use the ReDim statement repeatedly to change the number of elements and
dimensions in an array.

If you use the Preserve keyword, you can resize only the last array dimension, and you can't
change the number of dimensions at all. For example, if your array has only one dimension, you
can resize that dimension because it is the last and only dimension. However, if your array has
two or more dimensions, you can change the size of only the last dimension and still preserve the
contents of the array.

The following example shows how you can increase the size of the last dimension of a dynamic
array without erasing any existing data contained in the array.

ReDim X(10, 10, 10)

. . .

ReDim Preserve X(10, 10, 15)

Sun Chili!Soft ASP 3.6.2 Product Documentation 762

Caution
If you make an array smaller than it was originally, data in the eliminated elements is
lost.

When variables are initialized, a numeric variable is initialized to 0 and a string variable
is initialized to a zero-length string (""). A variable that refers to an object must be
assigned an existing object using the Set statement before it can be used. Until it is
assigned an object, the declared object variable has the special value Nothing.

 VBScript Rem Statement
Used to include explanatory remarks in a program.

Syntax: VBScript Rem Statement
Rem comment

or

' comment

Arguments: VBScript Rem Statement
comment

The text of any comment you want to include. After the Rem keyword, a space is required before
comment.

Remarks: VBScript Rem Statement
As shown in the syntax section, you can use an apostrophe (') instead of the Rem keyword. If the
Rem keyword follows other statements on a line, it must be separated from the statements by a
colon. However, when you use an apostrophe, the colon is not required after other statements.

The following example illustrates the use of the Rem statement.

Dim MyStr1, MyStr2

MyStr1 = "Hello" : Rem Comment after a statement separated by a
colon.

MyStr2 = "Goodbye" ' This is also a comment; no colon is needed.

Rem Comment on a line with no code; no colon is needed.

 VBScript Select Case Statement
Executes one of several groups of statements, depending on the value of an expression.

Syntax: VBScript Select Case Statement
Select Case testexpression

[Case expressionlist-n

Sun Chili!Soft ASP 3.6.2 Product Documentation 763

[statements-n]] . . .

[Case Else expressionlist-n

[elsestatements-n]]

End Select

Arguments: VBScript Select Case Statement
testexpression

Any numeric or string expression.

expressionlist-n

Required if Case appears. Delimited list of one or more expressions.

statements-n

One or more statements executed if testexpression matches any part of expressionlist-n.

elsestatements

One or more statements executed if testexpression doesn't match any of the Case clauses.

Remarks: VBScript Select Case Statement
If testexpression matches any Case expressionlist expression, the statements following that Case
clause are executed up to the next Case clause, or for the last clause, up to End Select. Control
then passes to the statement following End Select. If testexpression matches an expressionlist
expression in more than one Case clause, only the statements following the first match are
executed.

The Case Else clause is used to indicate the elsestatements to be executed if no match is found
between the testexpression and an expressionlist in any of the other Case selections. Although not
required, it is a good idea to have a Case Else statement in your Select Case block to handle
unforeseen testexpression values. If no Case expressionlist matches testexpression and there is no
Case Else statement, execution continues at the statement following End Select.

Select Case statements can be nested. Each nested Select Case statement must have a matching
End Select statement.

The following example illustrates the use of the Select Case statement:

Dim Color, MyVar

Sub ChangeBackground (Color)

 MyVar = lcase (Color)

 Select Case MyVar

 Case "red" document.bgColor = "red"

 Case "green" document.bgColor = "green"

 Case "blue" document.bgColor = "blue"

 Case Else MsgBox "pick another color"

Sun Chili!Soft ASP 3.6.2 Product Documentation 764

 End Select

End Sub

 VBScript Set Statement
Assigns an object reference to a variable or property.

Syntax: VBScript Set Statement
Set objectvar = {objectexpression | Nothing}

Arguments: VBScript Set Statement
objectvar

The name of the variable or property; follows standard variable naming conventions.

objectexpression

An expression consisting of the name of an object, another declared variable of the same object
type, or a function or method that returns an object of the same object type.

Nothing

Discontinues association of objectvar with any specific object. Assigning objectvar to Nothing
releases all the system and memory resources associated with the previously referenced object
when no other variable refers to it.

Remarks: VBScript Set Statement
To be valid, objectvar must be an object type consistent with the object being assigned to it.

The Dim, Private, Public, or ReDim statements only declare a variable that refers to an object.
No actual object is referred to until you use the Set statement to assign a specific object.

Generally, when you use Set to assign an object reference to a variable, no copy of the object is
created for that variable. Instead, a reference to the object is created. More than one object
variable can refer to the same object. Because these variables are references to (rather than copies
of) the object, any change in the object is reflected in all variables that refer to it.

Function ShowFreeSpace(drvPath)

 Dim fso, d, s

 Set fso = CreateObject("Scripting.FileSystemObject")

 Set d = fso.GetDrive(fso.GetDriveName(drvPath))

 s = "Drive " & UCase(drvPath) & " - "

 s = s & d.VolumeName & "
"

 s = s & "Free Space: " & FormatNumber(d.FreeSpace/1024, 0)

 s = s & " Kbytes"

 ShowFreeSpace = s

Sun Chili!Soft ASP 3.6.2 Product Documentation 765

End Function

Using the New keyword allows you to concurrently create an instance of a class and assign it to
an object reference variable. The variable to which the instance of the class is being assigned
must already have been declared with the Dim (or equivalent) statement.

Refer to the documentation for the GetRef function for information on using Set to associate a
procedure with an event.

 VBScript Sub Statement
Declares the name, arguments, and code that form the body of a Sub procedure.

Syntax: VBScript Sub Statement
[Public | Private] Sub name [(arglist)]

[statements]

[Exit Sub]

[statements]

End Sub

Arguments: VBScript Sub Statement
Public

The Sub procedure is accessible to all other procedures in all scripts.

Private

The Sub procedure is accessible only to other procedures in the script where it is declared

name

The name of the Sub procedure; follows standard variable naming conventions.

arglist

A list of variables representing arguments that are passed to the Sub procedure when it is called.
Multiple variables are separated by commas.

[ByVal | ByRef] varname[()]

ByVal

The argument is passed by value.

ByRef

The argument is passed by reference.

varname

The name of the variable representing the argument; follows standard variable naming
conventions.

Sun Chili!Soft ASP 3.6.2 Product Documentation 766

statements

Any group of statements to be executed within the body of the Sub procedure.

Remarks: VBScript Sub Statement
If not explicitly specified using either Public or Private, Sub procedures are public by default,
that is, they are visible to all other procedures in your script. The value of local variables in a Sub
procedure is not preserved between calls to the procedure.

All executable code must be contained in procedures. You can't define a Sub procedure inside
another Sub or Function procedure.

The Exit statement causes an immediate exit from a Sub procedure. Program execution continues
with the statement following the statement that called the Sub procedure. Any number of Exit
Sub statements can appear anywhere in a Sub procedure.

Like a Function procedure, a Sub procedure is a separate procedure that can take arguments,
perform a series of statements, and change the value of its arguments. However, unlike a
Function procedure, which returns a value, a Sub procedure can't be used in an expression.

You call a Sub procedure using the procedure name followed by the argument list. See the Call
statement for specific information on how to call Sub procedures.

Caution
Sub procedures can be recursive; that is, they can call themselves to perform a given
task. However, recursion can lead to stack overflow. The Static keyword usually is not
used with recursive Sub procedures.

Variables used in Sub procedures fall into two categories: those that are explicitly
declared within the procedure and those that are not. Variables that are explicitly declared
in a procedure (using Dim or the equivalent) are always local to the procedure. Variables
that are used but not explicitly declared in a procedure are also local unless they are
explicitly declared at some higher level outside the procedure.

Caution
A procedure can use a variable that is not explicitly declared in the procedure, but a
naming conflict can occur if anything you have defined at the script level has the same
name. If your procedure refers to an undeclared variable that has the same name as
another procedure, constant or variable, it is assumed that your procedure is referring to
that script-level name. Explicitly declare variables to avoid this kind of conflict. You can
use an Option Explicit statement to force explicit declaration of variables.

 VBScript While. . . Wend Statement
Executes a series of statements as long as a given condition is True.

Syntax: VBScript While. . . Wend Statement
While condition

Sun Chili!Soft ASP 3.6.2 Product Documentation 767

[statements]

Wend

Arguments: VBScript While. . . Wend Statement
condition

A numeric or string expression that evaluates to True or False. If condition is Null, condition is
treated as False.

statements

One or more statements executed while condition is True.

Remarks: VBScript While. . . Wend Statement
If condition is True, all statements in statements are executed until the Wend statement is
encountered. Control then returns to the While statement and condition is again checked. If
condition is still True, the process is repeated. If it is not True, execution resumes with the
statement following the Wend statement.

While...Wend loops can be nested to any level. Each Wend matches the most recent While.

The following example illustrates use of the While...Wend statement:

Dim Counter

Counter = 0 ' Initialize variable.

While Counter < 20 ' Test value of Counter.

 Counter = Counter + 1 ' Increment Counter.

 Alert Counter

Wend ' End While loop when Counter > 19.

Tip

The Do…Loop statement provides a more structured and flexible way to perform looping.

VBScript Functions

 Note
The behavior of VBScript functions such as MidB, ChrB, LeftB, and AscB depends on
the byte ordering of the hardware platform, and the number of bytes used to represent
Unicode characters in the system software. The functions will produce different results
on different operating systems. The behavior described in this section pertains to the
Win32 version.

Sun Chili!Soft ASP 3.6.2 Product Documentation 768

VBScript Functions
Function Description

VBScript Abs Function Returns the absolute value of a number.

VBScript Array Function Returns an array.

VBScript Asc Function Returns the ASNI character code corresponding to the first
letter in a string.

VBScript Atn Function Returns the arctangent of a number.

VBScript CBool Function Returns an expression that has been converted to a Boolean
variant.

VBScript CByte Function Returns an expression that has been converted to a Byte
variant.

VBScript CCur Function Returns an expression that has been converted to Currency
variant.

VBScript CDate Function Returns an expression that has been converted to a Date
variant.

VBScript CDbl Function Returns an expression that has been converted to a Double
variant.

VBScript Chr Function Returns the character associated with the specified ANSI
character code.

VBScript CInt Function Returns an expression that has been converted to an
Integer variant.

VBScript CLng Function Returns an expression that has been converted to a Long
variant.

VBScript Cos Function Returns the cosine of an angle.

VBScript CreateObject Function Creates and returns a reference to an Automation object.

VBScript CSng Function Returns an object that has been converted to a Single
variant.

VBScript CStr Function Returns an expression that has been converted to a String
variant.

VBScript Date Function Returns the current system date.

VBScript DateAdd Function Returns a date to which a specified time interval has been
added.

VBScript DateDiff Function Returns the number of intervals between two dates.

VBScript DatePart Function Returns the specified part of a given date.

VBScript DateSerial Function Returns a Date variant for a specified year, month and day.

VBScript DateValue Function Returns a Date variant.

Sun Chili!Soft ASP 3.6.2 Product Documentation 769

VBScript Day Function Returns the day of the month (1-31).

VBScript Exp Function Returns e raised to a power.

VBScript Filter Function Returns a subset of a string array based on a specified filter
criteria.

VBScript Fix, Int Function Returns the integer portion of a number.

VBScript FormatCurrency Function Returns an expression formatted as a currency value.

VBScript FormatDateTime Function Returns an expression formatted as a date or time.

VBScript FormatNumber Function Returns an expression formatted as a number.

VBScript FormatPercent Function Returns an expression formatted as a percentage.

VBScript GetObject Function Returns a reference to an Automation object from a file.
Windows systems only.

VBScript Hex Function Returns a string representing the hexadecimal value of a
number.

VBScript Hour Function Returns the hour of the day (0-23).

VBScript InputBox Function Displays a prompt in a dialog box. Client-side only.

VBScript InStr Function Returns the position of the first occurrence of one string
within another.

VBScript InStrRev Function Returns the position of an occurrence of one string within
another, working from the end of the string.

Int Returns the integer portion of a number.

VBScript IsArray Function Returns a Boolean value indicating whether a variable is an
array.

VBScript IsDate Function Returns a Boolean value indicating whether an expression
can be converted to a date.

VBScript IsEmpty Function Returns a Boolean value indicating whether a variable has
been initialized.

VBScript IsNull Function Returns a Boolean value indicating whether an expression
contains no valid data (Null).

VBScript IsNumeric Function Returns a Boolean value indicating whether an expression
can be evaluated as a number.

VBScript IsObject Function Returns a Boolean value indicating whether an expression
references a valid object.

VBScript Join Function Returns a string created by joining a number of substrings
contained in an array.

VBScript LBound Function Returns the smallest available subscript for the indicated
dimension of an array.

Sun Chili!Soft ASP 3.6.2 Product Documentation 770

VBScript LCase Function Returns a string that has been converted to lower case.

VBScript Left Function Returns a specified number of characters from the left side
of a string.

VBScript Len Function Returns the number of characters in a string or the number
of bytes required to store a variable.

VBScript LoadPicture Function Returns a picture object.

VBScript Log Function Returns the natural logarithm of a number.

VBScript LTrim, RTrim, Trim
Function

Returns a copy of a string without leading spaces.

VBScript Mid Function Returns a specified number of characters from a string.

VBScript Minute Function Returns the minute of the hour (0-59)

VBScript Month Function Returns the number of the month (1-12)

VBScript MonthName Function Returns a string with the name of the specified month.

VBScript MsgBox Function Displays a message in a dialog box. Client-side only.

VBScript Now Function Returns the current date and time set on your computer
system.

VBScript Oct Function Returns a string representing the octal value of a number.

VBScript Replace Function Returns a string in which a specified substring has been
replaced with another substring a specified number of
times.

VBScript RGB Function Returns a whole number representing an RGB color value.

VBScript Right Function Returns a specified number of characters from the right
side of a string.

VBScript Rnd Function Returns a random number.

VBScript Round Function Returns a number rounded to a specified number of
decimal places.

Rtrim Returns a copy of a string without trailing spaces.

VBScript ScriptEngine Function Returns a string containing the scripting language in use.

VBScript ScriptEngineBuildVersion
Function

Returns the build version number of the script engine in
use.

VBScript ScriptEngineMajorVersion
Function

Returns the major version number of the script engine in
use.

VBScript ScriptEngineMinorVersion
Function

Returns the minor version number of the script engine in
use.

VBScript Second Function Returns the second (0-59).

Sun Chili!Soft ASP 3.6.2 Product Documentation 771

VBScript Sgn Function Returns an integer indicating the sign of a number.

VBScript Sin Function Returns the sine of an angle.

VBScript Space Function Returns a string consisting of the specified number of
spaces.

VBScript Split Function Returns an array containing a specified number of
substrings.

VBScript Sqr Function Returns the square root of a number.

VBScript StrComp Function Returns a value indicating the result of a string comparison.

VBScript StrReverse Function Returns a string in which the character order of a specified
string is reversed.

VBScript String Function Returns a repeating character string of the length specified.

VBScript Tan Function Returns the tangent of an angle.

VBScript Time Function Returns a Date variant with the current system time.

VBScript TimeSerial Function Returns a Date variant with the time for a specific hour,
minute, and second.

VBScript TimeValue Function Returns a Date variant containing the time.

Trim Returns a copy of a string without leading or trailing
spaces.

VBScript TypeName Function Returns a string that provides Variant subtype information
about a variable.

VBScript UBound Function Returns the largest available subscript for the indicated
dimension of an array.

VBScript UCase Function Returns a string that has been converted to upper case.

VBScript VarType Function Returns a value indicating the subtype of a variable.

VBScript Weekday Function Returns a whole number representing the day of the week.

VBScript WeekdayName Function Returns a string containing the specific day of the week.

VBScript Year Function Returns a whole number containing the year.

 VBScript Abs Function
Returns the absolute value of a number.

Syntax: VBScript Abs Function
Abs(number)

Arguments: VBScript Abs Function

Sun Chili!Soft ASP 3.6.2 Product Documentation 772

number

Any valid numeric expression. If number contains Null, Null is returned; if it is an uninitialized
variable, zero is returned.

Remarks: VBScript Abs Function
The absolute value of a number is its unsigned magnitude. For example, Abs(-1) and Abs(1) both
return 1.

The following example uses the Abs function to compute the absolute value of a number:

Dim MyNumber

MyNumber = Abs(50.3) ' Returns 50.3.

MyNumber = Abs(-50.3) ' Returns 50.3.

 VBScript Array Function
Returns a Variant containing an array.

Syntax: VBScript Array Function
Array(arglist)

Arguments: VBScript Array Function
arglist

Required comma-delimited list of values that are assigned to the elements of an array contained
with the Variant. If no argument are specified, an array of zero length is created.

Remarks: VBScript Array Function
The notation used to refer to an element of an array consists of the variable name followed by
parentheses containing an index number indicating the desired element. In the following example,
the first statement creates a variable named A. The second statement assigns an array to variable
A. The last statement assigns the value contained in the second array element to another variable.

Dim A

A = Array(10,20,20)

B = A(2)

Note
A variable that is not declared as an array can still contain an array. Although a Variant
variable containing an array is conceptually different from an array variable containing
Variant elements, the array elements are accessed in the same way.

Sun Chili!Soft ASP 3.6.2 Product Documentation 773

 VBScript Asc Function
Returns the ANSI character code corresponding to the first letter in a string.

Syntax: VBScript Asc Function
Asc(string)

Arguments: VBScript Asc Function
string

Any valid string expression. If the string contains no characters, a run-time error occurs.

Remarks: VBScript Asc Function
The AscB function is used with byte data contained in a string. Instead of returning the character
code for the first character, AscB returns the first byte. AscW is provided for 32-bit platforms that
use Unicode characters. It returns the Unicode (wide) character code, thereby avoiding the
conversion from Unicode to ANSI.

In the following example, Asc returns the ANSI character code of the first letter of each string:

Dim MyNumber

MyNumber = Asc("A") ' Returns 65.

MyNumber = Asc("a") ' Returns 97.

MyNumber = Asc("Apple") ' Returns 65.

Note
The behavior of the AscB function depends on the byte ordering of the hardware
platform, and the number of bytes used to represent Unicode characters in the system
software. The function will produce different results on each supported operating system.
Use with caution. The described behavior pertains to the Win32 version.

 VBScript Atn Function
Returns the arctangent of a number.

Syntax: VBScript Atn Function
Atn(number)

Arguments: VBScript Atn Function
number

Any valid numeric expression.

Remarks: VBScript Atn Function

Sun Chili!Soft ASP 3.6.2 Product Documentation 774

The Atn function takes the ratio of two sides of a right triangle and returns the corresponding
angle in radians. The ratio is the length of the side opposite the angle divided by the length of the
side adjacent to the angle.

The range of the result is -pi/2 to pi/2 radians.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees,
multiply radians by 180/pi.

The following example uses Atn to calculate the value of pi:

Dim pi

pi = 4 * Atn(1) ' Calculate the value of pi.

Note
Atn is the inverse trigonometric function of Tan, which takes an angle as its argument
and returns the ratio of two sides of a right triangle. Do not confuse Atn with the
cotangent, which is the simple inverse of a tangent (1/tangent).

 VBScript CBool Function
Returns an expression that has been converted to a Variant of subtype Boolean.

Syntax: VBScript CBool Function
CBool(expression)

Arguments: VBScript CBool Function
expression

Any valid expression.

Remarks: VBScript CBool Function
If expression is zero, False is returned; otherwise, True is returned. If expression can't be
interpreted as a numeric value, a run-time error occurs.

The following example uses the CBool function to convert an expression to a Boolean. If the
expression evaluates to a nonzero value, CBool returns True; otherwise, it returns False.

Dim A, B, Check

A = 5: B = 5 ' Initialize variables.

Check = CBool(A = B) ' Check contains True.

A = 0 ' Define variable.

Check = CBool(A) ' Check contains False.

Sun Chili!Soft ASP 3.6.2 Product Documentation 775

 VBScript CByte Function
Returns an expression that has been converted to a Variant of subtype Byte.

Syntax: VBScript CByte Function
CByte(expression)

Arguments: VBScript CByte Function
expression

Any valid expression.

Remarks: VBScript CByte Function
In general, you can document your code using the subtype conversion functions to show that the
result of some operation should be expressed as a particular data type rather than the default data
type. For example, use CByte to force byte arithmetic in cases where currency, single-precision,
double-precision, or integer arithmetic normally would occur.

Use the CByte function to provide internationally aware conversions from any other data type to
a Byte subtype. For example, different decimal separators are properly recognized depending on
the locale setting of your system, as are different thousand separators.

If expression lies outside the acceptable range for the Byte subtype, an error occurs.

The following example uses the CByte function to convert an expression to a byte:

Dim MyDouble, MyByte

MyDouble = 125.5678 ' MyDouble is a Double.

MyByte = CByte(MyDouble) ' MyByte contains 126.

 VBScript CCur Function
Returns an expression that has been converted to a Variant of subtype Currency.

Syntax: VBScript CCur Function
CCur(expression)

Arguments: VBScript CCur Function
expression

Any valid expression.

Remarks: VBScript CCur Function
In general, you can document your code using the subtype conversion functions to show that the
result of some operation should be expressed as a particular data type rather than the default data
type. For example, use CCur to force currency arithmetic in cases where integer arithmetic
normally would occur.

Sun Chili!Soft ASP 3.6.2 Product Documentation 776

You should use the CCur function to provide internationally aware conversions from any other
data type to a Currency subtype. For example, different decimal separators and thousands
separators are properly recognized depending on the locale setting of your system.

The following example uses the CCur function to convert an expression to a Currency:

Dim MyDouble, MyCurr

MyDouble = 543.214588 ' MyDouble is a Double.

MyCurr = CCur(MyDouble * 2) ' Convert result of MyDouble * 2
(1086.429176) to a Currency (1086.4292).

 VBScript CDate Function
Returns an expression that has been converted to a Variant of subtype Date.

Syntax: VBScript CDate Function
CDate(date)

Arguments: VBScript CDate Function
date

Any valid date expression.

Remarks: VBScript CDate Function
Use the IsDate function to determine if date can be converted to a date or time. CDate recognizes
date literals and time literals as well as some numbers that fall within the range of acceptable
dates. When converting a number to a date, the whole number portion is converted to a date. Any
fractional part of the number is converted to a time of day, starting at midnight.

CDate recognizes date formats according to the locale setting of your system. The correct order
of day, month, and year may not be determined if it is provided in a format other than one of the
recognized date settings. In addition, a long date format is not recognized if it also contains the
day-of-the-week string.

The following example uses the CDate function to convert a string to a date. In general, hard
coding dates and times as strings (as shown in this example) is not recommended. Use date and
time literals (such as #10/19/1962#, #4:45:23 PM#) instead.

MyDate = "October 19, 1962" ' Define date.

MyShortDate = CDate(MyDate) ' Convert to Date data type.

MyTime = "4:35:47 PM" ' Define time.

MyShortTime = CDate(MyTime) ' Convert to Date data type.

 VBScript CDbl Function
Returns an expression that has been converted to a Variant of subtype Double.

Sun Chili!Soft ASP 3.6.2 Product Documentation 777

Syntax: VBScript CDbl Function
CDbl(expression)

Arguments: VBScript CDbl Function
expression

Any valid expression.

Remarks: VBScript CDbl Function
In general, you can document your code using the subtype conversion functions to show that the
result of some operation should be expressed as a particular data type rather than the default data
type. For example, use CDbl or CSng to force double-precision or single-precision arithmetic in
cases where currency or integer arithmetic normally would occur.

Use the CDbl function to provide internationally aware conversions from any other data type to a
Double subtype. For example, different decimal separators and thousands separators are properly
recognized depending on the locale setting of your system.

This example uses the CDbl function to convert an expression to a Double:

Dim MyCurr, MyDouble

MyCurr = CCur(234.456784) ' MyCurr is a
Currency (234.4567).

MyDouble = CDbl(MyCurr * 8.2 * 0.01) ' Convert result to a
Double (19.2254576).

 VBScript Chr Function
Returns the character associated with the specified ANSI character code.

Syntax: VBScript Chr Function
Chr(charcode)

Arguments: VBScript Chr Function
charcode

A number that identifies a character.

Remarks: VBScript Chr Function
Numbers from 0 to 31 are the same as standard, nonprintable ASCII codes. For example, Chr(10)
returns a linefeed character.

The following example uses the Chr function to return the character associated with the specified
character code:

Dim MyChar

MyChar = Chr(65) ' Returns A.

Sun Chili!Soft ASP 3.6.2 Product Documentation 778

MyChar = Chr(97) ' Returns a.

MyChar = Chr(62) ' Returns >.

MyChar = Chr(37) ' Returns %.

Notes
The ChrB function is used with byte data contained in a string. Instead of returning a
character, which may be one or two bytes, ChrB always returns a single byte. ChrW is
provided for 32-bit platforms that use Unicode characters. Its argument is a Unicode
(wide) character code, thereby avoiding the conversion from ANSI to Unicode.

The behavior of the ChrB function depends on the byte ordering of the hardware
platform, and the number of bytes used to represent Unicode characters in the system
software. The function will produce different results on each supported operating system.
Use with caution. The described behavior pertains to the Win32 version.

 VBScript CInt Function
Returns an expression that has been converted to a Variant of subtype Integer.

Syntax: VBScript CInt Function
CInt(expression)

Arguments: VBScript CInt Function
expression

Any valid expression.

Remarks: VBScript CInt Function
In general, you can document your code using the subtype conversion functions to show that the
result of some operation should be expressed as a particular data type rather than the default data
type. For example, use CInt or CLng to force integer arithmetic in cases where currency, single-
precision, or double-precision arithmetic normally would occur.

Use the CInt function to provide internationally aware conversions from any other data type to an
Integer subtype. For example, different decimal separators are properly recognized depending on
the locale setting of your system, as are different thousand separators.

If expression lies outside the acceptable range for the Integer subtype, an error occurs.

The following example uses the CInt function to convert a value to an Integer:

Dim MyDouble, MyInt

MyDouble = 2345.5678 ' MyDouble is a Double.

MyInt = CInt(MyDouble) ' MyInt contains 2346.

Sun Chili!Soft ASP 3.6.2 Product Documentation 779

Note
CInt differs from the Fix and Int functions, which truncate, rather than round, the
fractional part of a number. When the fractional part is exactly 0.5, the CInt function
always rounds it to the nearest even number. For example, 0.5 rounds to 0, and 1.5
rounds to 2.

 VBScript CLng Function
Returns an expression that has been converted to a Variant of subtype Long.

Syntax: VBScript CLng Function
CLng(expression)

Arguments: VBScript CLng Function
expression

Any valid expression.

Remarks: VBScript CLng Function
In general, you can document your code using the subtype conversion functions to show that the
result of some operation should be expressed as a particular data type rather than the default data
type. For example, use CInt or CLng to force integer arithmetic in cases where currency, single-
precision, or double-precision arithmetic normally would occur.

Use the CLng function to provide internationally aware conversions from any other data type to a
Long subtype. For example, different decimal separators are properly recognized depending on
the locale setting of your system, as are different thousand separators.

If expression lies outside the acceptable range for the Long subtype, an error occurs.

The following example uses the CLng function to convert a value to a Long:

Dim MyVal1, MyVal2, MyLong1, MyLong2

MyVal1 = 25427.45: MyVal2 = 25427.55 ' MyVal1, MyVal2 are
Doubles.

MyLong1 = CLng(MyVal1) ' MyLong1 contains 25427.

MyLong2 = CLng(MyVal2) ' MyLong2 contains 25428.

Note
CLng differs from the Fix and Int functions, which truncate, rather than round, the
fractional part of a number. When the fractional part is exactly 0.5, the CLng function
always rounds it to the nearest even number. For example, 0.5 rounds to 0, and 1.5
rounds to 2.

Sun Chili!Soft ASP 3.6.2 Product Documentation 780

 VBScript Cos Function
Returns the cosine of an angle.

Syntax: VBScript Cos Function
Cos(number)

Arguments: VBScript Cos Function
number

Any valid numeric expression that expresses an angle in radians.

Remarks: VBScript Cos Function
The Cos function takes an angle and returns the ratio of two sides of a right triangle. The ratio is
the length of the side adjacent to the angle divided by the length of the hypotenuse. The result lies
in the range -1 to 1.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees,
multiply radians by 180/pi.

The following example uses the Cos function to return the cosine of an angle:

Dim MyAngle, MySecant

MyAngle = 1.3 ' Define angle in
radians.

MySecant = 1 / Cos(MyAngle) ' Calculate secant.

 VBScript CreateObject Function
Creates and returns a reference to an Automation object. This should be used as a client-side only
function. To create a server-side object, use Server.CreateObject. For more information, see the
"Built-in Objects Reference" in this chapter.

Syntax: VBScript CreateObject Function
CreateObject(servername.typename)

Arguments: VBScript CreateObject Function
servername

The name of the application providing the object.

typename

The type or class of the object to create.

Remarks: VBScript CreateObject Function
Automation servers provide at least one type of object. For example, a word-processing
application may provide an application object, a document object, and a toolbar object.

Sun Chili!Soft ASP 3.6.2 Product Documentation 781

The following code returns the version number of an instance of Excel running on a remote
network computer named "myserver":

Function GetVersion

 Dim XLApp

 Set XLApp = CreateObject("Excel.Application", "MyServer")

 GetVersion = XLApp.Version

End Function

Note
The CreateObject function will not work with the FileSystemObject if
EnableParentPaths is False in the Sun Chili!Soft ASP registery. In this case you must use
Server. CreateObject("Scripting.FileSystemObject").

To create an Automation object, assign the object returned by CreateObject to an object
variable:

Dim ExcelSheet

Set ExcelSheet = CreateObject("Excel.Sheet")

This code starts the application creating the object (in this case, a Microsoft Excel
spreadsheet). Once an object is created, you refer to it in code using the object variable
you defined. In the following example, you access properties and methods of the new
object using the object variable, ExcelSheet, and other Excel objects, including the
Application object and the Cells collection. For example:

' Make Excel visible through the Application object.

ExcelSheet.Application.Visible = True

' Place some text in the first cell of the sheet.

ExcelSheet.Cells(1,1).Value = "This is column A, row 1"

' Save the sheet.

ExcelSheet.SaveAs "C:\DOCS\TEST.XLS"

' Close Excel with the Quit method on the Application
object.

ExcelSheet.Application.Quit

' Release the object variable.

Set ExcelSheet = Nothing

Sun Chili!Soft ASP 3.6.2 Product Documentation 782

 VBScript CSng Function
Returns an expression that has been converted to a Variant of subtype Single.

Syntax: VBScript CSng Function
CSng(expression)

Arguments: VBScript CSng Function
expression

Any valid expression.

Remarks: VBScript CSng Function
In general, you can document your code using the data type conversion functions to show that the
result of some operation should be expressed as a particular data type rather than the default data
type. For example, use CDbl or CSng to force double-precision or single-precision arithmetic in
cases where currency or integer arithmetic normally would occur.

Use the CSng function to provide internationally aware conversions from any other data type to a
Single subtype. For example, different decimal separators are properly recognized depending on
the locale setting of your system, as are different thousand separators.

If expression lies outside the acceptable range for the Single subtype, an error occurs.

The following example uses the CSng function to convert a value to a Single:

Dim MyDouble1, MyDouble2, MySingle1, MySingle2 ' MyDouble1,
MyDouble2 are Doubles.

MyDouble1 = 75.3421115: MyDouble2 = 75.3421555

MySingle1 = CSng(MyDouble1) ' MySingle1 contains 75.34211.

MySingle2 = CSng(MyDouble2) ' MySingle2 contains 75.34216.

 VBScript CStr Function
Returns an expression that has been converted to a Variant of subtype String.

Syntax: VBScript CStr Function
CStr(expression)

Arguments: VBScript CStr Function
expression

Any valid expression.

Remarks: VBScript CStr Function
In general, you can document your code using the data type conversion functions to show that the
result of some operation should be expressed as a particular data type rather than the default data
type. For example, use CStr to force the result to be expressed as a String.

Sun Chili!Soft ASP 3.6.2 Product Documentation 783

You should use the CStr function instead of Str to provide internationally aware conversions
from any other data type to a String subtype. For example, different decimal separators are
properly recognized depending on the locale setting of your system.

The data in expression determines what is returned according to the following table:

If expression isCStr returns

Boolean A String containing True or False.

Date A String containing a date in the short-date format of your
system.

Null A run-time error.

Empty A zero-length String ("").

Error A String containing the word Error followed by the error
number.

Other numeric A String containing the number.

The following example uses the CStr function to convert a numeric value to a String:

Dim MyDouble, MyString

MyDouble = 437.324 ' MyDouble is a Double.

MyString = CStr(MyDouble) ' MyString contains "437.324".

 VBScript Date Function
Returns the current system date.

Syntax: VBScript Date Function
Date()

Remarks: VBScript Date Function
The following example uses the Date function to return the current system date:

Dim MyDate

MyDate = Date ' MyDate contains the current system date.

 VBScript DateAdd Function
Returns a date to which a specified time interval has been added.

Syntax: VBScript DateAdd Function
DateAdd(interval, number, date)

Arguments: VBScript DateAdd Function
interval

Sun Chili!Soft ASP 3.6.2 Product Documentation 784

A string expression that is the interval you want to add. See Settings section for values. Required.

number

A numeric expression that is the number of interval you want to add. The numeric expression can
either be positive, for dates in the future, or negative, for dates in the past. Required.

date

A Variant or literal representing the date to which interval is added. Required.

Settings: VBScript DateAdd Function
The interval argument can have the following values:

Setting Description

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

ww Week of year

h Hour

N Minute

S Second

Remarks: VBScript DateAdd Function
You can use the DateAdd function to add or subtract a specified time interval from a date. For
example, you can use DateAdd to calculate a date 30 days from today or a time 45 minutes from
now. To add days to date, you can use Day of Year ("y"), Day ("d"), or Weekday ("w").

The DateAdd function won't return an invalid date. The following example adds one month to
January 31:

NewDate = DateAdd("m", 1, "31-Jan-95")

In this case, DateAdd returns 28-Feb-95, not 31-Feb-95. If date is 31-Jan-96, it returns 29-Feb-96
because 1996 is a leap year.

If the calculated date would precede the year 100, an error occurs.

If number isn't a Long value, it is rounded to the nearest whole number before being evaluated.

 VBScript DateDiff Function
Returns the number of intervals between two dates.

Sun Chili!Soft ASP 3.6.2 Product Documentation 785

Syntax: VBScript DateDiff Function
DateDiff(interval, date1, date2

 [,firstdayofweek[, firstweekofyear]])

Arguments: VBScript DateDiff Function
interval

A string expression that is the interval you want to use to calculate the differences between date1
and date2. See Settings section for values. Required.

date1, date2

The two dates you want to use in the calculation. Required.

firstdayofweek

A constant that specifies the day of the week. If not specified, Sunday is assumed. See Settings
section for values. Optional.

firstweekofyear

A constant that specifies the first week of the year. If not specified, the first week is assumed to
be the week in which January 1 occurs. See Settings section for values. Optional.

Settings: VBScript DateDiff Function
The interval argument can have the following values:

Setting Description

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

ww Week of year

h Hour

n Minute

s Second

The firstdayofweek argument can have the following values:

Constant Value Description

vbUseSystem 0 Use National Language Support (NLS) API
setting.

vbSunday 1 Sunday (default)

Sun Chili!Soft ASP 3.6.2 Product Documentation 786

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

The firstweekofyear argument can have the following values:

Constant Value Description

vbUseSystem 0 Use National Language Support (NLS) API
setting.

vbFirstJan1 1 Start with the week in which January 1 occurs
(default).

vbFirstFourDays 2 Start with the week that has at least four days
in the new year.

vbFirstFullWeek 3 Start with the first full week of the new year.

Remarks: VBScript DateDiff Function
You can use the DateDiff function to determine how many specified time intervals exist between
two dates. For example, you might use DateDiff to calculate the number of days between two
dates, or the number of weeks between today and the end of the year.

To calculate the number of days between date1 and date2, you can use either Day of year ("y") or
Day ("d"). When interval is Weekday ("w"), DateDiff returns the number of weeks between the
two dates. If date1 falls on a Monday, DateDiff counts the number of Mondays until date2. It
counts date2 but not date1. If interval is Week ("ww"), however, the DateDiff function returns
the number of calendar weeks between the two dates. It counts the number of Sundays between
date1 and date2. DateDiff counts date2 if it falls on a Sunday; but it doesn't count date1, even if
it does fall on a Sunday.

If date1 refers to a later point in time than date2, the DateDiff function returns a negative
number.

The firstdayofweek argument affects calculations that use the "w" and "ww" interval symbols.

If date1 or date2 is a date literal, the specified year becomes a permanent part of that date.
However, if date1 or date2 is enclosed in quotation marks (" ") and you omit the year, the current
year is inserted in your code each time the date1 or date2 expression is evaluated. This makes it
possible to write code that can be used in different years.

When comparing December 31 to January 1 of the immediately succeeding year, DateDiff for
Year ("yyyy") returns 1 even though only a day has elapsed.

The following example uses the DateDiff function to display the number of days between a given
date and today:

Sun Chili!Soft ASP 3.6.2 Product Documentation 787

Function DiffADate(theDate)

 DiffADate = "Days from today: " & DateDiff("d", Now, theDate)

End Function

 VBScript DatePart Function
Returns the specified part of a given date.

Syntax: VBScript DatePart Function
DatePart(interval, date[, firstdayofweek[, firstweekofyear]])

Arguments: VBScript DatePart Function
interval

A string expression that is the interval of time you want to return. See Settings section for values.
Required.

date

The date expression you want to evaluate. Required.

firstdayofweek

A constant that specifies the day of the week. If not specified, Sunday is assumed. See Settings
section for values. Optional.

firstweekofyear

A constant that specifies the first week of the year. If not specified, the first week is assumed to
be the week in which January 1 occurs. See Settings section for values. Optional.

Settings: VBScript DatePart Function
The interval argument can have the following values:

Setting Description

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

ww Week of year

h Hour

n Minute

Sun Chili!Soft ASP 3.6.2 Product Documentation 788

s Second

The firstdayofweek argument can have the following values:

Constant Value Description

vbUseSystem 0 Use National Language Support (NLS) API setting.

vbSunday 1 Sunday (default)

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

The firstweekofyear argument can have the following values:

Constant Value Description

vbUseSystem 0 Use National Language Support (NLS) API setting.

vbFirstJan1 1 Start with the week in which January 1 occurs
(default).

vbFirstFourDays 2 Start with the week that has at least four days in the
new year.

vbFirstFullWeek 3 Start with the first full week of the new year.

Remarks: VBScript DatePart Function
You can use the DatePart function to evaluate a date and return a specific interval of time. For
example, you might use DatePart to calculate the day of the week or the current hour.

The firstdayofweek argument affects calculations that use the "w" and "ww" interval symbols.

If date is a date literal, the specified year becomes a permanent part of that date. However, if date
is enclosed in quotation marks (" "), and you omit the year, the current year is inserted in your
code each time the date expression is evaluated. This makes it possible to write code that can be
used in different years.

This example takes a date and, using the DatePart function, displays the quarter of the year in
which it occurs.

Function GetQuarter(TheDate)

 GetQuarter = DatePart("q", TheDate)

End Function

Sun Chili!Soft ASP 3.6.2 Product Documentation 789

 VBScript DateSerial Function
Returns a Variant of subtype Date for a specified year, month, and day.

Syntax: VBScript DateSerial Function
DateSerial(year, month, day)

Arguments: VBScript DateSerial Function
year

A number between 100 and 9999, inclusive, or a numeric expression.

month

Any numeric expression.

day

Any numeric expression.

Remarks: VBScript DateSerial Function
To specify a date, such as December 31, 1991, the range of numbers for each DateSerial
argument should be in the accepted range for the unit; that is, 1-31 for days and 1-12 for months.
However, you can also specify relative dates for each argument using any numeric expression
that represents some number of days, months, or years before or after a certain date.

The following example uses numeric expressions instead of absolute date numbers. Here the
DateSerial function returns a date that is the day before the first day (1 - 1) of two months before
August (8 - 2) of 10 years before 1990 (1990 - 10); in other words, May 31, 1980.

DateSerial(1990 - 10, 8 - 2, 1 - 1)

For the year argument, values between 0 and 99, inclusive, are interpreted as the years 1900-
1999. For all other year arguments, use a complete four-digit year (for example, 1800).

When any argument exceeds the accepted range for that argument, it increments to the next larger
unit as appropriate. For example, if you specify 35 days, it is evaluated as one month and some
number of days, depending on where in the year it is applied. However, if any single argument is
outside the range -32,768 to 32,767, or if the date specified by the three arguments, either directly
or by expression, falls outside the acceptable range of dates, an error occurs.

 VBScript DateValue Function
Returns a Variant of subtype Date.

Syntax: VBScript DateValue Function
DateValue (date)

Arguments: VBScript DateValue Function
date

Sun Chili!Soft ASP 3.6.2 Product Documentation 790

Normally a string expression representing a date from January 1, 100 through December 31,
9999. However, date can also be any expression that can represent a date, a time, or both a date
and time, in that range.

Remarks: VBScript DateValue Function
If the date argument includes time information, DateValue doesn't return it. However, if date
includes invalid time information (such as "89:98"), an error occurs.

If date is a string that includes only numbers separated by valid date separators, DateValue
recognizes the order for month, day, and year according to the short date format you specified for
your system. DateValue also recognizes unambiguous dates that contain month names, either in
long or abbreviated form. For example, in addition to recognizing 12/30/1991 and 12/30/91,
DateValue also recognizes December 30, 1991 and Dec 30, 1991.

If the year part of date is omitted, DateValue uses the current year from your computer's system
date.

The following example uses the DateValue function to convert a string to a date. You can also
use date literals to directly assign a date to a Variant variable, for example, MyDate = #9/11/63#.

Dim MyDate

MyDate = DateValue("September 11, 1963") ' Return a date.

 VBScript Day Function
Returns a whole number between 1 and 31, inclusive, representing the day of the month.

Syntax: VBScript Day Function
Day(date)

Arguments: VBScript Day Function
date

Any expression that can represent a date. If date contains Null, Null is returned.

The following example uses the Day function to obtain the day of the month from a specified
date:

Dim MyDay

MyDay = Day("October 19, 1962") ' MyDay contains 19.

 VBScript Exp Function
Returns e (the base of natural logarithms) raised to a power.

Syntax: VBScript Exp Function
Exp(number)

Sun Chili!Soft ASP 3.6.2 Product Documentation 791

Arguments: VBScript Exp Function
number

Any valid numeric expression.

Remarks: VBScript Exp Function
If the value of number exceeds 709.782712893, an error occurs. The constant e is approximately
2.718282.

The following example uses the Exp function to return e raised to a power:

Dim MyAngle, MyHSin ' Define angle in radians.

MyAngle = 1.3 ' Calculate hyperbolic sine.

MyHSin = (Exp(MyAngle) - Exp(-1 * MyAngle)) / 2

Note
The Exp function complements the action of the Log function and is sometimes referred
to as the antilogarithm.

 VBScript Filter Function
Returns a zero-based array containing subset of a string array based on a specified filter criteria.

Syntax: VBScript Filter Function
Filter(InputStrings, Value[, Include[, Compare]])

Arguments: VBScript Filter Function
InputStrings

A one-dimensional array of strings to be searched. Required.

Value

The string to search for. Required.

Include

A Boolean value indicating whether to return substrings that include or exclude Value. If Include
is True, Filter returns the subset of the array that contains Value as a substring. If Include is
False, Filter returns the subset of the array that does not contain Value as a substring. Optional.

Compare

A numeric value indicating the kind of string comparison to use. See Settings section for values.
Optional.

Settings: VBScript Filter Function
The Compare argument can have the following values:

Sun Chili!Soft ASP 3.6.2 Product Documentation 792

Constant Value Description

vbBinaryCompare 0 Perform a binary comparison.

vbTextCompare 1 Perform a textual comparison.

Remarks: VBScript Filter Function
If no matches of Value are found within InputStrings, Filter returns an empty array. An error
occurs if InputStrings is Null or is not a one-dimensional array. The array returned by the Filter
function contains only enough elements to contain the number of matched items.

The following example uses the Filter function to return the array containing the search criteria
"Mon":

Dim MyIndex

Dim MyArray (3)

MyArray(0) = "Sunday"

MyArray(1) = "Monday"

MyArray(2) = "Tuesday"

MyIndex = Filter(MyArray, "Mon") ' MyIndex(0) contains "Monday".

 VBScript Fix, Int Functions
Returns the integer portion of a number.

Syntax: VBScript Fix, Int Functions
Int(number)

Fix(number)

Arguments: VBScript Fix, Int Functions
number

Any valid numeric expression. If number contains Null, Null is returned.

Remarks: VBScript Fix, Int Functions
Both Int and Fix remove the fractional part of number and return the resulting integer value.

The difference between Int and Fix is that if number is negative, Int returns the first negative
integer less than or equal to number, whereas Fix returns the first negative integer greater than or
equal to number. For example, Int converts -8.4 to -9, and Fix converts -8.4 to -8.

Fix(number) is equivalent to:

Sgn(number) * Int(Abs(number)Int)

The following examples illustrate how the Int and Fix functions return integer portions of
numbers:

Sun Chili!Soft ASP 3.6.2 Product Documentation 793

MyNumber = Int(99.8) ' Returns 99.

MyNumber = Fix(99.2) ' Returns 99.

MyNumber = Int(-99.8) ' Returns -100.

MyNumber = Fix(-99.8) ' Returns -99.

MyNumber = Int(-99.2) ' Returns -100.

MyNumber = Fix(-99.2) ' Returns -99.

 VBScript FormatCurrency Function
Returns an expression formatted as a currency value using the currency symbol defined in the
system control panel.

Syntax: VBScript FormatCurrency Function
FormatCurrency(Expression[,NumDigitsAfterDecimal [,IncludeLeadingDigit
[,UseParensForNegativeNumbers [,GroupDigits]]]])

Arguments: VBScript FormatCurrency Function
Expression

The expression to be formatted. Required.

NumDigitsAfterDecimal

A numeric value indicating how many places to the right of the decimal are displayed. Default
value is -1, which indicates that the computer's regional settings are used. Optional.

IncludeLeadingDigit

A tristate constant that indicates whether or not a leading zero is displayed for fractional values.
See Settings section for values. Optional.

UseParensForNegativeNumbers

A tristate constant that indicates whether or not to place negative values within parentheses. See
Settings section for values. Optional.

GroupDigits

A tristate constant that indicates whether or not numbers are grouped using the group delimiter
specified in the computer's regional settings. See Settings section for values. Optional.

Settings: VBScript FormatCurrency Function
The IncludeLeadingDigit, UseParensForNegativeNumbers, and GroupDigits argument have the
following settings:

Constant Value Description

TristateTrue -1 True

Sun Chili!Soft ASP 3.6.2 Product Documentation 794

TristateFalse 0 False

TristateUseDefault -2 Use the setting from the computer's regional
settings.

Remarks: VBScript FormatCurrency Function
When one or more optional arguments are omitted, values for omitted arguments are provided by
the computer's regional settings.

The position of the currency symbol relative to the currency value is determined by the system's
regional settings.

The following example uses the FormatCurrency function to format the expression as a
currency and assign it to MyCurrency:

Dim MyCurrency

MyCurrency = FormatCurrency(1000) ' MyCurrency contains
$1000.00.

Note
On Windows systems, all settings information comes from the Regional Settings
Currency tab, except leading zero, which comes from the Number tab.

 VBScript FormatDateTime Function
Returns an expression formatted as a date or time.

Syntax: VBScript FormatDateTime Function
FormatDateTime(Date[,NamedFormat])

Arguments: VBScript FormatDateTime Function
Date

The date expression to be formatted. Required.

NamedFormat

A numeric value that indicates the date/time format used. If omitted, vbGeneralDate is used.
Optional.

Settings: VBScript FormatDateTime Function
The NamedFormat argument has the following settings:

Constant Value Description

vbGeneralDate 0 Display a date and/or time. If there is a date part, display it as a short
date. If there is a time part, display it as a long time. If present, both
parts are displayed.

Sun Chili!Soft ASP 3.6.2 Product Documentation 795

vbLongDate 1 Display a date using the long date format specified in your computer's
regional settings.

vbShortDate 2 Display a date using the short date format specified in your
computer's regional settings.

vbLongTime 3 Display a time using the time format specified in your computer's
regional settings.

vbShortTime 4 Display a time using the 24-hour format (hh:mm).

Remarks: VBScript FormatDateTime Function
The following example uses the FormatDateTime function to format the expression as a long date
and assign it to MyDateTime:

Function GetCurrentDate

 ' FormatDateTime formats Date in long date.

 GetCurrentDate = FormatDateTime(Date, 1)

End Function

 VBScript FormatNumber Function
Returns an expression formatted as a number.

Syntax: VBScript FormatNumber Function
FormatNumber(Expression[,NumDigitsAfterDecimal [,IncludeLeadingDigit
[,UseParensForNegativeNumbers [,GroupDigits]]]])

Arguments: VBScript FormatNumber Function
Expression

The expression to be formatted. Required.

NumDigitsAfterDecimal

A numeric value indicating how many places to the right of the decimal are displayed. Default
value is -1, which indicates that the computer's regional settings are used. Optional.

IncludeLeadingDigit

A tristate constant that indicates whether or not a leading zero is displayed for fractional values.
See Settings section for values. Optional.

UseParensForNegativeNumbers

A tristate constant that indicates whether or not to place negative values within parentheses. See
Settings section for values. Optional.

GroupDigits

Sun Chili!Soft ASP 3.6.2 Product Documentation 796

A tristate constant that indicates whether or not numbers are grouped using the group delimiter
specified in the control panel. See Settings section for values. Optional.

Settings: VBScript FormatNumber Function
The IncludeLeadingDigit, UseParensForNegativeNumbers, and GroupDigits arguments have the
following settings:

Constant Value Description

TristateTrue -1 True

TristateFalse 0 False

TristateUseDefault -2 Use the setting from the computer's regional
settings.

Remarks: VBScript FormatNumber Function
When one or more of the optional arguments are omitted, the values for omitted arguments are
provided by the computer's regional settings.

The following example uses the FormatNumber function to format a number to have four
decimal places:

Function FormatNumberDemo

 Dim MyAngle, MySecant, MyNumber

 MyAngle = 1.3 ' Define angle in radians.

 MySecant = 1 / Cos(MyAngle) ' Calculate secant.

 FormatNumberDemo = FormatNumber(MySecant,4) ' Format MySecant
to four decimal places.

End Function

Note
On Windows systems, all settings information comes from the Regional Settings Number
tab.

 VBScript FormatPercent Function
Returns an expression formatted as a percentage (multiplied by 100) with a trailing % character.

Syntax: VBScript FormatPercent Function
FormatPercent(Expression[,NumDigitsAfterDecimal
[,IncludeLeadingDigit [,UseParensForNegativeNumbers
[,GroupDigits]]]])

Arguments: VBScript FormatPercent Function
Expression

Sun Chili!Soft ASP 3.6.2 Product Documentation 797

The expression to be formatted. Required.

NumDigitsAfterDecimal

A numeric value indicating how many places to the right of the decimal are displayed. Default
value is -1, which indicates that the computer's regional settings are used. Optional.

IncludeLeadingDigit

The tristate constant that indicates whether or not a leading zero is displayed for fractional values.
See Settings section for values. Optional.

UseParensForNegativeNumbers

The tristate constant that indicates whether or not to place negative values within parentheses. See
Settings section for values. Optional.

GroupDigits

The tristate constant that indicates whether or not numbers are grouped using the group delimiter
specified in the control panel. See Settings section for values. Optional.

Settings: VBScript FormatPercent Function
The IncludeLeadingDigit, UseParensForNegativeNumbers, and GroupDigits arguments have the
following settings:

Constant Value Description

TristateTrue -1 True

TristateFalse 0 False

TristateUseDefault -2 Use the setting from the computer's regional
settings.

Remarks: VBScript FormatPercent Function
When one or more optional arguments are omitted, the values for the omitted arguments are
provided by the computer's regional settings.

The following example uses the FormatPercent function to format an expression as a percent:

Dim MyPercent

MyPercent = FormatPercent(2/32) ' MyPercent contains 6.25%.

Note
On Windows systems, all settings information comes from the Regional Settings Number
tab.

 VBScript GetObject Function
Returns a reference to an Automation object from a file. This feature is for Windows only.

Sun Chili!Soft ASP 3.6.2 Product Documentation 798

Syntax: VBScript GetObject Function
GetObject([pathname] [, appname.objectype])

Arguments: VBScript GetObject Function
pathname

An optional string that is the full path and name of the file containing the object to retrieve. If
pathname is omitted, class is required.

appname

A required string. Name of the application providing the object.

objectype

A required string. Type or class of object to create.

Remarks: VBScript GetObject Function
Use the GetObject function to access an Automation object from a file and assign the object to
an object variable. Use the Set statement to assign the object returned by GetObject to the object
variable. For example:

Dim CADObject

Set CADObject = GetObject("C:\CAD\SCHEMA.CAD")

When this code is executed, the application associated with the specified pathname is started and
the object in the specified file is activated. If pathname is a zero-length string (""), GetObject
returns a new object instance of the specified type. If the pathname argument is omitted,
GetObject returns a currently active object of the specified type. If no object of the specified type
exists, an error occurs.

Some applications allow you to activate part of a file. Add an exclamation point (!) to the end of
the file name and follow it with a string that identifies the part of the file you want to activate. For
information on how to create this string, see the documentation for the application that created the
object.

For example, in a drawing application you might have multiple layers to a drawing stored in a
file. You could use the following code to activate a layer within a drawing called
SCHEMA.CAD:

Set LayerObject = GetObject("C:\CAD\SCHEMA.CAD!Layer3")

If you don't specify the object's class, Automation determines the application to start and the
object to activate, based on the file name you provide. Some files, however, may support more
than one class of object. For example, a drawing might support three different types of objects: an
Application object, a Drawing object, and a Toolbar object, all of which are part of the same file.
To specify which object in a file you want to activate, use the optional appname.objectype
arguments. For example:

Dim MyObject

Sun Chili!Soft ASP 3.6.2 Product Documentation 799

Set MyObject = GetObject("C:\DRAWINGS\SAMPLE.DRW",
"FIGMENT.DRAWING")

In the preceding example, FIGMENT is the name of a drawing application and DRAWING is one
of the object types it supports. Once an object is activated, you reference it in code using the
object variable you defined. In the preceding example, you access properties and methods of the
new object using the object variable MyObject. For example:

MyObject.Line 9, 90

MyObject.InsertText 9, 100, "Hello, world."

MyObject.SaveAs "C:\DRAWINGS\SAMPLE.DRW"

Note
Use the GetObject function when there is a current instance of the object or if you want
to create the object with a file already loaded. If there is no current instance, and you
don't want the object started with a file loaded, use the CreateObject function.

If an object has registered itself as a single-instance object, only one instance of the
object is created, no matter how many times CreateObject is executed. With a single-
instance object, GetObject always returns the same instance when called with the zero-
length string ("") syntax, and it causes an error if the pathname argument is omitted.

 VBScript Hex Function
Returns a string representing the hexadecimal value of a number.

Syntax: VBScript Hex Function
Hex(number)

Arguments: VBScript Hex Function
number

Any valid expression.

Remarks: VBScript Hex Function
If number is not already a whole number, it is rounded to the nearest whole number before being
evaluated.

If number is Hex returns

Null Null.

Empty Zero (0).

Any other number Up to eight hexadecimal characters.

You can represent hexadecimal numbers directly by preceding numbers in the proper range with
&H. For example, &H10 represents decimal 16 in hexadecimal notation.

Sun Chili!Soft ASP 3.6.2 Product Documentation 800

The following example uses the Hex function to return the hexadecimal value of a number:

Dim MyHex

MyHex = Hex(5) ' Returns 5.

MyHex = Hex(10) ' Returns A.

MyHex = Hex(459) ' Returns 1CB.

 VBScript Hour Function
Returns a whole number between 0 and 23, inclusive, representing the hour of the day.

Syntax: VBScript Hour Function
Hour(time)

Arguments: VBScript Hour Function
time

Any expression that can represent a time. If time contains Null, Null is returned.

Remarks: VBScript Hour Function
The following example uses the Hour function to obtain the hour from the current time:

Dim MyTime, MyHour

MyTime = Now

MyHour = Hour(MyTime) ' MyHour contains the number representing

 ' the current hour.

 VBScript InputBox Function
Displays a prompt in a dialog box, waits for the user to input text or click a button, and returns the
contents of the text box. This is a client-side only function.

Syntax: VBScript InputBox Function
InputBox(prompt[, title][, default][, xpos][, ypos][, helpfile,
context])

Arguments: VBScript InputBox Function
prompt

A string expression displayed as the message in the dialog box. The maximum length of prompt
is approximately 1024 characters, depending on the width of the characters used. If prompt
consists of more than one line, you can separate the lines using a carriage return character
(Chr(13)), a linefeed character (Chr(10)), or carriage return-linefeed character combination
(Chr(13) & Chr(10)) between each line.

Sun Chili!Soft ASP 3.6.2 Product Documentation 801

title

A string expression displayed in the title bar of the dialog box. If you omit title, the application
name is placed in the title bar.

default

A string expression displayed in the text box as the default response if no other input is provided.
If you omit default, the text box is displayed empty.

xpos

A numeric expression that specifies, in twips, the horizontal distance of the left edge of the dialog
box from the left edge of the screen. If xpos is omitted, the dialog box is horizontally centered.

ypos

A numeric expression that specifies, in twips, the vertical distance of the upper edge of the dialog
box from the top of the screen. If ypos is omitted, the dialog box is vertically positioned
approximately one-third of the way down the screen.

helpfile

A string expression that identifies the Help file to use to provide context-sensitive Help for the
dialog box. If helpfile is provided, context must also be provided.

context

A numeric expression that identifies the Help context number assigned by the Help author to the
appropriate Help topic. If context is provided, helpfile must also be provided.

Remarks: VBScript InputBox Function
When both helpfile and context are supplied, a Help button is automatically added to the dialog
box.

If the user clicks OK or presses ENTER, the InputBox function returns whatever is in the text
box. If the user clicks Cancel, the function returns a zero-length string ("").

The following example uses the InputBox function to display an input box and assign the string
to the variable Input:

Dim Input

Input = InputBox("Enter your name")

MsgBox ("You entered: " & Input)

 VBScript InStr Function
Returns the position of the first occurrence of one string within another.

Syntax: VBScript InStr Function
InStr([start,]string1, string2[, compare])

Sun Chili!Soft ASP 3.6.2 Product Documentation 802

Arguments: VBScript InStr Function
start

The numeric expression that sets the starting position for each search. If omitted, search begins at
the first character position. If start contains Null, an error occurs. The start argument is required
if compare is specified. Optional.

string1

The string expression being searched. Required.

string2

The string expression searched for. Required.

compare

A numeric value indicating the kind of comparison to use when evaluating substrings. See
Settings section for values. If omitted, a binary comparison is performed. Optional.

Settings : VBScript InStr Function
The compare argument can have the following values:

Constant Value Description

vbBinaryCompare 0 Perform a binary comparison.

vbTextCompare 1 Perform a textual comparison.

Return Values: VBScript InStr Function
The InStr function returns the following values:

If InStr returns

string1 is zero-length 0

string1 is Null Null

string2 is zero-length Start

string2 is Null Null

string2 is not found 0

string2 is found within string1 Position at which match is found

start > Len(string2) 0

Remarks: VBScript InStr Function
The following examples use InStr to search a string:

Dim SearchString, SearchChar, MyPos

SearchString ="XXpXXpXXPXXP" ' String to search in.

SearchChar = "P" ' Search for "P".

Sun Chili!Soft ASP 3.6.2 Product Documentation 803

MyPos = Instr(4, SearchString, SearchChar, 1) ' A textual
comparison starting at position 4. Returns 6.

MyPos = Instr(1, SearchString, SearchChar, 0) ' A binary
comparison starting at position 1. Returns 9.

MyPos = Instr(SearchString, SearchChar) ' Comparison is binary
by default (last argument is omitted). Returns 9.

MyPos = Instr(1, SearchString, "W") ' A binary comparison
starting at position 1. Returns 0 ("W" is not found).

Note
The InStrB function is used with byte data contained in a string. Instead of returning the
character position of the first occurrence of one string within another, InStrB returns the
byte position.

 VBScript InStrRev Function
Returns the position of an occurrence of one string within another, from the end of string.

Syntax: VBScript InStrRev Function
InStrRev(string1, string2[, start[, compare]])

Arguments: VBScript InStrRev Function
string1

The string expression being searched. Required.

string2

The string expression being searched for. Required.

start

The numeric expression that sets the starting position for each search. If omitted, -1 is used,
which means that the search begins at the last character position. If start contains Null, an error
occurs. Optional.

compare

The numeric value indicating the kind of comparison to use when evaluating substrings. If
omitted, a binary comparison is performed. See Settings section for values. Optional.

Settings: VBScript InStrRev Function
The compare argument can have the following values:

Constant Value Description

vbBinaryCompare 0 Perform a binary comparison.

vbTextCompare 1 Perform a textual comparison.

Sun Chili!Soft ASP 3.6.2 Product Documentation 804

Return Values: VBScript InStrRev Function
InStrRev returns the following values:

If InStrRev returns

string1 is zero-length 0

string1 is Null Null

string2 is zero-length Start

string2 is Null Null

string2 is not found 0

string2 is found within string1 Position at which match is found

start > Len(string2) 0

Remarks: VBScript InStrRev Function
Note that the syntax for the InStrRev function is not the same as the syntax for the InStr
function.

The following examples use the InStrRev function to search a string:

Dim SearchString, SearchChar, MyPos

SearchString ="XXpXXpXXPXXP" ' String to search in.

SearchChar = "P" ' Search for "P".

MyPos = InstrRev(SearchString, SearchChar, 10, 0) ' A binary
comparison starting at position 10. Returns 9.

MyPos = InstrRev(SearchString, SearchChar, -1, 1) ' A textual
comparison starting at the last position. Returns 12.

MyPos = InstrRev(SearchString, SearchChar, 8) ' Comparison is
binary by default (last argument is omitted). Returns 0.

 VBScript IsArray Function
Returns a Boolean value indicating whether a variable is an array.

Syntax: VBScript IsArray Function
IsArray (varname)

Arguments: VBScript IsArray Function
varname

Any variable.

Remarks: VBScript IsArray Function

Sun Chili!Soft ASP 3.6.2 Product Documentation 805

IsArray returns True if the variable is an array; otherwise, it returns False. IsArray is especially
useful with variants containing arrays.

The following example uses the IsArray function to test whether MyVariable is an array:

Dim MyVariable

Dim MyArray(3)

MyArray(0) = "Sunday"

MyArray(1) = "Monday"

MyArray(2) = "Tuesday"

MyVariable = IsArray(MyArray) ' MyVariable contains "True".

 VBScript IsDate Function
Returns a Boolean value indicating whether an expression can be converted to a date.

Syntax: VBScript IsDate Function
IsDate(expression)

Arguments: VBScript IsDate Function
expression

Any date expression or string expression recognizable as a date or time.

Remarks: VBScript IsDate Function
IsDate returns True if the expression is a date or can be converted to a valid date; otherwise, it
returns False. In Microsoft Windows, the range of valid dates is January 1, 100 AD through
December 31, 9999 AD; the ranges vary among operating systems.

The following example uses the IsDate function to determine whether an expression can be
converted to a date:

Dim MyDate, YourDate, NoDate, MyCheck

MyDate = "October 19, 1962": YourDate = #10/19/62#: NoDate = "Hello"

MyCheck = IsDate(MyDate) ' Returns True.

MyCheck = IsDate(YourDate) ' Returns True.

MyCheck = IsDate(NoDate) ' Returns False.

 VBScript IsEmpty Function
Returns a Boolean value indicating whether a variable has been initialized.

Syntax: VBScript IsEmpty Function
IsEmpty(expression)

Sun Chili!Soft ASP 3.6.2 Product Documentation 806

Arguments: VBScript IsEmpty Function
expression

Any expression. However, because IsEmpty is used to determine if individual variables are
initialized, the expression argument is most often a single variable name.

Remarks: VBScript IsEmpty Function
IsEmpty returns True if the variable is uninitialized, or is explicitly set to Empty; otherwise, it
returns False. False is always returned if expression contains more than one variable.

The following example uses the IsEmpty function to determine whether a variable has been
initialized:

Dim MyVar, MyCheck

MyCheck = IsEmpty(MyVar) ' Returns True.

MyVar = Null ' Assign Null.

MyCheck = IsEmpty(MyVar) ' Returns False.

MyVar = Empty ' Assign Empty.

MyCheck = IsEmpty(MyVar) ' Returns True.

 VBScript IsNull Function
Returns a Boolean value that indicates whether an expression contains no valid data (Null).

Syntax: VBScript IsNull Function
IsNull(expression)

Arguments: VBScript IsNull Function
expression

Any expression.

Remarks: VBScript IsNull Function
IsNull returns True if expression is Null; that is, it contains no valid data; otherwise, IsNull
returns False. If expression consists of more than one variable, Null in any constituent variable
causes True to be returned for the entire expression.

The Null value indicates that the variable contains no valid data. Null is not the same as Empty,
which indicates that a variable has not yet been initialized. It is also not the same as a zero-length
string (""), which is sometimes referred to as a null string.

The following example uses the IsNull function to determine whether a variable contains a Null:

Dim MyVar, MyCheck

MyCheck = IsNull(MyVar) ' Returns False.

MyVar = Null ' Assign Null.

Sun Chili!Soft ASP 3.6.2 Product Documentation 807

MyCheck = IsNull(MyVar) ' Returns True.

MyVar = Empty ' Assign Empty.

MyCheck = IsNull(MyVar) ' Returns False.

Note
Use the IsNull function to determine whether an expression contains a Null value.
Expressions that you might expect to evaluate to True under some circumstances, such as
If Var = Null and If Var <> Null, are always False. This is because any expression
containing a Null is itself Null, and therefore, False.

 VBScript IsNumeric Function
Returns a Boolean value indicating whether an expression can be evaluated as a number.

Syntax: VBScript IsNumeric Function
IsNumeric (expression)

Arguments: VBScript IsNumeric Function
expression

Any expression.

Remarks: VBScript IsNumeric Function
IsNumeric returns True if the entire expression is recognized as a number; otherwise, it returns
False.

IsNumeric returns False if expression is a date expression.

The following example uses the IsNumeric function to determine whether a variable can be
evaluated as a number:

Dim MyVar, MyCheck

MyVar = 53 ' Assign a value.

MyCheck = IsNumeric(MyVar) ' Returns True.

MyVar = "459.95" ' Assign a value.

MyCheck = IsNumeric(MyVar) ' Returns True.

MyVar = "45 Help" ' Assign a value.

MyCheck = IsNumeric(MyVar) ' Returns False.

 VBScript IsObject Function
Returns a Boolean value indicating whether an expression references a valid Automation object.

Sun Chili!Soft ASP 3.6.2 Product Documentation 808

Syntax: VBScript IsObject Function
IsObject(expression)

Arguments: VBScript IsObject Function
expression

Any expression.

Remarks: VBScript IsObject Function
IsObject returns True if expression is a variable of Object subtype or a user-defined object;
otherwise, it returns False.

The following example uses the IsObject function to determine if an identifier represents an
object variable:

Dim MyInt, MyCheck, MyObject

Set MyObject = Me

MyCheck = IsObject(MyObject) ' Returns True.

MyCheck = IsObject(MyInt) ' Returns False.

 VBScript Join Function
Returns a string created by joining a number of substrings contained in an array.

Syntax: VBScript Join Function
Join(list[, delimiter])

Arguments: VBScript Join Function
list

A one-dimensional array containing substrings to be joined. Required.

delimiter

A string character used to separate the substrings in the returned string. If omitted, the space
character (" ") is used. If delimiter is a zero-length string, all items in the list are concatenated
with no delimiters. Optional.

Remarks: VBScript Join Function
The following example uses the Join function to join the substrings of MyArray:

Dim MyString

Dim MyArray(3)

MyArray(0) = "Mr."

MyArray(1) = "John "

MyArray(2) = "Doe "

Sun Chili!Soft ASP 3.6.2 Product Documentation 809

MyArray(3) = "III"

MyString = Join(MyArray) ' MyString contains "Mr. John Doe III".

 VBScript LCase Function
Returns a string that has been converted to lowercase.

Syntax: VBScript LCase Function
LCase(string)

Arguments: VBScript LCase Function
string

Any valid string expression. If string contains Null, Null is returned.

Remarks: VBScript LCase Function
Only uppercase letters are converted to lowercase; all lowercase letters and nonletter characters
remain unchanged.

The following example uses the LCase function to convert uppercase letters to lowercase:

Dim MyString

Dim LCaseString

MyString = "VBSCript"

LCaseString = LCase(MyString) ' LCaseString contains
"vbscript".

 VBScript LBound Function
Returns the smallest available subscript for the indicated dimension of an array.

Syntax: VBScript LBound Function
LBound(arrayname[, dimension])

Arguments: VBScript LBound Function
arrayname

The name of the array variable; follows standard variable naming conventions.

dimension

A whole number indicating which dimension's lower bound is returned. Use 1 for the first
dimension, 2 for the second, and so on. If dimension is omitted, 1 is assumed.

Remarks: VBScript LBound Function

Sun Chili!Soft ASP 3.6.2 Product Documentation 810

The LBound function is used with the UBound Function to determine the size of an array. Use
the UBound function to find the upper limit of an array dimension.

The default lower bound for any dimension is always 0.

 VBScript Left Function
Returns a specified number of characters from the left side of a string.

Syntax: VBScript Left Function
Left(string, length)

Arguments: VBScript Left Function
string

A string expression from which the leftmost characters are returned. If string contains Null, Null
is returned.

length

A numeric expression indicating how many characters to return. If 0, a zero-length string ("") is
returned. If greater than or equal to the number of characters in string, the entire string is
returned.

Remarks: VBScript Left Function
To determine the number of characters in string, use the Len function.

The following example uses the Left function to return the first three characters of MyString:

Dim MyString, LeftString

MyString = "VBSCript"

LeftString = Left(MyString, 3) ' LeftString contains "VBS".

Notes
The LeftB function is used with byte data contained in a string. Instead of specifying the
number of characters to return, length specifies the number of bytes.

The behavior of the LeftB function depends on the byte ordering of the hardware
platform, and the number of bytes used to represent Unicode characters in the system
software. The function will produce different results on each supported operating system.
Use with caution. The described behavior pertains to the Win32 version.

 VBScript Len Function
Returns the number of characters in a string or the number of bytes required to store a variable.

Syntax: VBScript Len Function

Sun Chili!Soft ASP 3.6.2 Product Documentation 811

Len(string | varname)

Arguments: VBScript Len Function
string

Any valid string expression. If string contains Null, Null is returned.

varname

Any valid variable name. If varname contains Null, Null is returned.

Remarks: VBScript Len Function
The following example uses the Len function to return the number of characters in a string:

Dim MyString

MyString = Len("VBSCRIPT") ' MyString contains 8.

Note
The LenB function is used with byte data contained in a string. Instead of returning the
number of characters in a string, LenB returns the number of bytes used to represent that
string.

 VBScript LoadPicture Function
Returns a picture object. Available only on 32-bit Windows platforms.

Syntax: VBScript LoadPicture Function
LoadPicture(picturename)

Arguments: VBScript LoadPicture Function
picturename

A string expression that indicates the name of the picture file to be loaded.

Remarks: VBScript LoadPicture Function
Graphics formats recognized by LoadPicture include bitmap (.bmp) files, icon (.ico) files, run-
length encoded (.rle) files, metafile (.wmf) files, enhanced metafiles (.emf), GIF (.gif) files, and
JPEG (.jpg) files.

 VBScript Log Function
Returns the natural logarithm of a number.

Syntax: VBScript Log Function
Log(number)

Sun Chili!Soft ASP 3.6.2 Product Documentation 812

Arguments: VBScript Log Function
number

Any valid numeric expression greater than 0.

Remarks: VBScript Log Function
The natural logarithm is the logarithm to the base e. The constant e is approximately 2.718282.

You can calculate base-n logarithms for any number x by dividing the natural logarithm of x by
the natural logarithm of n as follows:

Logn(x) = Log(x) / Log(n)

The following example illustrates a custom Function that calculates base-10 logarithms:

Function Log10(X)

Log10 = Log(X) / Log(10)

End Function

 VBScript LTrim, RTrim, Trim Function
Returns a copy of a string without leading spaces (LTrim), trailing spaces (RTrim), or both
leading and trailing spaces (Trim).

Syntax: VBScript LTrim, RTrim, Trim Function
LTrim(string)

RTrim(string)

Trim(string)

Arguments: VBScript LTrim, RTrim, Trim Function
string

Any valid string expression. If string contains Null, Null is returned.

Remarks: VBScript LTrim, RTrim, Trim Function
The following example uses the LTrim, RTrim, and Trim functions to trim leading spaces,
trailing spaces, and both leading and trailing spaces, respectively:

Dim MyVar

MyVar = LTrim(" vbscript ") ' MyVar contains "vbscript ".

MyVar = RTrim(" vbscript ") ' MyVar contains "
vbscript".

MyVar = Trim(" vbscript ") ' MyVar contains "vbscript".

Sun Chili!Soft ASP 3.6.2 Product Documentation 813

 VBScript Mid Function
Returns a specified number of characters from a string.

Syntax: VBScript Mid Function
Mid(string, start[, length])

Arguments: VBScript Mid Function
string

The string expression from which characters are returned. If string contains Null, Null is
returned.

start

The character position in string at which the part to be taken begins. If start is greater than the
number of characters in string, Mid returns a zero-length string ("").

length

The number of characters to return. If omitted or if there are fewer than length characters in the
text (including the character at start), all characters from the start position to the end of the string
are returned.

Remarks: VBScript Mid Function
To determine the number of characters in string, use the Len function.

The following example uses the Mid function to return six characters, beginning with the fourth
character, in a string:

Dim MyVar

MyVar = Mid("VB Script is fun!", 4, 6) ' MyVar contains "Script".

Notes
The MidB function is used with byte data contained in a string. Instead of specifying the
number of characters, the arguments specify numbers of bytes.

The behavior of the MidB function depends on the byte ordering of the hardware
platform, and the number of bytes used to represent Unicode characters in the system
software. The function will produce different results on each supported operating system.
Use with caution. The described behavior pertains to the Win32 version.

 VBScript Minute Function
Returns a whole number between 0 and 59, inclusive, representing the minute of the hour.

Syntax: VBScript Minute Function
Minute(time)

Sun Chili!Soft ASP 3.6.2 Product Documentation 814

Arguments: VBScript Minute Function
time

Any expression that can represent a time. If time contains Null, Null is returned.

Remarks: VBScript Minute Function
The following example uses the Minute function to return the minute of the hour:

Dim MyVar

MyVar = Minute(Now)

 VBScript Month Function
Returns a whole number between 1 and 12, inclusive, representing the month of the year.

Syntax: VBScript Month Function
Month(date)

Arguments: VBScript Month Function
date

Any expression that can represent a date. If date contains Null, Null is returned.

Remarks: VBScript Month Function
The following example uses the Month function to return the current month:

Dim MyVar

MyVar = Month(Now) ' MyVar contains the number corresponding to

 ' the current month.

 VBScript MonthName Function
Returns a string indicating the specified month.

Syntax: VBScript MonthName Function
MonthName(month[, abbreviate])

Arguments: VBScript MonthName Function
month

The numeric designation of the month. For example, January is 1, February is 2, and so on.
Required.

abbreviate

A Boolean value that indicates if the month name is to be abbreviated. If omitted, the default is
False, which means that the month name is not abbreviated. Optional.

Sun Chili!Soft ASP 3.6.2 Product Documentation 815

Remarks: VBScript MonthName Function
The following example uses the MonthName function to return an abbreviated month name for a
date expression:

Dim MyVar

MyVar = MonthName(10, True) ' MyVar contains "Oct".

 VBScript MsgBox Function
Displays a message in a dialog box, waits for the user to click a button, and returns a value
indicating which button the user clicked. This is a client-side function only.

Syntax: VBScript MsgBox Function
MsgBox(prompt[, buttons][, title][, helpfile, context])

Arguments: VBScript MsgBox Function
prompt

A string expression displayed as the message in the dialog box. The maximum length of prompt
is approximately 1024 characters, depending on the width of the characters used. If prompt
consists of more than one line, you can separate the lines using a carriage return character
(Chr(13)), a linefeed character (Chr(10)), or carriage return-linefeed character combination
(Chr(13) & Chr(10)) between each line.

buttons

A numeric expression that is the sum of values specifying the number and type of buttons to
display, the icon style to use, the identity of the default button, and the modality of the message
box. See Settings section for values. If omitted, the default value for buttons is 0.

title

A string expression displayed in the title bar of the dialog box. If you omit title, the application
name is placed in the title bar.

helpfile

A string expression that identifies the Help file to use to provide context-sensitive Help for the
dialog box. If helpfile is provided, context must also be provided. Not available on 16-bit
platforms.

context

A numeric expression that identifies the Help context number assigned by the Help author to the
appropriate Help topic. If context is provided, helpfile must also be provided. Not available on 16-
bit platforms.

Settings: VBScript MsgBox Function
The buttons argument settings are:

Sun Chili!Soft ASP 3.6.2 Product Documentation 816

Constant Value Description

vbOKOnly 0 Display OK button only.

vbOKCancel 1 Display OK and Cancel buttons.

vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons.

vbYesNoCancel 3 Display Yes, No, and Cancel buttons.

vbYesNo 4 Display Yes and No buttons.

vbRetryCancel 5 Display Retry and Cancel buttons.

vbCritical 16 Display Critical Message icon.

vbQuestion 32 Display Warning Query icon.

vbExclamation 48 Display Warning Message icon.

vbInformation 64 Display Information Message icon.

vbDefaultButton1 0 First button is default.

vbDefaultButton2 256 Second button is default.

vbDefaultButton3 512 Third button is default.

vbDefaultButton4 768 Fourth button is default.

vbApplicationModal 0 Application modal; the user must respond to the
message box before continuing work in the current
application.

vbSystemModal 4096 System modal; all applications are suspended until the
user responds to the message box.

The first group of values (0-5) describes the number and type of buttons displayed in the dialog
box; the second group (16, 32, 48, 64) describes the icon style; the third group (0, 256, 512, 768)
determines which button is the default; and the fourth group (0, 4096) determines the modality of
the message box. When adding numbers to create a final value for the argument buttons, use only
one number from each group.

Return Values: VBScript MsgBox Function
The MsgBox function has the following return values:

Constant Value Button

vbOK 1 OK

vbCancel 2 Cancel

vbAbort 3 Abort

vbRetry 4 Retry

vbIgnore 5 Ignore

vbYes 6 Yes

Sun Chili!Soft ASP 3.6.2 Product Documentation 817

vbNo 7 No

Remarks: VBScript MsgBox Function
When both helpfile and context are provided, the user can press F1 to view the Help topic
corresponding to the context.

If the dialog box displays a Cancel button, pressing the ESC key has the same effect as clicking
Cancel. If the dialog box contains a Help button, context-sensitive Help is provided for the
dialog box. However, no value is returned until one of the other buttons is clicked.

The following example uses the MsgBox function to display a message box and return a value
describing which button was clicked:

Dim MyVar

MyVar = MsgBox ("Hello World!", 65, "MsgBox Example")

 ' MyVar contains either 1 or 2, depending on which button is
clicked.

 VBScript Now Function
Returns the current date and time according to the setting of your computer's system date and
time.

Syntax: VBScript Now Function
Now()

Remarks: VBScript Now Function
The following example uses the Now function to return the current date and time:

Dim MyVar

MyVar = Now ' MyVar contains the current date and time.

 VBScript Oct Function
Returns a string representing the octal value of a number.

Syntax: VBScript Oct Function
Oct(number)

Arguments: VBScript Oct Function
number

Any valid expression.

Remarks: VBScript Oct Function

Sun Chili!Soft ASP 3.6.2 Product Documentation 818

If number is not already a whole number, it is rounded to the nearest whole number before being
evaluated.

If number is Oct returns

Null Null.

Empty Zero (0).

Any other number Up to 11 octal characters,

You can represent octal numbers directly by preceding numbers in the proper range with &O. For
example, &O10 is the octal notation for decimal 8.

The following example uses the Oct function to return the octal value of a number:

Dim MyOct

MyOct = Oct(4) ' Returns 4.

MyOct = Oct(8) ' Returns 10.

MyOct = Oct(459) ' Returns 713.

 VBScript Replace Function
Returns a string in which a specified substring has been replaced with another substring a
specified number of times.

Syntax: VBScript Replace Function
Replace(expression, find, replacewith[, start[, count[, compare]]])

Arguments: VBScript Replace Function
expression

A string expression containing substring to replace. Required.

find

The substring being searched for. Required.

replacewith

The replacement substring. Required.

start

The position within expression where substring search is to begin. If omitted, 1 is assumed.
Optional.

count

The number of substring substitutions to perform. If omitted, the default value is -1, which means
make all possible substitutions. Optional.

compare

Sun Chili!Soft ASP 3.6.2 Product Documentation 819

The numeric value indicating the kind of comparison to use when evaluating substrings. See
Settings section for values. Optional.

Settings: VBScript Replace Function
The compare argument can have the following values:

Constant Value Description

vbBinaryCompare 0 Perform a binary comparison.

vbTextCompare 1 Perform a textual comparison.

Return Values: VBScript Replace Function
Replace returns the following values:

If Replace returns

expression is zero-length Zero-length string ("").

expression is Null An error.

find is zero-length Copy of expression.

replacewith is zero-length Copy of expression with all occurrences of find
removed.

start > Len(expression) Zero-length string.

count is 0 Copy of expression.

Remarks: VBScript Replace Function
The return value of the Replace function is a string, with substitutions made, that begins at the
position specified by start and concludes at the end of the expression string. It is not a copy of the
original string from start to finish.

The following example uses the Replace function to return a string:

Dim MyString

MyString = Replace("XXpXXPXXp", "p", "Y") ' A binary comparison
starting at the beginning of the string. Returns "XXYXXPXXY".

MyString = Replace("XXpXXPXXp", "p", "Y", ' A textual
comparison starting at position 3. Returns "YXXYXXY". 3, -1, 1)

 VBScript RGB Function
Returns a whole number representing an RGB color value.

Syntax: VBScript RGB Function
RGB(red, green, blue)

Arguments: VBScript RGB Function

Sun Chili!Soft ASP 3.6.2 Product Documentation 820

red

A number in the range 0-255 representing the red component of the color. Required.

green

A number in the range 0-255 representing the green component of the color. Required.

blue

A number in the range 0-255 representing the blue component of the color. Required.

Remarks: VBScript RGB Function
Application methods and properties that accept a color specification expect that specification to
be a number representing an RGB color value. An RGB color value specifies the relative intensity
of red, green, and blue to cause a specific color to be displayed.

The low-order byte contains the value for red, the middle byte contains the value for green, and
the high-order byte contains the value for blue.

For applications that require the byte order to be reversed, the following function will provide the
same information with the bytes reversed:

Function RevRGB(red, green, blue)

RevRGB= CLng(blue + (green * 256) + (red * 65536))

End Function

The value for any argument to the RGB function that exceeds 255 is assumed to be 255.

 VBScript Right Function
Returns a specified number of characters from the right side of a string.

Syntax: VBScript Right Function
Right(string, length)

Arguments: VBScript Right Function
string

A string expression from which the rightmost characters are returned. If string contains Null,
Null is returned.

length

A numeric expression indicating how many characters to return. If 0, a zero-length string is
returned. If greater than or equal to the number of characters in string, the entire string is
returned.

Remarks: VBScript Right Function
To determine the number of characters in string, use the Len function.

Sun Chili!Soft ASP 3.6.2 Product Documentation 821

The following example uses the Right function to return a specified number of characters from
the right side of a string:

Dim AnyString, MyStr

AnyString = "Hello World" ' Define string.

MyStr = Right(AnyString, 1) ' Returns "d".

MyStr = Right(AnyString, 6) ' Returns " World".

MyStr = Right(AnyString, 20) ' Returns "Hello World".

Notes
The RightB function is used with byte data contained in a string. Instead of specifying
the number of characters to return, length specifies the number of bytes.

The behavior of the RightB function depends on the byte ordering of the hardware
platform, and the number of bytes used to represent Unicode characters in the system
software. The function will produce different results on each supported operating system.
Use with caution. The described behavior pertains to the Win32 version.

 VBScript Rnd Function
Returns a random number.

Syntax: VBScript Rnd Function
Rnd[(number)]

Arguments: VBScript Rnd Function
number

Any valid numeric expression.

Remarks: VBScript Rnd Function
The Rnd function returns a value less than 1 but greater than or equal to 0.

The value of number determines how Rnd generates a random number:

If number is Rnd generates

Less than zero The same number every time, using number as the seed.

Greater than zero The next random number in the sequence.

Equal to zero The most recently generated number.

Not supplied The next random number in the sequence.

For any given initial seed, the same number sequence is generated because each successive call to
the Rnd function uses the previous number as a seed for the next number in the sequence.

Sun Chili!Soft ASP 3.6.2 Product Documentation 822

Before calling Rnd, use the Randomize statement without an argument to initialize the random-
number generator with a seed based on the system timer.

To produce random integers in a given range, use this formula:

Int((upperbound - lowerbound + 1) * Rnd + lowerbound)

Here, upperbound is the highest number in the range, and lowerbound is the lowest number in the
range.

Note
To repeat sequences of random numbers, call the Rnd function with a negative argument
immediately before using the Randomize statement with a numeric arguments. Using the
Randomize statement with the same value for number does not repeat the previous
sequence.

 VBScript Round Function
Returns a number rounded to a specified number of decimal places.

Syntax: VBScript Round Function
Round(expression[, numdecimalplaces])

Arguments: VBScript Round Function
expression

A numeric expression being rounded. Required.

numdecimalplaces

A number indicating how many places to the right of the decimal are included in the rounding. If
omitted, integers are returned by the Round function. Optional.

Remarks: VBScript Round Function
The following example uses the Round function to round a number to two decimal places:

Dim MyVar, pi

pi = 3.14159

MyVar = Round(pi, 2) ' MyVar contains 3.14.

 VBScript ScriptEngine Function
Returns a string representing the scripting language in use.

Syntax: VBScript ScriptEngine Function
ScriptEngine()

Sun Chili!Soft ASP 3.6.2 Product Documentation 823

Return Values: VBScript ScriptEngine Function
The ScriptEngine function can return any of the following strings:

String Description

VBScript Indicates that Microsoft® Visual Basic® Scripting Edition is the
current script engine.

JScript Indicates that Microsoft JScript™ is the current script engine.

VBA Indicates that Microsoft® Visual Basic® for Applications is the current
script engine.

Remarks: VBScript ScriptEngine Function
The following example uses the ScriptEngine function to return a string describing the scripting
language in use:

Function GetScriptEngineInfo

 Dim s

 s = "" ' Build string with necessary info.

 s = ScriptEngine & " Version "

 s = s & ScriptEngineMajorVersion & "."

 s = s & ScriptEngineMinorVersion & "."

 s = s & ScriptEngineBuildVersion

 GetScriptEngineInfo = s ' Return the results.

End Function

 VBScript ScriptEngineBuildVersion Function
Returns the build version number of the script engine in use.

Syntax: VBScript ScriptEngineBuildVersion Function
ScriptEngineBuildVersion()

Remarks: VBScript ScriptEngineBuildVersion Function
The return value corresponds directly to the version information contained in the DLL for the
scripting language in use.

 VBScript ScriptEngineMajorVersion Function
Returns the major version number of the script engine in use.

Syntax: VBScript ScriptEngineMajorVersion Function
ScriptEngineMajorVersion()

Sun Chili!Soft ASP 3.6.2 Product Documentation 824

Remarks: VBScript ScriptEngineMajorVersion Function
The return value corresponds directly to the version information contained in the DLL for the
scripting language in use.

The following example uses the ScriptEngineBuildVersion function to return the build version
number of the scripting engine:

Function GetScriptEngineInfo

 Dim s

 s = "" ' Build string with necessary info.

 s = ScriptEngine & " Version "

 s = s & ScriptEngineMajorVersion & "."

 s = s & ScriptEngineMinorVersion & "."

 s = s & ScriptEngineBuildVersion

 GetScriptEngineInfo = s ' Return the results.

End Function

 VBScript ScriptEngineMinorVersion Function
Returns the minor version number of the script engine in use.

Syntax: VBScript ScriptEngineMinorVersion Function
ScriptEngineMinorVersion()

Remarks: VBScript ScriptEngineMinorVersion Function
The return value corresponds directly to the version information contained in the DLL for the
scripting language in use.

The following example uses the ScriptEngineMinorVersion function to return the minor version
number of the scripting engine:

Function GetScriptEngineInfo

 Dim s

 s = "" ' Build string with necessary info.

 s = ScriptEngine & " Version "

 s = s & ScriptEngineMajorVersion & "."

 s = s & ScriptEngineMinorVersion & "."

 s = s & ScriptEngineBuildVersion

 GetScriptEngineInfo = s ' Return the results.

End Function

Sun Chili!Soft ASP 3.6.2 Product Documentation 825

 VBScript Second Function
Returns a whole number between 0 and 59, inclusive, representing the second of the minute.

Syntax: VBScript Second Function
Second(time)

Arguments: VBScript Second Function
time

Any expression that can represent a time. If time contains Null, Null is returned.

Remarks: VBScript Second Function
The following example uses the Second function to return the current second:

Dim MySec

MySec = Second(Now)

 ' MySec contains the number representing the current second.

 VBScript Sgn Function
Returns an integer indicating the sign of a number.

Syntax: VBScript Sgn Function
Sgn(number)

Arguments: VBScript Sgn Function
number

Any valid numeric expression.

Return Values: VBScript Sgn Function
The Sgn function has the following return values:

If number is Sgn returns

Greater than zero 1

Equal to zero 0

Less than zero -1

Remarks: VBScript Sgn Function
The sign of the number argument determines the return value of the Sgn function.

The following example uses the Sgn function to determine the sign of a number:

Dim MyVar1, MyVar2, MyVar3, MySign

Sun Chili!Soft ASP 3.6.2 Product Documentation 826

MyVar1 = 12: MyVar2 = -2.4: MyVar3 = 0

MySign = Sgn(MyVar1) ' Returns 1.

MySign = Sgn(MyVar2) ' Returns -1.

MySign = Sgn(MyVar3) ' Returns 0.

 VBScript Sin Function
Returns the sine of an angle.

Syntax: VBScript Sin Function
Sin(number)

Arguments: VBScript Sin Function
number

Any valid numeric expression that expresses an angle in radians.

Remarks: VBScript Sin Function
The Sin function takes an angle and returns the ratio of two sides of a right triangle. The ratio is
the length of the side opposite the angle divided by the length of the hypotenuse. The result lies in
the range -1 to 1.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees,
multiply radians by 180/pi.

The following example uses the Sin function to return the sine of an angle:

Dim MyAngle, MyCosecant

MyAngle = 1.3 ' Define angle in radians.

MyCosecant = 1 / Sin(MyAngle) ' Calculate cosecant.

 VBScript Space Function
Returns a string consisting of the specified number of spaces.

Syntax: VBScript Space Function
Space(number)

Arguments: VBScript Space Function
number

The number of spaces you want in the string.

Remarks: VBScript Space Function

Sun Chili!Soft ASP 3.6.2 Product Documentation 827

The following example uses the Space function to return a string consisting of a specified number
of spaces:

Dim MyString

MyString = Space(10) ' Returns a string with 10 spaces.

MyString = "Hello" & Space(10) & "World" ' Insert 10 spaces between
two strings.

 VBScript Split Function
Returns a zero-based, one-dimensional array containing a specified number of substrings.

Syntax: VBScript Split Function
Split(expression[, delimiter[, count[, compare]]])

expression

A string expression containing substrings and delimiters. If expression is a zero-length string,
Split returns an empty array, that is, an array with no elements and no data. Required.

delimiter

A string character used to identify substring limits. If omitted, the space character (" ") is assumed
to be the delimiter. If delimiter is a zero-length string, a single-element array containing the entire
expression string is returned. Optional.

count

The number of substrings to be returned; -1 indicates that all substrings are returned. Optional.

compare

The numeric value indicating the kind of comparison to use when evaluating substrings. See
Settings section for values. Optional.

Settings: VBScript Split Function
The compare argument can have the following values:

Constant Value Description

vbBinaryCompare 0 Perform a binary comparison.

vbTextCompare 1 Perform a textual comparison.

Remarks: VBScript Split Function
The following example uses the Split function to return an array from a string. The function
performs a textual comparison of the delimiter, and returns all of the substrings.

Dim MyString, MyArray, Msg

MyString = "VBScriptXisXfun!"

MyArray = Split(MyString, "x", -1, 1)

Sun Chili!Soft ASP 3.6.2 Product Documentation 828

' MyArray(0) contains "VBScript".

' MyArray(1) contains "is".

' MyArray(2) contains "fun!".

Msg = MyArray(0) & " " & MyArray(1)

Msg = Msg & " " & MyArray(2)

MsgBox Msg

 VBScript Sqr Function
Returns the square root of a number.

Syntax: VBScript Sqr Function
Sqr(number)

Arguments: VBScript Sqr Function
number

Any valid numeric expression greater than or equal to 0.

Remarks: VBScript Sqr Function
The following example uses the Sqr function to calculate the square root of a number:

Dim MySqr

MySqr = Sqr(4) ' Returns 2.

MySqr = Sqr(23) ' Returns 4.79583152331272.

MySqr = Sqr(0) ' Returns 0.

MySqr = Sqr(-4) ' Generates a run-time error.

 VBScript StrComp Function
Returns a value indicating the result of a string comparison.

Syntax: VBScript StrComp Function
StrComp(string1, string2[, compare])

Arguments: VBScript StrComp Function
string1

Any valid string expression. Required.

string2

Any valid string expression. Required.

Sun Chili!Soft ASP 3.6.2 Product Documentation 829

compare

The numeric value indicating the kind of comparison to use when evaluating strings. If omitted, a
binary comparison is performed. See Settings section for values. Optional.

Settings: VBScript StrComp Function
The compare argument can have the following values:

Constant Value Description

vbBinaryCompare 0 Perform a binary comparison.

vbTextCompare 1 Perform a textual comparison.

Return Values: VBScript StrComp Function
The StrComp function has the following return values:

If StrComp returns

string1 is less than string2 -1

string1 is equal to string2 0

string1 is greater than string2 1

string1 or string2 is Null Null

Remarks: VBScript StrComp Function
The following example uses the StrComp function to return the results of a string comparison. If
the third argument is 1, a textual comparison is performed; if the third argument is 0 or omitted, a
binary comparison is performed.

Dim MyStr1, MyStr2, MyComp

MyStr1 = "ABCD": MyStr2 = "abcd" ' Define variables.

MyComp = StrComp(MyStr1, MyStr2, 1) ' Returns 0.

MyComp = StrComp(MyStr1, MyStr2, 0) ' Returns -1.

MyComp = StrComp(MyStr2, MyStr1) ' Returns 1.

 VBScript StrReverse Function
Returns a string in which the character order of a specified string is reversed.

Syntax: VBScript StrReverse Function
StrReverse(string1)

Arguments: VBScript StrReverse Function
string1

The string whose characters are to be reversed. If string1 is a zero-length string (""), a zero-length
string is returned. If string1 is Null, an error occurs.

Sun Chili!Soft ASP 3.6.2 Product Documentation 830

Remarks: VBScript StrReverse Function
The following example uses the StrReverse function to return a string in reverse order:

Dim MyStr

MyStr = StrReverse("VBScript") ' MyStr contains "tpircSBV".

 VBScript String Function
Returns a repeating character string of the length specified.

Syntax: VBScript String Function
String(number, character)

Arguments: VBScript String Function
number

The length of the returned string. If number contains Null, Null is returned.

character

The character code specifying the character or string expression whose first character is used to
build the return string. If character contains Null, Null is returned.

Remarks: VBScript String Function
If you specify a number for character greater than 255, String converts the number to a valid
character code using the formula:

character Mod 256

 VBScript Tan Function
Returns the tangent of an angle.

Syntax: VBScript Tan Function
Tan(number)

Arguments: VBScript Tan Function
number

Any valid numeric expression that expresses an angle in radians.

Remarks: VBScript Tan Function
Tan takes an angle and returns the ratio of two sides of a right triangle. The ratio is the length of
the side opposite the angle divided by the length of the side adjacent to the angle.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees,
multiply radians by 180/pi.

Sun Chili!Soft ASP 3.6.2 Product Documentation 831

The following example uses the Tan function to return the tangent of an angle:

Dim MyAngle, MyCotangent

MyAngle = 1.3 ' Define angle in radians.

MyCotangent = 1 / Tan(MyAngle) ' Calculate cotangent.

 VBScript Time Function
Returns a Variant of subtype Date indicating the current system time.

Syntax: VBScript Time Function
Time()

Remarks: VBScript Time Function
The following example uses the Time function to return the current system time:

Dim MyTime

MyTime = Time ' Return current system time.

 VBScript TimeSerial Function
Returns a Variant of subtype Date containing the time for a specific hour, minute, and second.

Syntax: VBScript TimeSerial Function
TimeSerial(hour, minute, second)

Arguments: VBScript TimeSerial Function
hour

A number between 0 (12:00 A.M.) and 23 (11:00 P.M.), inclusive, or a numeric expression.

minute

Any numeric expression.

second

Any numeric expression.

Remarks: VBScript TimeSerial Function
To specify a time, such as 11:59:59, the range of numbers for each TimeSerial argument should
be in the accepted range for the unit; that is, 0-23 for hours and 0-59 for minutes and seconds.
However, you can also specify relative times for each argument using any numeric expression
that represents some number of hours, minutes, or seconds before or after a certain time. The
following example uses expressions instead of absolute time numbers. The TimeSerial function
returns a time for 15 minutes before (-15) six hours before noon (12 - 6), or 5:45:00 A.M.

TimeSerial(12 - 6, -15, 0)

Sun Chili!Soft ASP 3.6.2 Product Documentation 832

When any argument exceeds the accepted range for that argument, it increments to the next larger
unit as appropriate. For example, if you specify 75 minutes, it is evaluated as one hour and 15
minutes. However, if any single argument is outside the range -32,768 to 32,767, or if the time
specified by the three arguments, either directly or by expression, causes the date to fall outside
the acceptable range of dates, an error occurs.

 VBScript TimeValue Function
Returns a Variant of subtype Date containing the time.

Syntax: VBScript TimeValue Function
TimeValue(time)

Arguments: VBScript TimeValue Function
time

Usually a string expression representing a time from 0:00:00 (12:00:00 A.M.) to 23:59:59
(11:59:59 P.M.), inclusive. However, time can also be any expression that represents a time in
that range. If time contains Null, Null is returned.

Remarks: VBScript TimeValue Function
You can enter valid times using a 12-hour or 24-hour clock. For example, "2:24PM" and "14:24"
are both valid time arguments.

If the time argument contains date information, TimeValue doesn't return the date information.
However, if time includes invalid date information, an error occurs.

The following example uses the TimeValue function to convert a string to a time. You can also
use date literals to directly assign a time to a Variant (for example, MyTime = #4:35:17 PM#).

Dim MyTime

MyTime = TimeValue("4:35:17 PM") ' MyTime contains 4:35:17 PM.

 VBScript TypeName Function
Returns a string that provides Variant subtype information about a variable.

Syntax: VBScript TypeName Function
TypeName(varname)

Arguments: VBScript TypeName Function
varname

A required argument can be any variable.

Return Values: VBScript TypeName Function
The TypeName function has the following return values:

Sun Chili!Soft ASP 3.6.2 Product Documentation 833

Value Description

Byte Byte value

Integer Integer value

Long Long integer value

Single Single-precision floating-point value

Double Double-precision floating-point value

Currency Currency value

Decimal Decimal value

Date Date or time value

String Character string value

Boolean Boolean value; True or False

Empty Uninitialized

Null No valid data

<ltobject type> Actual type name of an object

Object Generic object

Unknown Unknown object type

Nothing Object variable that has been explicitly set to Nothing, or has
been set to return the value of a function that returned
Nothing

Error Error

Variant() A Variant array

Remarks: VBScript TypeName Function
The following example uses the TypeName function to return information about a variable:

Dim ArrayVar(4), MyType

NullVar = Null ' Assign Null value.

MyType = TypeName("VBScript") ' Returns "String".

MyType = TypeName(4) ' Returns "Integer".

MyType = TypeName(37.50) ' Returns "Double".

MyType = TypeName(NullVar) ' Returns "Null".

MyType = TypeName(ArrayVar) ' Returns "Variant()".

 VBScript UBound Function
Returns the largest available subscript for the indicated dimension of an array.

Sun Chili!Soft ASP 3.6.2 Product Documentation 834

Syntax: VBScript UBound Function
UBound(arrayname[, dimension])

Arguments: VBScript UBound Function
arrayname

The name of the array variable; follows standard variable naming conventions. Required.

dimension

The whole number indicating which dimension's upper bound is returned. Use 1 for the first
dimension, 2 for the second, and so on. If dimension is omitted, 1 is assumed. Optional.

Remarks: VBScript UBound Function
The UBound function is used with the LBound function to determine the size of an array. Use
the LBound function to find the lower limit of an array dimension.

The default lower bound for any dimension is always 0. As a result, UBound returns the
following values for an array with these dimensions:

Dim A(100,3,4)

Statement Return Value

Ubound(A, 1) 99

Ubound(A, 2) 2

Ubound(A, 3) 3

 VBScript UCase Function
Returns a string that has been converted to uppercase.

Syntax: VBScript UCase Function
UCase(string)

Arguments: VBScript UCase Function
string

Any valid string expression. If string contains Null, Null is returned.

Remarks: VBScript UCase Function
Only lowercase letters are converted to uppercase; all uppercase letters and nonletter characters
remain unchanged.

The following example uses the UCase function to return an uppercase version of a string:

Dim MyWord

MyWord = UCase("Hello World") ' Returns "HELLO WORLD".

Sun Chili!Soft ASP 3.6.2 Product Documentation 835

 VBScript VarType Function
Returns a value indicating the subtype of a variable.

Syntax: VBScript VarType Function
VarType(varname)

Arguments: VBScript VarType Function
varname

Any variable.

Return Values: VBScript VarType Function
The VarType function returns the following values:

Constant Value Description

vbEmpty 0 Empty (uninitialized)

vbNull 1 Null (no valid data)

vbInteger 2 Integer

vbLong 3 Long integer

vbSingle 4 Single-precision floating-point number

vbDouble 5 Double-precision floating-point number

vbCurrency 6 Currency

vbDate 7 Date

vbString 8 String

vbObject 9 Automation object

vbError 10 Error

vbBoolean 11 Boolean

vbVariant 12 Variant (used only with arrays of Variants)

vbDataObject 13 A data-access object

vbByte 17 Byte

vbArray 8192 Array

Note
These constants are specified by VBScript. As a result, the names can be used anywhere
in your code in place of the actual values.

Remarks: VBScript VarType Function

Sun Chili!Soft ASP 3.6.2 Product Documentation 836

The VarType function never returns the value for Array by itself. It is always added to some
other value to indicate an array of a particular type. The value for Variant is only returned when
it has been added to the value for Array to indicate that the argument to the VarType function is
an array. For example, the value returned for an array of integers is calculated as 2 + 8192, or
8194. If an object has a default property, VarType (object) returns the type of its default
property.

 VBScript Weekday Function
Returns a whole number representing the day of the week.

Syntax: VBScript Weekday Function
Weekday(date, [firstdayofweek])

Arguments: VBScript Weekday Function
date

Any expression that can represent a date. If date contains Null, Null is returned.

firstdayofweek

A constant that specifies the first day of the week. If omitted, vbSunday is assumed.

Settings: VBScript Weekday Function
The firstdayofweek argument has these settings:

Constant Value Description

vbUseSystem 0 Use National Language Support (NLS) API
setting.

vbSunday 1 Sunday

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

Return Values: VBScript Weekday Function
The Weekday function can return any of these values:

Constant Value Description

vbSunday 1 Sunday

vbMonday 2 Monday

Sun Chili!Soft ASP 3.6.2 Product Documentation 837

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

Remarks: VBScript Weekday Function
The following example uses the Weekday function to obtain the day of the week from a specified
date:

Dim MyDate, MyWeekDay

MyDate = #October 19, 1962# ' Assign a date.

MyWeekDay = Weekday(MyDate) ' MyWeekDay contains 6 because
MyDate represents a Friday.

 VBScript WeekdayName Function
Returns a string indicating the specified day of the week.

Syntax: VBScript WeekdayName Function
WeekdayName (weekday, abbreviate, firstdayofweek)

Arguments: VBScript WeekdayName Function
weekday

The numeric designation for the day of the week. Numeric value of each day depends on setting
of the firstdayofweek setting. Required.

abbreviate

A Boolean value that indicates if the weekday name is to be abbreviated. If omitted, the default is
False, which means that the weekday name is not abbreviated. Optional.

firstdayofweek

The numeric value indicating the first day of the week. See Settings section for values. Optional.

Settings: VBScript WeekdayName Function
The firstdayofweek argument can have the following values:

Constant Value Description

vbUseSystem 0 Use National Language Support (NLS) API
setting.

vbSunday 1 Sunday (default)

vbMonday 2 Monday

Sun Chili!Soft ASP 3.6.2 Product Documentation 838

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

Remarks: VBScript WeekdayName Function
The following example uses the WeekDayName function to return the specified day:

Dim MyDate

MyDate = WeekDayName(6, True) ' MyDate contains Fri.

 VBScript Year Function
Returns a whole number representing the year.

Syntax: VBScript Year Function
Year(date)

Arguments: VBScript Year Function
date

Any expression that can represent a date. If date contains Null, Null is returned.

Remarks: VBScript Year Function
The following example uses the Year function to obtain the year from a specified date:

Dim MyDate, MyYear

MyDate = #October 19, 1962# ' Assign a date.

MyYear = Year(MyDate) ' MyYear contains 1962.

VBScript Objects and Collections

VBScript Dictionary Object Stores data as key, item pairs

VBScript Drive Object Provides access to the properties of a disk drive or network
share.

VBScript Err Object Contains information about run-time errors.

VBScript File Object Provides access to the properties of a file.

VBScript FileSystemObject
Object

Provides access to a computer’s file system.

Sun Chili!Soft ASP 3.6.2 Product Documentation 839

VBScript Folder Object Provides access to the properties of a folder.

VBScript TextStream Object Facilitates sequential access to a file.

VBScript Collections Useful collections of other objects.

VBScript Dictionary Object

 VBScript Dictionary Object
The Dictionary object stores data as key, item pairs.

Methods: VBScript Dictionary Object
VBScript Dictionary Object Add Method Adds a key, item pair.

VBScript Dictionary Object Exists Method Indicates if a specified key exists.

VBScript Dictionary Object Items Method Returns an array containing all items in a
Dictionary object.

VBScript Dictionary Object Keys Method Returns an array containing all keys in a
Dictionary object.

VBScript Dictionary Object Remove Method Removes a key, item pair.

VBScript Dictionary Object RemoveAll Method Removes all key, item pairs.

Properties: VBScript Dictionary Object
VBScript Dictionary Object CompareMode
Property

The comparison mode for string keys.

VBScript Dictionary Object Count Property The number of items in a Dictionary object.

VBScript Dictionary Object Item Property An item for a key.

VBScript Dictionary Object Key Property A key.

Syntax: VBScript Dictionary Object
Scripting.Dictionary

Remarks: VBScript Dictionary Object
A Dictionary object is the equivalent of a PERL associative array. Items, which can be any form
of data, are stored in the array. Each item is associated with a unique key. The key is used to
retrieve an individual item and is usually a integer or a string, but can be anything except an
array.

The following code illustrates how to create a Dictionary object:

Dim d 'Create a variable

Set d = CreateObject("Scripting.Dictionary")

Sun Chili!Soft ASP 3.6.2 Product Documentation 840

d.Add "a", "Athens" 'Add some keys and items

d.Add "b", "Belgrade"

d.Add "c", "Cairo"

...

 VBScript Dictionary Object Add Method
Adds a key and item pair to a Dictionary object.

Syntax: VBScript Dictionary Object Add Method
object.Add key, item

Arguments: VBScript Dictionary Object Add Method
object

The name of a Dictionary object. Required.

key

The key associated with the item being added. Required.

item

The item associated with the key being added. Required.

Remarks: VBScript Dictionary Object Add Method
An error occurs if the key already exists.

 VBScript Dictionary Object CompareMode Property
Sets and returns the comparison mode for comparing string keys in a Dictionary object.

Syntax: VBScript Dictionary Object CompareMode Property
object.CompareMode[= compare]

Arguments: VBScript Dictionary Object CompareMode Property
object

The name of a Dictionary object. Required.

compare

A value representing the comparison mode used by functions such as StrComp. Optional.

Settings: VBScript Dictionary Object CompareMode Property
The compare argument has the following settings:

Sun Chili!Soft ASP 3.6.2 Product Documentation 841

Constant Value Description

vbBinaryCompare 0 Perform a binary comparison.

vbTextCompare 1 Perform a textual comparison.

Remarks: VBScript Dictionary Object CompareMode Property
Values greater than 2 can be used to refer to comparisons using specific Locale IDs (LCID). An
error occurs if you try to change the comparison mode of a Dictionary object that already
contains data.

The CompareMode property uses the same values as the compare argument for the StrComp
function.

The CompareMode property of a dictionary is only available in VBScript; it cannot be used in
JScript.

 VBScript Dictionary Object Count Property
Returns the number of items in a Dictionary object. Read-only.

Syntax: VBScript Dictionary Object Count Property
object.Count

Arguments: VBScript Dictionary Object Count Property
object

The name of a Dictionary object.

Remarks: VBScript Dictionary Object Count Property
The following code illustrates use of the Count property:

Dim a, d, i 'Create some variables

Set d = CreateObject("Scripting.Dictionary")

d.Add "a", "Athens" 'Add some keys and items.

d.Add "b", "Belgrade"

d.Add "c", "Cairo"

a = d.Keys 'Get the keys

For i = 0 To d.Count -1 'Iterate the array

Print a(i) 'Print key

Next

...

 VBScript Dictionary Object Exists Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 842

Returns True if a specified key exists in the Dictionary object, False if it does not.

Syntax: VBScript Dictionary Object Exists Method
object.Exists(key)

Arguments: VBScript Dictionary Object Exists Method
object

The name of a Dictionary object. Required.

key

The key value being searched for in the Dictionary object. Required.

 VBScript Dictionary Object Item Property
Sets or returns an item for a specified key in a Dictionary object.

Syntax: VBScript Dictionary Object Item Property
object.Item(key) [= newitem]

Arguments: VBScript Dictionary Object Item Property
object

The name of a Dictionary object. Required.

key

A key associated with the item being retrieved or added. Required.

newitem

If provided, newitem is the new value associated with the specified key. Optional.

Remarks: VBScript Dictionary Object Item Property
If key is not found when changing an item, a new key is created with the specified newitem. If key
is not found when attempting to return an existing item, a new key is created and its
corresponding item is left empty.

 VBScript Dictionary Object Items Method
Returns an array containing all the items in a Dictionary object.

Syntax: VBScript Dictionary Object Items Method
object.Items

Arguments: VBScript Dictionary Object Items Method
object

The name of a Dictionary object.

Sun Chili!Soft ASP 3.6.2 Product Documentation 843

Remarks: VBScript Dictionary Object Items Method
The following code illustrates use of the Items method:

Dim a, d, i 'Create some variables

Set d = CreateObject("Scripting.Dictionary")

d.Add "a", "Athens" 'Add some keys and items

d.Add "b", "Belgrade"

d.Add "c", "Cairo"

a = d.Items 'Get the items

For i = 0 To d.Count -1 'Iterate the array

Response.Write a(i) 'Print item

Next

...

 VBScript Dictionary Object Key Property
Sets a key in a Dictionary object.

Syntax: VBScript Dictionary Object Key Property
object.Key(key) = newkey

Arguments: VBScript Dictionary Object Key Property
object

The name of a Dictionary object. Required.

key

Key value being changed. Required.

newkey

New value that replaces the specified key. Required.

Remarks: VBScript Dictionary Object Key Property
If key is not found when changing a key, an error will occur.

 VBScript Dictionary Object Keys Method
Returns an array containing all existing keys in a Dictionary object.

Syntax: VBScript Dictionary Object Keys Method
object.Keys

Arguments: VBScript Dictionary Object Keys Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 844

object

The name of a Dictionary object.

Remarks: VBScript Dictionary Object Keys Method
The following code illustrates use of the Keys method:

Dim a, d, i 'Create some variables

Set d = CreateObject("Scripting.Dictionary")

d.Add "a", "Athens" 'Add some keys and items.

d.Add "b", "Belgrade"

d.Add "c", "Cairo"

a = d.keys 'Get the keys

For i = 0 To d.Count -1 'Iterate the array

Response.write a(i) 'Print key

Next

...

 VBScript Dictionary Object Remove Method
Removes a key, item pair from a Dictionary object.

Syntax: VBScript Dictionary Object Remove Method
object.Remove(key)

Arguments: VBScript Dictionary Object Remove Method
object

The name of a Dictionary object. Required.

key

The key associated with the key, item pair you want to remove from the Dictionary object.
Required.

Remarks: VBScript Dictionary Object Remove Method
An error occurs if the specified key, item pair does not exist.

The following code illustrates use of the Remove method:

Dim a, d, i 'Create some variables

Set d = CreateObject("Scripting.Dictionary")

d.Add "a", "Athens" 'Add some keys and items

d.Add "b", "Belgrade"

Sun Chili!Soft ASP 3.6.2 Product Documentation 845

d.Add "c", "Cairo"

...

a = d.Remove("b") 'Remove second pair

 VBScript Dictionary Object RemoveAll Method
The RemoveAll method removes all key, item pairs from a Dictionary object.

Syntax: VBScript Dictionary Object RemoveAll Method
object.RemoveAll

Arguments: VBScript Dictionary Object RemoveAll Method
object

The name of a Dictionary object.

Remarks: VBScript Dictionary Object RemoveAll Method
The following code illustrates use of the RemoveAll method:

Dim a, d, i 'Create some variables

Set d = CreateObject("Scripting.Dictionary")

d.Add "a", "Athens" 'Add some keys and items

d.Add "b", "Belgrade"

d.Add "c", "Cairo"

...

a = d.RemoveAll 'Clear the dictionary

VBScript Drive Object

 VBScript Drive Object
The VBScript Drive object provides access to the properties of a particular disk drive or network
share.

Properties: VBScript Drive Object
VBScript Drive Object AvailableSpace
Property

The amount of space available to a user on the
specified drive or network share. This property is not
currently supported on UNIX.

VBScript Drive Object DriveLetter
Property

The drive letter of a physical local drive or network
share. This property is not currently supported on
UNIX.

VBScript Drive Object DriveType A value indicating the type of a drive. This property is

Sun Chili!Soft ASP 3.6.2 Product Documentation 846

Property not currently supported on UNIX.

VBScript Drive Object FileSystem
Property

The type of file system in use for the drive. This
property is non currently supported on UNIX.

VBScript Drive Object FreeSpace
Property

The amount of free space available to a user on the
drive or network share. This property is not currently
supported on UNIX.

VBScript Drive Object IsReady Property True if the drive is ready, False if not.

VBScript Drive Object Path Property The file system path for a drive.

VBScript Drive Object RootFolder
Property

A Folder object representing the root folder of a
drive.

VBScript Drive Object SerialNumber
Property

The decimal serial number used to uniquely identify
the disk volume. This property is not currently
supported on UNIX.

VBScript Drive Object ShareName
Property

The network share name of a drive. This property is
not currently supported on UNIX.

VBScript Drive Object TotalSize
Property

The total space, in bytes, of a drive or network share.
This property is not currently supported on UNIX.

VBScript Drive Object VolumeName
Property

The volume name of a drive. This property is not
currently supported on UNIX.

Remarks: VBScript Drive Object
The following code illustrates the use of the Drive object to access drive properties:

Sub ShowFreeSpace(drvPath)

Dim fs, d, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set d = fs.GetDrive(fs.GetDriveName(drvPath))

s = "Drive " & UCase(drvPath) & " - "

s = s & d.VolumeName & vbCrLf

s = s & "Free Space: " & FormatNumber(d.FreeSpace/1024, 0)

s = s & " Kbytes"

Response.Write s

End Sub

 VBScript Drive Object AvailableSpace Property
Returns the amount of space available to a user on the specified drive or network share. This
property is not currently available on UNIX systems.

Sun Chili!Soft ASP 3.6.2 Product Documentation 847

Syntax: VBScript Drive Object AvailableSpace Property
object.AvailableSpace

Arguments: VBScript Drive Object AvailableSpace Property
object

A Drive object.

Remarks: VBScript Drive Object AvailableSpace Property
The value returned by the AvailableSpace property is typically the same as that returned by the
Drive Object FreeSpace Property. Differences may occur between the two for computer systems
that support quotas. The following code illustrates the use of the AvailableSpace property:

Sub ShowAvailableSpace(drvPath)

Dim fs, d, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set d = fs.GetDrive(fs.GetDriveName(drvPath))

s = "Drive " & UCase(drvPath) & " - "

s = s & d.VolumeName & vbCrLf

s = s & "Available Space: " & FormatNumber(d.AvailableSpace/1024, 0)

s = s & " Kbytes"

Response.Write s

End Sub

 VBScript Drive Object DriveLetter Property
Returns the drive letter of a physical local drive or a network share. This property is not currently
available on Unix systems. Read-only.

Syntax: VBScript Drive Object DriveLetter Property
object.DriveLetter

Arguments: VBScript Drive Object DriveLetter Property
object

A Drive object.

Remarks: VBScript Drive Object DriveLetter Property
The DriveLetter property returns a zero-length string ("") if the specified drive is not associated
with a drive letter, for example, a network share that has not been mapped to a drive letter.

The following code illustrates the use of the DriveLetter property:

Sub ShowDriveLetter(drvPath)

Sun Chili!Soft ASP 3.6.2 Product Documentation 848

Dim fs, d, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set d = fs.GetDrive(fs.GetDriveName(drvPath))

s = "Drive " & d.DriveLetter & ": - "

s = s & d.VolumeName & vbCrLf

s = s & "Free Space: " & FormatNumber(d.FreeSpace/1024, 0)

s = s & " Kbytes"

Response.Write s

End Sub

 VBScript Drive Object DriveType Property
Returns a value indicating the type of a specified drive. This property is not currently supported
on UNIX.

Syntax: VBScript Drive Object DriveType Property
object.DriveType

Arguments: VBScript Drive Object DriveType Property
object

A Drive object.

Remarks: VBScript Drive Object DriveType Property
The following code illustrates the use of the DriveType property:

Sub ShowDriveType(drvpath)

Dim fs, d, s, t

Set fs = CreateObject("Scripting.FileSystemObject")

Set d = fs.GetDrive(drvpath)

Select Case d.DriveType

Case 0: t = "Unknown"

Case 1: t = "Removable"

Case 2: t = "Fixed"

Case 3: t = "Network"

Case 4: t = "CD-ROM"

Case 5: t = "RAM Disk"

End Select

Sun Chili!Soft ASP 3.6.2 Product Documentation 849

s = "Drive " & d.DriveLetter & ": - " & t

Response.Write s

End Sub

 VBScript Drive Object FileSystem Property
Returns the type of file system in use for the specified drive. This property is not currently
supported on UNIX.

Syntax: VBScript Drive Object FileSystem Property
object.FileSystem

Arguments: VBScript Drive Object FileSystem Property
object

A Drive object.

Remarks: VBScript Drive Object FileSystem Property
Available return types include FAT, NTFS, and CDFS.

The following code illustrates the use of the FileSystem property:

Sub ShowFileSystemType

Dim fs,d, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set d = fs.GetDrive("e:")

s = d.FileSystem

Response.Write s

End Sub

 VBScript Drive Object FreeSpace Property
Returns the amount of free space available to a user on the specified drive or network share. This
property is not currently supported on UNIX. Read-only.

Syntax: VBScript Drive Object FreeSpace Property
object.FreeSpace

Arguments: VBScript Drive Object FreeSpace Property
object

A Drive object.

Remarks: VBScript Drive Object FreeSpace Property

Sun Chili!Soft ASP 3.6.2 Product Documentation 850

The value returned by the FreeSpace property is typically the same as that returned by the Drive
Object AvailableSpace Property. Differences may occur between the two for computer systems
that support quotas.

The following code illustrates the use of the FreeSpace property:

Sub ShowFreeSpace(drvPath)

Dim fs, d, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set d = fs.GetDrive(fs.GetDriveName(drvPath))

s = "Drive " & UCase(drvPath) & " - "

s = s & d.VolumeName & vbCrLf

s = s & "Free Space: " & FormatNumber(d.FreeSpace/1024, 0)

s = s & " Kbytes"

Response.Write s

End Sub

 VBScript Drive Object IsReady Property
Returns True if the specified drive is ready; False if it is not.

Syntax: VBScript Drive Object IsReady Property
object.IsReady

Arguments: VBScript Drive Object IsReady Property
object

A Drive object.

Remarks: VBScript Drive Object IsReady Property
For removable-media drives and CD-ROM drives, IsReady returns True only when the
appropriate media is inserted and ready for access. On UNIX systems the IsReady property
always returns True.

The following code illustrates the use of the IsReady property:

Sub ShowDriveInfo(drvpath)

Dim fs, d, s, t

Set fs = CreateObject("Scripting.FileSystemObject")

Set d = fs.GetDrive(drvpath)

Select Case d.DriveType

Case 0: t = "Unknown"

Sun Chili!Soft ASP 3.6.2 Product Documentation 851

Case 1: t = "Removable"

Case 2: t = "Fixed"

Case 3: t = "Network"

Case 4: t = "CD-ROM"

Case 5: t = "RAM Disk"

End Select

s = "Drive " & d.DriveLetter & ": - " & t

If d.IsReady Then

s = s & vbCrLf & "Drive is Ready."

Else

s = s & vbCrLf & "Drive is not Ready."

End If

Response.Write s

End Sub

Under UNIX, the IsReady property is always True.

 VBScript Drive Object Path Property
Returns the path for a specified drive.

Syntax: VBScript Drive Object Path Property
object.Path

Arguments: VBScript Drive Object Path Property
object

A Drive object.

Remarks: VBScript Drive Object Path Property
For drive letters, the root drive is not included. For example, the path for the C drive is C:, not
C:\.

 VBScript Drive Object RootFolder Property
Returns a Folder object representing the root folder of a specified drive. Read-only.

Syntax: VBScript Drive Object RootFolder Property
object.RootFolder

Arguments: VBScript Drive Object RootFolder Property

Sun Chili!Soft ASP 3.6.2 Product Documentation 852

object

A Drive object.

Remarks:[0] VBScript Drive Object RootFolder Property
All the files and folders contained on the drive can be accessed using the returned Folder object.

 VBScript Drive Object SerialNumber Property
Returns the decimal serial number used to uniquely identify a disk volume. This property is not
currently supported on UNIX.

Syntax: VBScript Drive Object SerialNumber Property
object.SerialNumber

Arguments: VBScript Drive Object SerialNumber Property
object

A Drive object.

Remarks: VBScript Drive Object SerialNumber Property
You can use the SerialNumber property to ensure that the correct disk is inserted in a drive with
removable media.

The following code illustrates the use of the SerialNumber property:

Sub ShowDriveInfo(drvpath)

Dim fs, d, s, t

Set fs = CreateObject("Scripting.FileSystemObject")

Set d =
fs.GetDrive(fs.GetDriveName(fs.GetAbsolutepathname(drvpath)))

Select Case d.DriveType

Case 0: t = "Unknown"

Case 1: t = "Removable"

Case 2: t = "Fixed"

Case 3: t = "Network"

Case 4: t = "CD-ROM"

Case 5: t = "RAM Disk"

End Select

s = "Drive " & d.DriveLetter & ": - " & t

s = s & vbCrLf & "SN: " & d.SerialNumber

Response.Write s

Sun Chili!Soft ASP 3.6.2 Product Documentation 853

End Sub

 VBScript Drive Object ShareName Property
Returns the network share name for a specified drive. This property is not currently supported on
UNIX.

Syntax: VBScript Drive Object ShareName Property
object.ShareName

Arguments: VBScript Drive Object ShareName Property
object

A Drive object.

Remarks: VBScript Drive Object ShareName Property
If object is not a network drive, the ShareName property returns a zero-length string (""). The
following code illustrates the use of the ShareName property:

Sub ShowDriveInfo(drvpath)

Dim fs, d, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set d =
fs.GetDrive(fs.GetDriveName(fs.GetAbsolutepathname(drvpath)))

s = "Drive " & d.DriveLetter & ": - " & d.ShareName

Response.Write s

End Sub

 VBScript Drive Object TotalSize Property
Returns the total space, in bytes, of a drive or network share. This property is not currently
supported on UNIX.

Syntax: VBScript Drive Object TotalSize Property
object.TotalSize

Arguments: VBScript Drive Object TotalSize Property
object

A Drive object.

Remarks: VBScript Drive Object TotalSize Property
The following code illustrates the use of the TotalSize property:

Sub ShowSpaceInfo(drvpath)

Sun Chili!Soft ASP 3.6.2 Product Documentation 854

Dim fs, d, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set d =
fs.GetDrive(fs.GetDriveName(fs.GetAbsolutepathname(drvpath)))

s = "Drive " & d.DriveLetter & ":"

s = s & vbCrLf

s = s & "Total Size: " & FormatNumber(d.TotalSize/1024, 0) & "
Kbytes"

s = s & vbCrLf

s = s & "Available: " & FormatNumber(d.AvailableSpace/1024, 0) & "
Kbytes"

Response.Write s

End Sub

 VBScript Drive Object VolumeName Property
Sets or returns the volume name of the specified drive. This property is not currently supported
on UNIX. Read/write.

Syntax: VBScript Drive Object VolumeName Property
object.VolumeName [= newname]

Arguments: VBScript Drive Object VolumeName Property
object

The name of a Drive object. Required.

newname

If provided, newname is the new name of the specified object. Optional.

Remarks: VBScript Drive Object VolumeName Property
The following code illustrates the use of the VolumeName property:

Sub ShowVolumeInfo(drvpath)

Dim fs, d, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set d =
fs.GetDrive(fs.GetDriveName(fs.GetAbsolutepathname(drvpath)))

s = "Drive " & d.DriveLetter & ": - " & d.VolumeName

Response.Write s

Sun Chili!Soft ASP 3.6.2 Product Documentation 855

End Sub

VBScript Err Object

 VBScript Err Object
The VBScript Err object contains information about run-time errors.

Methods: VBScript Err Object
VBScript Err Object Clear
Method

Clears all property settings.

VBScript Err Object Raise
Method

Generate a run-time error.

Properties: VBScript Err Object
VBScript Err Object Description
Property

The descriptive string associated with an error.

VBScript Err Object
HelpContext Property

A context ID for a topic in a Windows help file.

VBScript Err Object HelpFile
Property

A fully qualified path to a Windows help file.

VBScript Err Object Number
Property

A numeric value identifying an error.

VBScript Err Object Source
Property

The name of the object or application that originally
generated the error.

Remarks: VBScript Err Object
The properties of the Err object are set by the generator of an error—Visual Basic, an
Automation object, or the VBScript programmer.

The default property of the Err object is Number. Err.Number contains an integer and can be
used by an Automation object to return an SCODE.

When a run-time error occurs, the properties of the Err object are filled with information that
uniquely identifies the error and information that can be used to handle it. To generate a run-time
error in your code, use the VBScript Err Object Raise Method. The Err object's properties are
reset to zero or zero-length strings ("") after an On Error Resume Next statement. The VBScript
Err Object Clear Method can be used to explicitly reset Err.

The Err object is an intrinsic object with global scope—there is no need to create an instance of it
in your code.

 VBScript Err Object Clear Method
Clears all property settings of the Err object.

Sun Chili!Soft ASP 3.6.2 Product Documentation 856

Syntax: VBScript Err Object Clear Method
Err.Clear

Remarks: VBScript Err Object Clear Method
Use Clear to explicitly clear the Err object after an error has been handled. This is necessary, for
example, when you use deferred error handling with On Error Resume Next. VBScript calls the
Clear method automatically whenever any of the following statements is executed:

� On Error Resume Next

� Exit Sub

� Exit Function

 VBScript Err Object Description Property
Returns or sets a descriptive string associated with an error.

Syntax: VBScript Err Object Description Property
Err.Description [= stringexpression]

Arguments: VBScript Err Object Description Property
stringexpression

A string expression containing a description of the error.

Remarks: VBScript Err Object Description Property
The Description property consists of a short description of the error. Use this property to alert the
user to an error that you can't or don't want to handle. When generating a user-defined error,
assign a short description of your error to this property. If Description isn't filled in, and the
value of theVBScript Err Object Number Property corresponds to a VBScript run-time error, the
descriptive string associated with the error is returned.

 VBScript Err Object HelpContext Property
Sets or returns a context ID for a topic in a Help File.

Syntax: VBScript Err Object HelpContext Property
Err.HelpContext [= contextID]

Arguments: VBScript Err Object HelpContext Property
contextID

A valid identifier for a Help topic within the Help file. Optional.

Remarks: VBScript Err Object HelpContext Property
If a Help file is specified in VBScript Err Object HelpFile Property, the HelpContext property is
used to automatically display the Help topic identified. If both HelpFile and HelpContext are

Sun Chili!Soft ASP 3.6.2 Product Documentation 857

empty, the value of the VBScript Err Object Number Property is checked. If it corresponds to a
VBScript run-time error value, then the VBScript Help context ID for the error is used. If the
Number property doesn't correspond to a VBScript error, the contents screen for the VBScript
Help file is displayed.

 VBScript Err Object HelpFile Property
Sets or returns a fully qualified path to a Help File.

Syntax: VBScript Err Object HelpFile Property
Err.HelpFile [= contextID]

Arguments: VBScript Err Object HelpFile Property
contextID

The fully qualified path to the Help file. Optional.

Remarks: VBScript Err Object HelpFile Property
If a Help file is specified in HelpFile, it is automatically called when the user clicks the Help
button (or presses the F1 key) in the error message dialog box. If the VBScript Err Object
HelpContext Property contains a valid context ID for the specified file, that topic is automatically
displayed. If no HelpFile is specified, the VBScript Help file is displayed.

 VBScript Err Object Number Property
Returns or sets a numeric value specifying an error. Number is the Err object's default property.

Syntax: VBScript Err Object Number Property
Err.Number [= errornumber]

Arguments: VBScript Err Object Number Property
errornumber

An integer representing a VBScript error number or an SCODE error value.

Remarks: VBScript Err Object Number Property
When returning a user-defined error from an Automation object, set Err.Number by adding the
number you selected as an error code to the constant vbObjectError. For example, you use the
following code to return the number 1051 as an error code:

Err.Raise Number:= vbObjectError + 1051, Source:= "SomeClass"

 VBScript Err Object Raise Method
Generates a run-time error.

Syntax: VBScript Err Object Raise Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 858

Err.Raise(number, source, description, helpfile, helpcontext)

Arguments: VBScript Err Object Raise Method
number

A Long integer subtype that identifies the nature of the error. VBScript errors (both VBScript-
defined and user-defined errors) are in the range 0-65535.

source

A string expression naming the object or application that originally generated the error. When
setting this property for an Automation object, use the form project.class. If nothing is specified,
the programmatic ID of the current VBScript project is used.

description

A string expression describing the error. If unspecified, the value in number is examined. If it can
be mapped to a VBScript run-time error code, a string provided by VBScript is used as
description. If there is no VBScript error corresponding to number, a generic error message is
used.

helpfile

The fully qualified path to the Help file in which help on this error can be found. If unspecified,
VBScript uses the fully qualified drive, path, and file name of the VBScript Help file.

helpcontext

The context ID identifying a topic within helpfile that provides help for the error. If omitted, the
VBScript Help file context ID for the error corresponding to the number property is used, if it
exists.

Remarks: VBScript Err Object Raise Method
All the argument are optional except number. If you use Raise, however, without specifying
some arguments, and the property settings of the Err object contain values that have not been
cleared, those values become the values for your error.

When setting the number property to your own error code in an Automation object, you add your
error code number to the constant vbObjectError. For example, to generate the error number
1050, assign vbObjectError + 1050 to the number property.

 VBScript Err Object Source Property
Returns or sets the name of the object or application that originally generated the error.

Syntax: VBScript Err Object Source Property
Err.Source [= stringexpression]

Arguments: VBScript Err Object Source Property
stringexpression

A string expression representing the application that generated the error.

Sun Chili!Soft ASP 3.6.2 Product Documentation 859

Remarks: VBScript Err Object Source Property
The Source property specifies a string expression that is usually the class name or programmatic
ID of the object that caused the error. Use Source to provide your users with information when
your code is unable to handle an error generated in an accessed object. For example, if you access
Microsoft Excel and it generates a Division by zero error, Microsoft Excel sets Err Object
Number Property to its error code for that error and sets Source to Excel.Application. Note that if
the error is generated in another object called by Microsoft Excel, Excel intercepts the error and
sets Err.Number to its own code for Division by zero. However, it leaves the other Err object
(including Source) as set by the object that generated the error.

Source always contains the name of the object that originally generated the error—your code can
try to handle the error according to the error documentation of the object you accessed. If your
error handler fails, you can use the Err object information to describe the error to your user,
using Source and the other Err to inform the user which object originally caused the error, its
description of the error, and so forth.

VBScript File Object

 VBScript File Object
The VBScript File object provides access to all the properties of a file.

Methods: VBScript File Object
VBScript File Object Copy Method Copies a file from one location to another.

VBScript File Object Delete Method Deletes a file.

VBScript File Object Move Method Moves a file from one location to another.

VBScript File Object
OpenAsTextStream Method

Opens a file and returns a TextStream object.

Properties: VBScript File Object
VBScript File Object Attributes
Property

The attributes of a file.

VBScript File Object DateCreated
Property

The date and time that the file was created.

VBScript File Object DateLastAccessed
Property

The date and time that the file was last accessed.

VBScript File Object DateLastModified
Property

The date and time that the file was last modified.

VBScript File Object Drive Property The drive letter of the drive on which the file
resides.

VBScript File Object Name Property The name of the file.

VBScript File Object ParentFolder The Folder object for the parent of the file.

Sun Chili!Soft ASP 3.6.2 Product Documentation 860

Property

VBScript File Object Path Property The file system path to the file.

VBScript File Object ShortName
Property

The short name used by programs that require 8.3
names. This property is not currently supported on
UNIX.

VBScript File Object ShortPath
Property

The short path use by programs that require 8.3
names. This property is not currently supported on
UNIX.

VBScript File Object Size Property The size, in bytes, of a file.

VBScript File Object Type Property Information about the type of a file. This property is
not currently supported on UNIX.

Remarks: VBScript File Object
The following code illustrates how to obtain a File object and how to view one of its properties.

Sub ShowFileInfo(filespec)

Dim fs, f, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFile(filespec)

s = f.DateCreated

Response.Write s

End Sub

 VBScript File Object Attributes Property
Sets or returns the attributes of files. Read/write or read-only, depending on the attribute.

Note
This property depends on the underlying operating system for its behavior. If the OS file
system does not support the file attribute requested, an error will be returned.

Syntax: VBScript File Object Attributes Property
object.Attributes [= newattributes]

Arguments: VBScript File Object Attributes Property
object

The name of a File object. Required.

newattributes

The new value for the attributes of the specified object. Optional.

Sun Chili!Soft ASP 3.6.2 Product Documentation 861

Settings: VBScript File Object Attributes Property
The newattributes argument can have any of the following values or any logical combination of
the following values:

Constant Value Description

Normal 0 Normal file. No attributes are set.

ReadOnly 1 Read-only file. Attribute is read/write.

Hidden 2 Hidden file. Attribute is read/write.

System 4 System file. Attribute is read/write.

Volume 8 Disk drive volume label. Attribute is read-only.

Directory 16 Folder or directory. Attribute is read-only.

Archive 32 File has changed since last backup. Attribute is
read/write.

Alias 64 Link or shortcut. Attribute is read-only.

Compressed 128 Compressed file. Attribute is read-only.

Remarks: VBScript File Object Attributes Property
The following code illustrates the use of the Attributes property with a file:

Sub SetClearArchiveBit(filespec)

Dim fs, f, r

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFile(fs.GetFileName(filespec))

If f.attributes and 32 Then

r = MsgBox("The Archive bit is set, do you want to clear it?",
vbYesNo, "Set/Clear Archive Bit")

If r = vbYes Then

f.attributes = f.attributes - 32

MsgBox "Archive bit is cleared."

Else

MsgBox "Archive bit remains set."

End If

Else

r = MsgBox("The Archive bit is not set. Do you want to set it?",
vbYesNo, "Set/Clear Archive Bit")

If r = vbYes Then

Sun Chili!Soft ASP 3.6.2 Product Documentation 862

f.attributes = f.attributes + 32

MsgBox "Archive bit is set."

Else

MsgBox "Archive bit remains clear."

End If

End If

End Sub

 VBScript File Object Copy Method
Copies a specified file from one location to another.

Syntax: VBScript File Object Copy Method
object.Copy destination[, overwrite]

Arguments: VBScript File Object Copy Method
object

The name of a File object. Required.

destination

The destination where the file is to be copied. Wildcard characters are not allowed. Required.

overwrite

A Boolean value that is True (default) if existing files are to be overwritten; False if they are not.
Optional.

Remarks: VBScript File Object Copy Method
The results of the Copy method on a File object are identical to operations performed using
CopyFile where the file referred to by object is passed as an argument. You should note,
however, that the alternative method is capable of copying multiple files.

 VBScript File Object DateCreated Property
Returns the date and time that the specified file was created. Read-only.

Syntax: VBScript File Object DateCreated Property
object.DateCreated

Arguments: VBScript File Object DateCreated Property
object

A File object.

Sun Chili!Soft ASP 3.6.2 Product Documentation 863

Remarks: VBScript File Object DateCreated Property
The following code illustrates the use of the DateCreated property with a file:

Sub ShowFileInfo(filespec)

Dim fs, f, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFile(filespec)

s = "Created: " & f.DateCreated

Response.Write s

End Sub

 VBScript File Object DateLastAccessed Property
Returns the date and time that the specified file was last accessed. Read-only.

Syntax: VBScript File Object DateLastAccessed Property
object.DateLastAccessed

Arguments: VBScript File Object DateLastAccessed Property
object

A File object.

Remarks: VBScript File Object DateLastAccessed Property
The following code illustrates the use of the DateLastAccessed property with a file:

Sub ShowFileAccessInfo(filespec)

Dim fs, f, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFile(filespec)

s = UCase(filespec) & vbCrLf

s = s & "Created: " & f.DateCreated & vbCrLf

s = s & "Last Accessed: " & f.DateLastAccessed & vbCrLf

s = s & "Last Modified: " & f.DateLastModified

Response.Write s, 0, "File Access Info"

End Sub

Note
This method depends on the underlying operating system for its behavior. If the operating
system does not support providing time information, none will be returned.

Sun Chili!Soft ASP 3.6.2 Product Documentation 864

 VBScript File Object DateLastModified Property
Returns the date and time that the file was last modified. Read-only.

Syntax: VBScript File Object DateLastModified Property
object.DateLastModified

Arguments: VBScript File Object DateLastModified Property
object

A File object.

Remarks: VBScript File Object DateLastModified Property
The following code illustrates the use of the DateLastModified property with a file:

Sub ShowFileAccessInfo(filespec)

Dim fs, f, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFile(filespec)

s = UCase(filespec) & vbCrLf

s = s & "Created: " & f.DateCreated & vbCrLf

s = s & "Last Accessed: " & f.DateLastAccessed & vbCrLf

s = s & "Last Modified: " & f.DateLastModified

Response.Write s, 0, "File Access Info"

End Sub

 VBScript File Object Delete Method
Deletes a specified file.

Syntax: VBScript File Object Delete Method
object.Delete force

Arguments: VBScript File Object Delete Method
object

The name of a File object. Required.

force

A Boolean value that is True if files with the read-only attribute set are to be deleted; False
(default) if they are not. Optional.

Remarks: VBScript File Object Delete Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 865

An error occurs if the specified file does not exist.

The results of the Delete method on a File object are identical to operations performed using
DeleteFile.

 VBScript File Object Drive Property
Returns the drive letter of the drive on which the specified file resides. Read-only.

Syntax: VBScript File Object Drive Property
object.Drive

Arguments: VBScript File Object Drive Property
object

A File object.

Remarks: VBScript File Object Drive Property
The following code illustrates the use of the Drive property:

Sub ShowFileAccessInfo(filespec)

Dim fs, f, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFile(filespec)

s = f.Name & " on Drive " & UCase(f.Drive) & vbCrLf

s = s & "Created: " & f.DateCreated & vbCrLf

s = s & "Last Accessed: " & f.DateLastAccessed & vbCrLf

s = s & "Last Modified: " & f.DateLastModified

Response.Write s, 0, "File Access Info"

End Sub

Under UNIX, the Drive property is always "/".

 VBScript File Object Move Method
Moves a specified file from one location to another.

Syntax: VBScript File Object Move Method
object.Move destination

Arguments: VBScript File Object Move Method
object

Required. Always the name of a File or Folder object.

Sun Chili!Soft ASP 3.6.2 Product Documentation 866

destination

Required. Destination where the file is to be moved. Wildcard characters are not allowed.

Remarks: VBScript File Object Move Method
The results of the Move method on a File are identical to operations performed using MoveFile.
You should note, however, that the alternative method is capable of moving multiple files or
folders.

 VBScript File Object Name Property
Sets or returns the name of a specified file. Read/write.

Syntax: VBScript File Object Name Property
object.Name [= newname]

Arguments: VBScript File Object Name Property
object

The name of a File object. Required.

newname

If provided, newname is the new name of the specified object. Optional.

Remarks: VBScript File Object Name Property
The following code illustrates the use of the Name property:

Sub ShowFileAccessInfo(filespec)

Dim fs, f, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFile(filespec)

s = f.Name & " on Drive " & UCase(f.Drive) & vbCrLf

s = s & "Created: " & f.DateCreated & vbCrLf

s = s & "Last Accessed: " & f.DateLastAccessed & vbCrLf

s = s & "Last Modified: " & f.DateLastModified

Response.Write s, 0, "File Access Info"

End Sub

 VBScript File Object OpenAsTextStream Method
Opens a specified file and returns a TextStream object that can be used to read from, write to, or
append to the file.

Syntax: VBScript File Object OpenAsTextStream Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 867

object.OpenAsTextStream([iomode, [format]])

Arguments: VBScript File Object OpenAsTextStream Method
object

The name of a File object. Required.

iomode

Indicates input/output mode. Can be one of three constants: ForReading, ForWriting, or
ForAppending. Optional.

format

One of three Tristate values used to indicate the format of the opened file. If omitted, the file is
opened as ASCII. Optional.

Settings: VBScript File Object OpenAsTextStream Method
The iomode arguments can have any of the following settings:

Constant Value Description

ForReading 1 Open a file for reading only. You can't
write to this file.

ForWriting 2 Open a file for writing. If a file with the
same name exists, its previous contents are
overwritten.

ForAppending 8 Open a file and write to the end of the file.

The format argument can have any of the following settings:

Constant Value Description

TristateUseDefault -2 Opens the file using the system default.

TristateTrue -1 Opens the file as Unicode.

TristateFalse 0 Opens the file as ASCII.

Remarks: VBScript File Object OpenAsTextStream Method
The OpenAsTextStream method provides the same functionality as the OpenTextFile method
of the FileSystemObject. In addition, the OpenAsTextStream method can be used to write to a
file.

The following code illustrates the use of the OpenAsTextStream method:

Sub TextStreamTest

Const ForReading = 1, ForWriting = 2, ForAppending = 3

Const TristateUseDefault = -2, TristateTrue = -1, TristateFalse = 0

Dim fs, f, ts, s

Set fs = CreateObject("Scripting.FileSystemObject")

Sun Chili!Soft ASP 3.6.2 Product Documentation 868

fs.CreateTextFile "test1.txt"

'Create a file

Set f = fs.GetFile("test1.txt")

Set ts = f.OpenAsTextStream(ForWriting, TristateUseDefault)

ts.Write "Hello World"

ts.Close

Set ts = f.OpenAsTextStream(ForReading, TristateUseDefault)

s = ts.ReadLine

Response.Write s

ts.Close

End Sub

 VBScript File Object ParentFolder Property
Returns the folder object for the parent of the specified file. Read-only.

Syntax: VBScript File Object ParentFolder Property
object.ParentFolder

Arguments: VBScript File Object ParentFolder Property
object

A File object.

Remarks: VBScript File Object ParentFolder Property
The following code illustrates the use of the ParentFolder property with a file:

Sub ShowFileAccessInfo(filespec)

Dim fs, f, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFile(filespec)

s = UCase(f.Name) & " in " & UCase(f.ParentFolder) & vbCrLf

s = s & "Created: " & f.DateCreated & vbCrLf

s = s & "Last Accessed: " & f.DateLastAccessed & vbCrLf

s = s & "Last Modified: " & f.DateLastModified

Response.Write s, 0, "File Access Info"

End Sub

Sun Chili!Soft ASP 3.6.2 Product Documentation 869

 VBScript File Object Path Property
Returns the path for a specified file.

Syntax: VBScript File Object Path Property
object.Path

Arguments: VBScript File Object Path Property
object

A File object.

Remarks: VBScript File Object Path Property
The following code illustrates the use of the Path property with a File object:

Sub ShowFileAccessInfo(filespec)

Dim fs, d, f, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFile(filespec)

s = UCase(f.Path) & vbCrLf

s = s & "Created: " & f.DateCreated & vbCrLf

s = s & "Last Accessed: " & f.DateLastAccessed & vbCrLf

s = s & "Last Modified: " & f.DateLastModified

Response.Write s, 0, "File Access Info"

End Sub

 VBScript File Object ShortName Property
Returns the short name used by programs that require the earlier 8.3 naming convention. This
property is not currently supported on UNIX.

Syntax: VBScript File Object ShortName Property
object.ShortName

Arguments: VBScript File Object ShortName Property
object

A File object.

Remarks: VBScript File Object ShortName Property
The following code illustrates the use of the ShortName property with a File object:

Sub ShowShortName(filespec)

Dim fs, f, s

Sun Chili!Soft ASP 3.6.2 Product Documentation 870

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFile(filespec)

s = "The short name for " & "" & UCase(f.Name)

s = s & "" & vbCrLf

s = s & "is: " & "" & f.ShortName & ""

Response.Write s, 0, "Short Name Info"

End Sub

 VBScript File Object ShortPath Property
Returns the short path used by programs that require the earlier 8.3 file naming convention. This
property is not currently supported on UNIX.

Syntax: VBScript File Object ShortPath Property
object.ShortPath

Arguments: VBScript File Object ShortPath Property
object

A File object.

Remarks: VBScript File Object ShortPath Property
The following code illustrates the use of the ShortPath property with a File object:

Sub ShowShortPath(filespec)

Dim fs, f, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFile(filespec)

s = "The short path for " & "" & UCase(f.Name)

s = s & "" & vbCrLf

s = s & "is: " & "" & f.ShortPath & ""

Response.Write s, 0, "Short Path Info"

End Sub

 VBScript File Object Size Property
For files, returns the size, in bytes, of the specified file.

Syntax: VBScript File Object Size Property
object.Size

Sun Chili!Soft ASP 3.6.2 Product Documentation 871

Arguments: VBScript File Object Size Property
object

A File object.

 VBScript File Object Type Property
Returns information about the type of a file or folder. For example, for files ending in .TXT,
"Text Document" is returned. This property is not currently supported on UNIX.

Syntax: VBScript File Object Type Property
object.Type

Arguments: VBScript File Object Type Property
object

A File object.

VBScript FileSystemObject Object

 VBScript FileSystemObject Object
The VBScript FileSystemObject object provides access to a computer’s file system.

Methods: VBScript FileSystemObject Object
VBScript FileSystemObject Object BuildPath
Method

Appends a name to an existing path.

VBScript FileSystemObject Object CopyFile
Method

Copies one or more files from one location to
another.

VBScript FileSystemObject Object CopyFolder
Method

Recursively copies a folder from one location to
another.

VBScript FileSystemObject Object CreateFolder
Method

Creates a folder.

VBScript FileSystemObject Object CreateTextFile
Method

Creates a specified file name and returns a
TextStream object.

VBScript FileSystemObject Object DeleteFile
Method

Deletes one or more files.

VBScript FileSystemObject Object DeleteFolder
Method

Deletes a folder and its contents.

VBScript FileSystemObject Object DriveExists
Method

Indicates the existence of a drive.

VBScript FileSystemObject Object FileExists Indicates the existence of a file.

Sun Chili!Soft ASP 3.6.2 Product Documentation 872

Method

VBScript FileSystemObject Object FolderExists
Method

Indicates the existence of a folder.

VBScript FileSystemObject Object
GetAbsolutepathname Method

Returns a complete and unambiguous path from a
provided path specification.

VBScript FileSystemObject Object GetBaseName
Method

Returns the base name of a path.

VBScript FileSystemObject Object GetDrive
Method

Returns a Drive object corresponding to the drive
in a path. This method is not currently supported
on UNIX.

VBScript FileSystemObject Object GetDriveName
Method

Returns a string containing the name of the drive
for a path.

VBScript FileSystemObject Object
GetExtensionName Method

Returns a string containing the extension for the
last component in a path.

VBScript FileSystemObject Object GetFile Method Returns a File object corresponding to the file in a
path.

VBScript FileSystemObject Object GetFileName
Method

Returns the last component of a path that is not part
of the drive specification.

VBScript FileSystemObject Object GetFolder
Method

Returns a Folder object corresponding to the folder
in a specified path.

VBScript FileSystemObject Object
GetParentFolderName Method

Returns a string containing the name of the parent
folder of the last component in a path.

VBScript FileSystemObject Object
GetSpecialFolder Method

Returns the special folder requested.

VBScript FileSystemObject Object GetTempName
Method

Returns a randomly generated temporary file or
folder name.

VBScript FileSystemObject Object MoveFile
Method

Moves one or more files from one location to
another.

VBScript FileSystemObject Object MoveFolder
Method

Moves one or more folders from one location to
another.

VBScript FileSystemObject Object OpenTextFile
Method

Opens a file and returns a TextStream object.

Note
Collections returned by FileSystemObject method calls reflect the state of the file
system when the collection was created. Changes to the file system after creation are not
reflected in the collection. If the file system might be changed during the lifetime of the
collection object, the method returning the collection should be called again to ensure that
the contents are current.

Sun Chili!Soft ASP 3.6.2 Product Documentation 873

Properties: FileSystemObject Object
VBScript FileSystemObject Object Drives Property A Drives collection of all Drive objects available

on the local machine.

Syntax: FileSystemObject Object
Scripting.FileSystemObject

Remarks: FileSystemObject Object
The following code illustrates how FileSystemObject is used to return a TextStream object that
can be read from or written to:

Set fs = CreateObject("Scripting.FileSystemObject")

Set a = fs.CreateTextFile("c:\testfile.txt", True)

a.WriteLine("This is a test.")

a.Close

In the code shown above, the CreateObject function returns the FileSystemObject (fs). The
CreateTextFile method then creates the file as a TextStream object (a) and the VBScript
TextStream Object WriteLine Method writes a line of text to the created text file. The VBScript
TextStream Object Close Method flushes the buffer and closes the file.

 VBScript FileSystemObject Object BuildPath Method
Appends a name to an existing path.

Syntax: VBScript FileSystemObject Object BuildPath Method
object.BuildPath(path, name)

Arguments: VBScript FileSystemObject Object BuildPath Method
object

Always the name of a FileSystemObject. Required.

path

The existing path to which name is appended. Path can be absolute or relative and need not
specify an existing folder. Required.

name

The name being appended to the existing path. Required.

Remarks: VBScript FileSystemObject Object BuildPath Method
The BuildPath method inserts an additional path separator between the existing path and the
name if necessary.

 VBScript FileSystemObject Object CopyFile Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 874

Copies one or more files from one location to another.

Syntax: VBScript FileSystemObject Object CopyFile Method
object.CopyFile source, destination[, overwrite]

Arguments: VBScript FileSystemObject Object CopyFile Method
object

The name of a FileSystemObject. Required.

source

The character string file specification, which can include wildcard characters, for one or more
files to be copied. Required.

destination

The character string destination where the file or files from source are to be copied. Wildcard
characters are not allowed. Required.

overwrite

A Boolean value that indicates if existing files are to be overwritten. If True, files are
overwritten; if False, they are not. The default is True.

Note
CopyFile will fail if destination has the read-only attribute set, regardless of the value of
overwrite. Optional.

Remarks: VBScript FileSystemObject Object CopyFile Method
Wildcard characters can only be used in the last path component of the source argument. For
example, you can use:

FileSystemObject.CopyFile "c:\mydocuments\letters*.doc",
"c:\tempfolder\"

FileSystemObject.CopyFile "/home/letters/*.doc", "/var/tmp/"

But you can't use:

FileSystemObject.CopyFile "c:\mydocuments*\R1???97.xls",
"c:\tempfolder"

If source contains wildcard characters or destination ends with a path separator (\), it is assumed
that destination is an existing folder in which to copy matching files. Otherwise, destination is
assumed to be the name of a file to create. In either case, three things can happen when an
individual file is copied:

� If destination does not exist, source gets copied. This is the usual case.

� If destination is an existing file, an error occurs if overwrite is False. Otherwise, an
attempt is made to copy source over the existing file.

Sun Chili!Soft ASP 3.6.2 Product Documentation 875

� If destination is a directory, an error occurs.

An error also occurs if a source using wildcard characters doesn't match any files. The CopyFile
method stops on the first error it encounters. No attempt is made to roll back or undo any changes
made before an error occurs.

On UNIX systems symlinks are copied and a new symlink is created in the destination.

 VBScript FileSystemObject Object CopyFolder Method
Recursively copies a folder from one location to another.

Syntax: VBScript FileSystemObject Object CopyFolder Method
object.CopyFolder source, destination[, overwrite]

Arguments: VBScript FileSystemObject Object CopyFolder Method
object

The name of a FileSystemObject. Required.

source

The character string folder specification, which can include wildcard characters, for one or more
folders to be copied. Required.

destination

The character string destination where the folder and subfolders from source are to be copied.
Wildcard characters are not allowed. Required.

overwrite

A Boolean value that indicates if existing folders are to be overwritten. If True, files are
overwritten; if False, they are not. The default is True. Optional.

Remarks: VBScript FileSystemObject Object CopyFolder Method
Wildcard characters can only be used in the last path component of the source argument. For
example, you can use:

FileSystemObject.CopyFolder "c:\mydocuments\letters*",
"c:\tempfolder\"

But you can't use:

FileSystemObject.CopyFolder "c:\mydocuments**", "c:\tempfolder\"

If source contains wildcard characters or destination ends with a path separator (\), it is assumed
that destination is an existing folder in which to copy matching folders and subfolders. Otherwise,
destination is assumed to be the name of a folder to create. In either case, four things can happen
when an individual folder is copied:

If destination does not exist, the source folder and all its contents gets copied. This is the usual
case.

Sun Chili!Soft ASP 3.6.2 Product Documentation 876

� If destination is an existing file, an error occurs.

� If destination is a directory, an attempt is made to copy the folder and all its contents. If a
file contained in source already exists in destination, an error occurs if overwrite is False.
Otherwise, it will attempt to copy the file over the existing file.

� If destination is a read-only directory, an error occurs if an attempt is made to copy an
existing read-only file into that directory and overwrite is False.

� An error also occurs if a source using wildcard characters doesn't match any folders.

The CopyFolder method stops on the first error it encounters. No attempt is made to roll back
any changes made before an error occurs.

On UNIX systems, symlinks are copied and a new symlink is created in the destination.

 VBScript FileSystemObject Object CreateFolder Method
Creates a folder.

Syntax: VBScript FileSystemObject Object CreateFolder Method
object.CreateFolder(foldername)

Arguments: VBScript FileSystemObject Object CreateFolder Method
object

The name of a FileSystemObject. Required.

foldername

A string expression that identifies the folder to create. Required.

Remarks: VBScript FileSystemObject Object CreateFolder Method
An error occurs if the specified folder already exists.

 VBScript FileSystemObject Object CreateTextFile Method
Creates a specified file name and returns a TextStream object that can be used to read from or
write to the file.

Syntax: VBScript FileSystemObject Object CreateTextFile Method
object.CreateTextFile(filename[, overwrite[, unicode]])

Arguments: VBScript FileSystemObject Object CreateTextFile Method
object

The name of a FileSystemObject or Folder object. Required.

filename

A string expression that identifies the file to create. Required.

Sun Chili!Soft ASP 3.6.2 Product Documentation 877

overwrite

A Boolean value that indicates if an existing file can be overwritten. The value is True if the file
can be overwritten; False if it can't be overwritten. If omitted, existing files are not overwritten.
Optional.

unicode

A Boolean value that indicates whether the file is created as a Unicode or ASCII file. The value is
True if the file is created as a Unicode file; False if it's created as an ASCII file. If omitted, an
ASCII file is assumed. Optional.

Remarks: VBScript FileSystemObject Object CreateTextFile Method
The following code illustrates how to use the CreateTextFile method to create and open a text
file:

Sub CreateAfile

Set fs = CreateObject("Scripting.FileSystemObject")

Set a = fs.CreateTextFile("c:\testfile.txt", True)

a.WriteLine("This is a test.")

a.Close

End Sub

If the overwrite argument is False, or is not provided, for a filename that already exists, an error
occurs.

 VBScript FileSystemObject Object DeleteFile Method
Deletes a specified file.

Syntax: VBScript FileSystemObject Object DeleteFile Method
object.DeleteFile filespec[, force]

Arguments: VBScript FileSystemObject Object DeleteFile Method
object

The name of a FileSystemObject. Required.

filespec

The name of the file to delete. The filespec can contain wildcard characters in the last path
component. Required.

force

A Boolean value that is True if files with the read-only attribute set are to be deleted; False
(default) if they are not. Optional.

Remarks: VBScript FileSystemObject Object DeleteFile Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 878

An error occurs if no matching files are found. The DeleteFile method stops on the first error it
encounters. No attempt is made to roll back or undo any changes that were made before an error
occurred.

 VBScript FileSystemObject Object DeleteFolder Method
Deletes a specified folder and its contents.

Syntax: VBScript FileSystemObject Object DeleteFolder Method
object.DeleteFolder folderspec[, force]

Arguments: VBScript FileSystemObject Object DeleteFolder Method
object

The name of a FileSystemObject. Required.

folderspec

The name of the folder to delete. The folderspec can contain wildcard characters in the last path
component. Required.

force

A Boolean value that is True if folders with the read-only attribute set are to be deleted; False
(default) if they are not. Optional.

Remarks: VBScript FileSystemObject Object DeleteFolder Method
The DeleteFolder method does not distinguish between folders that have contents and those that
do not. The specified folder is deleted regardless of whether or not it has contents.

An error occurs if no matching folders are found. The DeleteFolder method stops on the first
error it encounters. No attempt is made to roll back or undo any changes that were made before
an error occurred.

 VBScript FileSystemObject Object DriveExists Method
Returns True if the specified drive exists; False if it does not.

Syntax: VBScript FileSystemObject Object DriveExists Method
object.DriveExists(drivespec)

Arguments: VBScript FileSystemObject Object DriveExists Method
object

The name of a FileSystemObject. Required.

drivespec

A drive letter or a complete path specification. Required.

Remarks: VBScript FileSystemObject Object DriveExists Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 879

For drives with removable media, the DriveExists method returns True even if there are no
media present. Use the VBScript Drive Object IsReady Property of the Drive object to determine
if a drive is ready.

On UNIX systems the only valid drive name is "/".

 VBScript FileSystemObject Object Drives Property
Returns a Drives collection consisting of all Drive objects available on the local machine.

Syntax: VBScript FileSystemObject Object Drives Property
object.Drives

Arguments: VBScript FileSystemObject Object Drives Property
object

A FileSystemObject.

Remarks: VBScript FileSystemObject Object Drives Property
Removable-media drives need not have media inserted for them to appear in the Drives
collection.

Under UNIX the Drives collection contains only one member, "/".

You can iterate the members of the Drives collection using a For Each…Next construct as
illustrated in the following code:

Sub ShowDriveList

Dim fs, d, dc, s, n

Set fs = CreateObject("Scripting.FileSystemObject")

Set dc = fs.Drives

For Each d in dc

s = s & d.DriveLetter & " - "

If d.DriveType = 3 Then

n = d.ShareName

Else

n = d.VolumeName

End If

s = s & n & vbCrLf

Next

Response.Write s

End Sub

Sun Chili!Soft ASP 3.6.2 Product Documentation 880

 VBScript FileSystemObject Object FileExists Method
Returns True if a specified file exists; False if it does not.

Syntax: VBScript FileSystemObject Object FileExists Method
object.FileExists(filespec)

Arguments: VBScript FileSystemObject Object FileExists Method
object

The name of a FileSystemObject. Required.

filespec

The name of the file whose existence is to be determined. A complete path specification (either
absolute or relative) must be provided if the file isn't expected to exist in the current folder.
Required.

 VBScript FileSystemObject Object FolderExists Method
Returns True if a specified folder exists; False if it does not.

Syntax: VBScript FileSystemObject Object FolderExists Method
object.FolderExists(folderspec)

Arguments: VBScript FileSystemObject Object FolderExists Method
object

Required. Always the name of a FileSystemObject.

folderspec

Required. The name of the folder whose existence is to be determined. A complete path
specification (either absolute or relative) must be provided if the folder isn't expected to exist in
the current folder.

 VBScript FileSystemObject Object GetAbsolutepathname Method
Returns a complete and unambiguous path from a provided path specification.

Syntax: VBScript FileSystemObject Object GetAbsolutepathname Method
object.GetAbsolutepathname(pathspec)

Arguments: VBScript FileSystemObject Object GetAbsolutepathname Method
object

The name of a FileSystemObject. Required.

pathspec

Sun Chili!Soft ASP 3.6.2 Product Documentation 881

The path specification to change to a complete and unambiguous path. Required.

Remarks: VBScript FileSystemObject Object GetAbsolutepathname Method
A path is complete and unambiguous if it provides a complete reference from the root of the
specified drive. A complete path can only end with a path separator character (\) if it specifies the
root folder of a mapped drive.

Assuming the current directory is c:\mydocuments\reports, the following table illustrates the
behavior of the GetAbsolutepathname method.

pathspec Returned path

"c:" "c:\mydocuments\reports"

"c:.." "c:\mydocuments"

"c:\\\" "c:\"

"c:*.*\may97" "c:\mydocuments\reports*.*\may97"

"region1" "c:\mydocuments\reports\region1"

"c:\..\..\mydocuments" "c:\mydocuments"

 VBScript FileSystemObject Object GetBaseName Method
Returns a string containing the base name of the last component, less any file extension, in a path.

Syntax: VBScript FileSystemObject Object GetBaseName Method
object.GetBaseName(path)

Arguments: VBScript FileSystemObject Object GetBaseName Method
object

The name of a FileSystemObject. Required.

path

The path specification for the component whose base name is to be returned. Required.

Remarks: VBScript FileSystemObject Object GetBaseName Method
The GetBaseName method returns a zero-length string ("") if no component matches the path
argument.

Note
The GetBaseName method works only on the provided path string. It does not attempt to
resolve the path, nor does it check for the existence of the specified path.

 VBScript FileSystemObject Object GetDrive Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 882

Returns a Drive object corresponding to the drive in a specified path.

Syntax: VBScript FileSystemObject Object GetDrive Method
object.GetDrive drivespec

Arguments: VBScript FileSystemObject Object GetDrive Method
object

The name of a FileSystemObject. Required.

drivespec

The drivespec argument. It can be a drive letter (c), a drive letter with a colon appended (c:), a
drive letter with a colon and path separator appended (c:\), or any network share specification
(\\computer2\share1). Required.

Remarks: VBScript FileSystemObject Object GetDrive Method
For network shares, a check is made to ensure that the share exists.

An error occurs if drivespec does not conform to one of the accepted forms or does not exist.

To call the GetDrive method on a normal path string, use the following sequence to get a string
that is suitable for use as drivespec:

DriveSpec = GetDriveName(GetAbsolutepathname(Path))

On UNIX systems the GetDrive method will only return a Drive object for "/".

 VBScript FileSystemObject Object GetDriveName Method
Returns a string containing the name of the drive for a specified path.

Syntax: VBScript FileSystemObject Object GetDriveName Method
object.GetDriveName(path)

Arguments: VBScript FileSystemObject Object GetDriveName Method
object

The name of a FileSystemObject. Required.

path

The path specification for the component whose drive name is to be returned. Required.

Remarks: VBScript FileSystemObject Object GetDriveName Method
The GetDriveName method returns a zero-length string ("") if the drive can't be determined. On
UNIX systems the GetDriveName method returns "/".

Note
The GetDriveName method works only on the provided path string. It does not attempt
to resolve the path, nor does it check for the existence of the specified path.

Sun Chili!Soft ASP 3.6.2 Product Documentation 883

 VBScript FileSystemObject Object GetExtensionName Method
Returns a string containing the extension name for the last component in a path.

Syntax: VBScript FileSystemObject Object GetExtensionName Method
object.GetExtensionName(path)

Arguments: VBScript FileSystemObject Object GetExtensionName Method
object

The name of a FileSystemObject. Required.

path

The path specification for the component whose extension name is to be returned. Required.

Remarks: VBScript FileSystemObject Object GetExtensionName Method
For network drives, the root directory (\) is considered to be a component.

The GetExtensionName method returns a zero-length string ("") if no component matches the
path argument.

 VBScript FileSystemObject Object GetFile Method
Returns a File object corresponding to the file in a specified path.

Syntax: VBScript FileSystemObject Object GetFile Method
object.GetFile(filespec)

Arguments: VBScript FileSystemObject Object GetFile Method
object

The name of a FileSystemObject. Required.

filespec

The filespec is the path (absolute or relative) to a specific file. Required.

Remarks: VBScript FileSystemObject Object GetFile Method
An error occurs if the specified file does not exist.

 VBScript FileSystemObject Object GetFileName Method
Returns the last component of a specified path that is not part of the drive specification.

Syntax: VBScript FileSystemObject Object GetFileName Method
object.GetFileName(pathspec)

Arguments: VBScript FileSystemObject Object GetFileName Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 884

object

The name of a FileSystemObject. Required.

pathspec

The path (absolute or relative) to a specific file. Required.

Remarks: VBScript FileSystemObject Object GetFileName Method
The GetFileName method returns a zero-length string ("") if pathspec does not end with the
named component.

Note
The GetFileName method works only on the provided path string. It does not attempt to
resolve the path, nor does it check for the existence of the specified path.

 VBScript FileSystemObject Object GetFolder Method
Returns a Folder object corresponding to the folder in a specified path.

Syntax: VBScript FileSystemObject Object GetFolder Method
object.GetFolder(folderspec)

Arguments: VBScript FileSystemObject Object GetFolder Method
object

The name of a FileSystemObject. Required.

folderspec

The path (absolute or relative) to a specific folder. Required.

Remarks: VBScript FileSystemObject Object GetFolder Method
An error occurs if the specified folder does not exist.

 VBScript FileSystemObject Object GetParentFolderName Method
Returns a string containing the name of the parent folder of the last component in a specified
path.

Syntax: VBScript FileSystemObject Object GetParentFolderName Method
object.GetParentFolderName(path)

Arguments: VBScript FileSystemObject Object GetParentFolderName Method
object

The name of a FileSystemObject. Required.

path

Sun Chili!Soft ASP 3.6.2 Product Documentation 885

The path specification for the component whose parent folder name is to be returned. Required.

Remarks: VBScript FileSystemObject Object GetParentFolderName Method
The GetParentFolderName method returns a zero-length string ("") if there is no parent folder
for the component specified in the path argument.

Note
The GetParentFolderName method works only on the provided path string. It does not
attempt to resolve the path, nor does it check for the existence of the specified path.

 VBScript FileSystemObject Object GetSpecialFolder Method
Returns the special folder specified.

Syntax: VBScript FileSystemObject Object GetSpecialFolder Method
object.GetSpecialFolder(folderspec)

Arguments: VBScript FileSystemObject Object GetSpecialFolder Method
object

The name of a FileSystemObject. Required.

folderspec

The name of the special folder to be returned. Can be any of the constants shown in the Settings
section. Required.

Settings: VBScript FileSystemObject Object GetSpecialFolder Method
The folderspec argument can have any of the following values:

Constant Value Description

WindowsFolder 0 The Windows folder contains files installed
by the Windows operating system. Not
supported on Unix.

SystemFolder 1 The System folder contains libraries, fonts,
and device drivers. Not supported on Unix.

TemporaryFolder 2 The Temp folder is used to store temporary
files. Its path is found in the TMP
environment variable.

 VBScript FileSystemObject Object GetTempName Method
Returns a randomly generated temporary file or folder name that is useful for performing
operations that require a temporary file or folder.

Sun Chili!Soft ASP 3.6.2 Product Documentation 886

Syntax: VBScript FileSystemObject Object GetTempName Method
object.GetTempName

Arguments: VBScript FileSystemObject Object GetTempName Method
object

An optional argument that is always the name of a FileSystemObject.

Remarks: VBScript FileSystemObject Object GetTempName Method
The GetTempName method does not create a file. It provides only a temporary file name that
can be used with the CreateTextFile method to create a file.

 VBScript FileSystemObject Object MoveFile Method
Moves one or more files from one location to another.

Syntax: VBScript FileSystemObject Object MoveFile Method
object.MoveFile source, destination

Arguments: VBScript FileSystemObject Object MoveFile Method
object

The name of a FileSystemObject. Required.

source

The path to the file or files to be moved. The source argument string can contain wildcard
characters in the last path component only. Required.

destination

The path where the file or files are to be moved. The destination argument can't contain wildcard
characters. Required.

Remarks: VBScript FileSystemObject Object MoveFile Method
If source contains wildcards or destination ends with a path separator (\), it is assumed that
destination specifies an existing folder in which to move the matching files. Otherwise,
destination is assumed to be the name of a destination file to create. In either case, three things
can happen when an individual file is moved:

� If destination does not exist, the file is moved. This is the usual case.

� If destination is an existing file, an error occurs.

� If destination is a directory, an error occurs.

An error also occurs if a wildcard character that is used in source doesn't match any files. The
MoveFile method stops on the first error it encounters. No attempt is made to roll back any
changes made before the error occurs.

On UNIX systems, symlinks are copied and a new symlink is created in the destination.

Sun Chili!Soft ASP 3.6.2 Product Documentation 887

Note
This method allows moving files between volumes only if supported by the operating
system.

 VBScript FileSystemObject Object MoveFolder Method
Moves one or more folders from one location to another.

Syntax: VBScript FileSystemObject Object MoveFolder Method
object.MoveFolder source, destination

Arguments: VBScript FileSystemObject Object MoveFolder Method
object

Always the name of a FileSystemObject. Required.

source

The path to the folder or folders to be moved. The source arguments string can contain wildcard
characters in the last path component only. Required.

destination

The path where the folder or folders are to be moved. The destination arguments can't contain
wildcard characters. Required.

Remarks: VBScript FileSystemObject Object MoveFolder Method
If source contains wildcards or destination ends with a path separator (\), it is assumed that
destination specifies an existing folder in which to move the matching files. Otherwise,
destination is assumed to be the name of a destination folder to create. In either case, three things
can happen when an individual folder is moved:

� If destination does not exist, the folder gets moved. This is the usual case.

� If destination is an existing file, an error occurs.

� If destination is a directory, an error occurs.

An error also occurs if a wildcard character that is used in source doesn't match any folders. The
MoveFolder method stops on the first error it encounters. No attempt is made to roll back any
changes made before the error occurs.

On UNIX systems, symlinks are copied and a new symlink is created in the destination.

Note
This method allows moving folders between volumes only if supported by the operating
system.

 VBScript FileSystemObject Object OpenTextFile Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 888

Opens a specified file and returns a TextStream object that can be used to read from or append to
the file.

Syntax: VBScript FileSystemObject Object OpenTextFile Method
object.OpenTextFile(filename[, iomode[, create[, format]]])

Arguments: VBScript FileSystemObject Object OpenTextFile Method
object

The name of a FileSystemObject. Required.

filename

A string expression that identifies the file to open. Required.

iomode

Indicates input/output mode. Can be one of three constants: ForReading, ForWriting, or
ForAppending. Optional.

create

A Boolean value that indicates whether a new file can be created if the specified filename doesn't
exist. The value is True if a new file is created; False if it isn't created. The default is False.
Optional.

format

One of three Tristate values used to indicate the format of the opened file. If omitted, the file is
opened as ASCII. Optional.

Settings: VBScript FileSystemObject Object OpenTextFile Method
The iomode arguments can have any of the following settings:

Constant Value Description

ForReading 1 Open a file for reading only. You can't
write to this file.

ForWriting 2 Open a file for writing. If a file with the
same name exists, its previous contents are
overwritten.

ForAppending 8 Open a file and write to the end of the file.

The format argument can have any of the following settings:

Constant Value Description

TristateUseDefault -2 Opens the file using the system default.

TristateTrue -1 Opens the file as Unicode.

TristateFalse 0 Opens the file as ASCII.

Remarks: VBScript FileSystemObject Object OpenTextFile Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 889

The following code illustrates the use of the OpenTextFile method to open a file for appending
text:

Sub OpenTextFileTest

Const ForReading = 1, ForWriting = 2, ForAppending = 3

Dim fs, f

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.OpenTextFile("c:\testfile.txt",
ForAppending,TristateFalse)

f.Write "Hello world!"

f.Close

End Sub

VBScript Folder Object

 VBScript Folder Object
The VBScript Folder object provides access to all the properties of a folder.

Methods: VBScript Folder Object
VBScript Folder Object Copy Method Copies a folder from one location to another.

VBScript Folder Object Delete Method Deletes a folder.

VBScript Folder Object Move Method Moves a folder from one location to another.

VBScript Folder Object CreateTextFile
Method

Creates a file and returns a TextStream object.

Property: VBScript Folder Object
VBScript Folder Object Attributes Property The attributes of a folder.

VBScript Folder Object DateCreated Property The date and time a folder was created.

VBScript Folder Object DateLastAccessed
Property

The date and time that the folder was last
accessed.

VBScript Folder Object DateLastModified
Property

The date and time that the folder was last
modified.

VBScript Folder Object Drive Property The drive letter of the drive on which the folder
resides.

VBScript Folder Object Files Property A Files collection of all File objects in the
folder.

VBScript Folder Object IsRootFolder Property True if this is the root folder of a drive.

Sun Chili!Soft ASP 3.6.2 Product Documentation 890

VBScript Folder Object Name Property The name of the folder.

VBScript Folder Object ParentFolder Property The Folder object for the parent of the folder.

VBScript Folder Object Path Property The file system path to the folder.

VBScript Folder Object ShortName Property The short name used by programs that require
8.3 names. This property is not currently
supported on UNIX.

VBScript Folder Object ShortPath Property The short path used by programs that require 8.3
names. This property is not currently supported
on UNIX.

VBScript Folder Object Size Property The size, in bytes, of all files and subfolders
contained in a folder.

VBScript Folder Object SubFolders Property A Folders collection containing all the folders
in a Folder object.

Remarks: VBScript Folder Object
The following code illustrates how to obtain a Folder object and how to return one of its
properties:

Sub ShowFolderInfo(folderspec)

Dim fs, f, s,

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFolder(folderspec)

s = f.DateCreated

Response.Write s

End Sub

 VBScript Folder Object Attributes Property
Sets or returns the attributes of folders. Read/write or read-only, depending on the attribute.

Note
This property depends on the underlying operating system for its behavior. If the OS file
system does not support the folder attribute requested, an error will be returned.

Syntax: VBScript Folder Object Attributes Property
object.Attributes [= newattributes]

Arguments: VBScript Folder Object Attributes Property
object

The name of a Folder object. Required.

Sun Chili!Soft ASP 3.6.2 Product Documentation 891

newattributes

The new value for the attributes of the specified object. Optional.

Settings: VBScript Folder Object Attributes Property
The newattributes argument can have any of the following values or any logical combination of
the following values:

Constant Value Description

Normal 0 Normal file. No attributes are set.

ReadOnly 1 Read-only file. Attribute is read/write.

Hidden 2 Hidden file. Attribute is read/write.

System 4 System file. Attribute is read/write.

Volume 8 Disk drive volume label. Attribute is read-only.

Directory 16 Folder or directory. Attribute is read-only.

Archive 32 File has changed since last backup. Attribute is
read/write.

Alias 64 Link or shortcut. Attribute is read-only.

Compressed 128 Compressed file. Attribute is read-only.

 VBScript Folder Object Copy Method
Copies a specified folder from one location to another.

Syntax: VBScript Folder Object Copy Method
object.Copy destination[, overwrite]

Arguments: VBScript Folder Object Copy Method
object

The name of a Folder object. Required.

destination

The destination where the folder is to be copied. Wildcard characters are not allowed. Required.

overwrite

A Boolean value that is True (default) if existing folders are to be overwritten; False if they are
not. Optional.

Remarks: VBScript Folder Object Copy Method

Sun Chili!Soft ASP 3.6.2 Product Documentation 892

The results of the Copy method on a Folder object are identical to operations performed using
CopyFolder where the file or folder referred to by object is passed as an argument. You should
note, however, that the alternative method is capable of copying multiple files or folders.

 VBScript Folder Object CreateTextFile Method
Creates a specified file name and returns a TextStream object that can be used to read from or
write to the file.

Syntax: VBScript Folder Object CreateTextFile Method
object.CreateTextFile(filename[, overwrite[, unicode]])

Arguments: VBScript Folder Object CreateTextFile Method
object

The name of a Folder object. Required.

filename

A string expression that identifies the file to create. Required.

overwrite

A Boolean value that indicates if an existing file can be overwritten. The value is True if the file
can be overwritten; False if it can't be overwritten. If omitted, existing files are not overwritten.
Optional.

unicode

A Boolean value that indicates whether the file is created as a Unicode or ASCII file. The value is
True if the file is created as a Unicode file; False if it's created as an ASCII file. If omitted, an
ASCII file is assumed. Optional.

Remarks: VBScript Folder Object CreateTextFile Method
The following code illustrates how to use the CreateTextFile method to create and open a text
file:

Sub CreateAfile

Set fd = CreateObject("Scripting.Folder")

Set a = fd.CreateTextFile("c:\testfile.txt", True)

a.WriteLine("This is a test.")

a.Close

End Sub

If the overwrite argument is False, or is not provided for a filename that already exists, an error
occurs.

 VBScript Folder Object DateCreated Property

Sun Chili!Soft ASP 3.6.2 Product Documentation 893

Returns the date and time that the specified folder was created. Read-only.

Syntax: VBScript Folder Object DateCreated Property
object.DateCreated

Arguments: VBScript Folder Object DateCreated Property
object

A Folder object.

Remarks: VBScript Folder Object DateCreated Property
The following code illustrates the use of the DateCreated property with a folder:

Sub ShowFileInfo(filespec)

Dim fs, f, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFolder(filespec)

s = "Created: " & f.DateCreated

Response.Write s

End Sub

 VBScript Folder Object DateLastAccessed Property
Returns the date and time that the specified folder was last accessed. Read-only.

Syntax: VBScript Folder Object DateLastAccessed Property
object.DateLastAccessed

Arguments: VBScript Folder Object DateLastAccessed Property
object

A Folder object.

Remarks: VBScript Folder Object DateLastAccessed Property
The following code illustrates the use of the DateLastAccessed property with a folder:

Sub ShowFileAccessInfo(filespec)

Dim fs, f, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFolder(filespec)

s = UCase(filespec) & vbCrLf

s = s & "Created: " & f.DateCreated & vbCrLf

Sun Chili!Soft ASP 3.6.2 Product Documentation 894

s = s & "Last Accessed: " & f.DateLastAccessed & vbCrLf

s = s & "Last Modified: " & f.DateLastModified

Response.Write s, 0, "Folder Access Info"

End Sub

Note
This method depends on the underlying operating system for its behavior. If the operating
system does not support providing time information, none will be returned.

 VBScript Folder Object DateLastModified Property
Returns the date and time that the specified folder was last modified. Read-only.

Syntax: VBScript Folder Object DateLastModified Property
object.DateLastModified

Arguments: VBScript Folder Object DateLastModified Property
object

A Folder object.

Remarks: VBScript Folder Object DateLastModified Property
The following code illustrates the use of the DateLastModified property with a folder:

Sub ShowFileAccessInfo(filespec)

Dim fs, f, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFolder(filespec)

s = UCase(filespec) & vbCrLf

s = s & "Created: " & f.DateCreated & vbCrLf

s = s & "Last Accessed: " & f.DateLastAccessed & vbCrLf

s = s & "Last Modified: " & f.DateLastModified

Response.Write s, 0, "Folder Access Info"

End Sub

 VBScript Folder Object Delete Method
Deletes a specified folder.

Syntax: VBScript Folder Object Delete Method
object.Delete force

Sun Chili!Soft ASP 3.6.2 Product Documentation 895

Arguments: VBScript Folder Object Delete Method
object

The name of a Folder object. Required.

force

A Boolean value that is True if folders with the read-only attribute set are to be deleted; False
(default) if they are not. Optional.

Remarks: VBScript Folder Object Delete Method
An error occurs if the specified folder does not exist.

The results of the Delete method on a Folder are identical to operations performed using
DeleteFolder.

The Delete method does not distinguish between folders that have contents and those that do not.
The specified folder is deleted regardless of whether or not it has contents.

 VBScript Folder Object Drive Property
Returns the drive letter of the drive on which the specified folder resides. Read-only.

Syntax: VBScript Folder Object Drive Property
object.Drive

Arguments: VBScript Folder Object Drive Property
object

A Folder object.

Remarks: VBScript Folder Object Drive Property
The following code illustrates the use of the Drive property:

Sub ShowFileAccessInfo(filespec)

Dim fs, f, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFolder(filespec)

s = f.Name & " on Drive " & UCase(f.Drive) & vbCrLf

s = s & "Created: " & f.DateCreated & vbCrLf

s = s & "Last Accessed: " & f.DateLastAccessed & vbCrLf

s = s & "Last Modified: " & f.DateLastModified

Response.Write s, 0, "Folder Access Info"

End Sub

Under UNIX, the Drive property is always "/".

Sun Chili!Soft ASP 3.6.2 Product Documentation 896

 VBScript Folder Object Files Property
Returns a VBScript Files Collection consisting of all File objects contained in the specified
folder, including those with hidden and system file attributes set.

Syntax: VBScript Folder Object Files Property
object.Files

Arguments: VBScript Folder Object Files Property
object

A Folder object.

Remarks: VBScript Folder Object Files Property
The following code illustrates the use of the Files property:

Sub ShowFileList(folderspec)

Dim fs, f, f1, fc, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFolder(folderspec)

Set fc = f.Files

For Each f1 in fc

s = s & f1.name

s = s & vbCrLf

Next

Response.Write s

End Sub

 VBScript Folder Object IsRootFolder Property
Returns True if the specified folder is the root folder; False if it is not.

Syntax: VBScript Folder Object IsRootFolder Property
object.IsRootFolder

Arguments: VBScript Folder Object IsRootFolder Property
object

A Folder object.

Remarks: VBScript Folder Object IsRootFolder Property
The following code illustrates the use of the IsRootFolder property:

Sun Chili!Soft ASP 3.6.2 Product Documentation 897

Dim fs

Set fs = CreateObject("Scripting.FileSystemObject")

Sub DisplayLevelDepth(pathspec)

Dim f, n

Set f = fs.GetFolder(pathspec)

If f.IsRootFolder Then

MsgBox "The specified folder is the root folder."

Else

Do Until f.IsRootFolder

Set f = f.ParentFolder

n = n + 1

Loop

MsgBox "The specified folder is nested " & n & " levels deep."

End If

End Sub

 VBScript Folder Object Move Method
Moves a specified folder from one location to another.

Syntax: VBScript Folder Object Move Method
object.Move destination

Arguments: VBScript Folder Object Move Method
object

Required. Always the name of a Folder object.

destination

Required. Destination where the folder is to be moved. Wildcard characters are not allowed.

Remarks: VBScript Folder Object Move Method
The results of the Move method on a Folder are identical to operations performed using
MoveFolder. You should note, however, that the alternative method is capable of moving
multiple files or folders.

 VBScript Folder Object Name Property
Sets or returns the name of a specified folder. Read/write.

Sun Chili!Soft ASP 3.6.2 Product Documentation 898

Syntax: VBScript Folder Object Name Property
object.Name [= newname]

Arguments: VBScript Folder Object Name Property
object

The name of a Folder object. Required.

newname

If provided, newname is the new name of the specified object. Optional.

Remarks: VBScript Folder Object Name Property
The following code illustrates the use of the Name property:

Sub ShowFileAccessInfo(filespec)

Dim fs, f, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFolder(filespec)

s = f.Name & " on Drive " & UCase(f.Drive) & vbCrLf

s = s & "Created: " & f.DateCreated & vbCrLf

s = s & "Last Accessed: " & f.DateLastAccessed & vbCrLf

s = s & "Last Modified: " & f.DateLastModified

Response.Write s, 0, "Folder Access Info"

End Sub

 VBScript Folder Object ParentFolder Property
Returns the folder object for the parent of the specified folder. Read-only.

Syntax: VBScript Folder Object ParentFolder Property
object.ParentFolder

Arguments: VBScript Folder Object ParentFolder Property
object

A Folder object.

Remarks: VBScript Folder Object ParentFolder Property
The following code illustrates the use of the ParentFolder property with a folder:

Sub ShowFileAccessInfo(filespec)

Dim fs, f, s

Set fs = CreateObject("Scripting.FileSystemObject")

Sun Chili!Soft ASP 3.6.2 Product Documentation 899

Set f = fs.GetFolder(filespec)

s = UCase(f.Name) & " in " & UCase(f.ParentFolder) & vbCrLf

s = s & "Created: " & f.DateCreated & vbCrLf

s = s & "Last Accessed: " & f.DateLastAccessed & vbCrLf

s = s & "Last Modified: " & f.DateLastModified

Response.Write s, 0, "Folder Access Info"

End Sub

 VBScript Folder Object Path Property
Returns the path for a specified folder.

Syntax: VBScript Folder Object Path Property
object.Path

Arguments: VBScript Folder Object Path Property
object

A Folder object.

Remarks: VBScript Folder Object Path Property
The following code illustrates the use of the Path property with a Folder object:

Sub ShowFileAccessInfo(filespec)

Dim fs, d, f, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFolder(filespec)

s = UCase(f.Path) & vbCrLf

s = s & "Created: " & f.DateCreated & vbCrLf

s = s & "Last Accessed: " & f.DateLastAccessed & vbCrLf

s = s & "Last Modified: " & f.DateLastModified

Response.Write s, 0, "Folder Access Info"

End Sub

 VBScript Folder Object ShortName Property
Returns the short name used by programs that require the earlier 8.3 naming convention. This
property is not currently supported on UNIX.

Syntax: VBScript Folder Object ShortName Property

Sun Chili!Soft ASP 3.6.2 Product Documentation 900

object.ShortName

Arguments: VBScript Folder Object ShortName Property
object

A Folder object.

Remarks: VBScript Folder Object ShortName Property
The following code illustrates the use of the ShortName property with a Folder object:

Sub ShowShortName(filespec)

Dim fs, f, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFfolder(filespec)

s = "The short name for " & "" & UCase(f.Name)

s = s & "" & vbCrLf

s = s & "is: " & "" & f.ShortName & ""

Response.Write s, 0, "Short Name Info"

End Sub

 VBScript Folder Object ShortPath Property
Returns the short path used by programs that require the earlier 8.3 file naming convention. This
property is not currently supported on UNIX.

Syntax: VBScript Folder Object ShortPath Property
object.ShortPath

Arguments: VBScript Folder Object ShortPath Property
object

A Folder object.

Remarks: VBScript Folder Object ShortPath Property
The following code illustrates the use of the ShortName property with a Folder object:

Sub ShowShortPath(filespec)

Dim fs, f, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFolder(filespec)

s = "The short path for " & "" & UCase(f.Name)

s = s & "" & vbCrLf

Sun Chili!Soft ASP 3.6.2 Product Documentation 901

s = s & "is: " & "" & f.ShortPath & ""

Response.Write s, 0, "Short Path Info"

End Sub

 VBScript Folder Object Size Property
Returns the size, in bytes, of all files and subfolders contained in the folder.

Syntax: VBScript Folder Object Size Property
object.Size

Arguments: VBScript Folder Object Size Property
object

A Folder object.

Remarks: VBScript Folder Object Size Property
The following code illustrates the use of the Size property with a Folder object:

Sub ShowFolderSize(filespec)

Dim fs, f, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFolder(filespec)

s = UCase(f.Name) & " uses " & f.size & " bytes."

Response.Write s, 0, "Folder Size Info"

End Sub

 VBScript Folder Object SubFolders Property
Returns a Folders collection consisting of all folders contained in a specified folder, including
those with Hidden and System file attributes set.

Syntax: VBScript Folder Object SubFolders Property
object.SubFolders

Arguments: VBScript Folder Object SubFolders Property
object

A Folder object.

Remarks: VBScript Folder Object SubFolders Property
The following code illustrates the use of the SubFolders property:

Sub ShowFolderList(folderspec)

Sun Chili!Soft ASP 3.6.2 Product Documentation 902

Dim fs, f, f1, s, sf

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFolder(folderspec)

Set sf = f.SubFolders

For Each f1 in sf

s = s & f1.name

s = s & vbCrLf

Next

Response.Write s

End Sub

VBScript TextStream Object

 VBScript TextStream Object
The VBScript TextStream object facilitates sequential access to a file.

Methods: VBScript TextStream Object
VBScript TextStream Object Close Method Closes an open stream.

VBScript TextStream Object Read Method Reads a specified number of characters from a
stream.

VBScript TextStream Object ReadAll Method Reads an entire stream.

VBScript TextStream Object ReadLine Method Reads an entire line from a stream.

VBScript TextStream Object Skip Method Skips a specified number of characters when
reading a stream.

VBScript TextStream Object SkipLine Method Skips the next line when reading a stream.

VBScript TextStream Object Write Method Writes a specified string to a stream.

VBScript TextStream Object WriteBlankLines
Method

Writes a specified number of newline characters to
a stream.

VBScript TextStream Object WriteLine Method Writes a specified string and newline character to a
stream.

Properties: VBScript TextStream Object
VBScript TextStream Object AtEndOfLine Property True if the file pointer is before the end-of-line

marker.

VBScript TextStream Object AtEndOfStream
Property

True if the file pointer is at the end of the stream

Sun Chili!Soft ASP 3.6.2 Product Documentation 903

VBScript TextStream Object Column Property The column number of the current character in the
stream.

VBScript TextStream Object Line Property The current line number of the stream.

Syntax: VBScript TextStream Object
TextStream.{property | method}

The property and method argument can be any of the properties and methods associated with the
TextStream object.

Note
In actual usage, TextStream is replaced by a variable placeholder representing the
TextStream object returned from the FileSystemObject.

Remarks: VBScript TextStream Object
In the following code, a is the TextStream object returned by the CreateTextFile method on the
FileSystemObject:

Set fs = CreateObject("Scripting.FileSystemObject")

Set a = fs.CreateTextFile("c:\testfile.txt", True)

a.WriteLine("This is a test.")

a.Close

VBScript TextStream Object WriteLine Method and VBScript TextStream Object Close
Method are two methods of the TextStream object.

 VBScript TextStream Object AtEndOfLine Property
Read-only property that returns True if the file pointer immediately precedes the end-of-line
marker in a TextStream file; False if it is not.

Syntax: VBScript TextStream Object AtEndOfLine Property
object.AtEndOfLine

Arguments: VBScript TextStream Object AtEndOfLine Property
object

The name of a TextStream object.

Remarks: VBScript TextStream Object AtEndOfLine Property
The AtEndOfLine property applies only to TextStream files that are open for reading;
otherwise, an error occurs.

The following code illustrates the use of the AtEndOfLine property:

Dim fs, a, retstring

Sun Chili!Soft ASP 3.6.2 Product Documentation 904

Set fs = CreateObject("Scripting.FileSystemObject")

Set a = fs.OpenTextFile("c:\testfile.txt", ForReading, False)

Do While a.AtEndOfLine <> True

retstring = a.Read(1)

...

Loop

a.Close

 VBScript TextStream Object AtEndOfStream Property
Read-only property that returns True if the file pointer is at the end of a TextStream file; False if
it is not.

Syntax: VBScript TextStream Object AtEndOfStream Property
object.AtEndOfStream

Arguments: VBScript TextStream Object AtEndOfStream Property
object

The name of a TextStream object.

Remarks: VBScript TextStream Object AtEndOfStream Property
The AtEndOfStream property applies only to TextStream files that are open for reading;
otherwise, an error occurs.

The following code illustrates the use of the AtEndOfStream property:

Dim fs, a, retstring

Set fs = CreateObject("Scripting.FileSystemObject")

Set a = fs.OpenTextFile("c:\testfile.txt", ForReading, False)

Do While a.AtEndOfStream <> True

retstring = a.ReadLine

...

Loop

a.Close

 VBScript TextStream Object Close Method
Closes an open TextStream file.

Syntax: VBScript TextStream Object Close Method
object.Close

Sun Chili!Soft ASP 3.6.2 Product Documentation 905

Arguments: VBScript TextStream Object Close Method
object

The name of a TextStream object.

 VBScript TextStream Object Column Property
Read-only property that returns the column number of the current character position in a
TextStream file.

Syntax: VBScript TextStream Object Column Property
object.Column

Arguments: VBScript TextStream Object Column Property
object

The name of a TextStream object.

Remarks: VBScript TextStream Object Column Property
After a newline character has been written, but before any other character is written, Column is
equal to 1.

 VBScript TextStream Object Line Property
Read-only property that returns the current line number in a TextStream file.

Syntax: VBScript TextStream Object Line Property
object.Line

Arguments: VBScript TextStream Object Line Property
object

The name of a TextStream object.

Remarks: VBScript TextStream Object Line Property
After a file is initially opened and before anything is written, Line is equal to 1.

 VBScript TextStream Object Read Method
Reads a specified number of characters from a TextStream file and returns the resulting string.

Syntax: VBScript TextStream Object Read Method
object.Read(characters)

Arguments: VBScript TextStream Object Read Method
object

Sun Chili!Soft ASP 3.6.2 Product Documentation 906

The name of a TextStream object. Required.

characters

The number of characters you want to read from the file. Required.

 VBScript TextStream Object ReadAll Method
Reads an entire TextStream file and returns the resulting string.

Syntax: VBScript TextStream Object ReadAll Method
object.ReadAll

Arguments: VBScript TextStream Object ReadAll Method
object

The name of a TextStream object.

Remarks: VBScript TextStream Object ReadAll Method
For large files, using the ReadAll method wastes memory resources. Other techniques should be
used to input a file, such as reading a file line-by-line.

 VBScript TextStream Object ReadLine Method
Reads an entire line (up to, but not including, the newline character) from a TextStream file and
returns the resulting string.

Syntax: VBScript TextStream Object ReadLine Method
object.ReadLine

Arguments: VBScript TextStream Object ReadLine Method
object

The name of a TextStream object.

 VBScript TextStream Object Skip Method
Skips a specified number of characters when reading a TextStream file.

Syntax: VBScript TextStream Object Skip Method
object.Skip(characters)

Arguments: VBScript TextStream Object Skip Method
object

The name of a TextStream object. Required.

characters

Sun Chili!Soft ASP 3.6.2 Product Documentation 907

Number of characters to skip when reading a file. Required.

Remarks: VBScript TextStream Object Skip Method
Skipped characters are discarded.

 VBScript TextStream Object SkipLine Method
Skips the next line when reading a TextStream file.

Syntax: VBScript TextStream Object SkipLine Method
object.SkipLine

Arguments: VBScript TextStream Object SkipLine Method
object

The name of a TextStream object.

Remarks: VBScript TextStream Object SkipLine Method
Skipping a line means reading and discarding all characters in a line up to and including the next
newline character.

An error occurs if the file is not open for reading.

 VBScript TextStream Object Write Method
Writes a specified string to a TextStream file.

Syntax: VBScript TextStream Object Write Method
object.Write(string)

Arguments: VBScript TextStream Object Write Method
object

The name of a TextStream object. Required.

string

The text you want to write to the file. Required.

Remarks: VBScript TextStream Object Write Method
Specified strings are written to the file with no intervening spaces or characters between each
string. Use the VBScript TextStream Object WriteLine Method to write a newline character or a
string that ends with a newline character.

 VBScript TextStream Object WriteBlankLines Method
Writes a specified number of newline characters to a TextStream file.

Sun Chili!Soft ASP 3.6.2 Product Documentation 908

Syntax: VBScript TextStream Object WriteBlankLines Method
object.WriteBlankLines(lines)

Arguments: VBScript TextStream Object WriteBlankLines Method
object

The name of a TextStream object.

lines

The number of newline characters you want to write to the file. Required.

Remarks: VBScript TextStream Object WriteBlankLines Method
For Windows systems, WriteBlankLines uses <CR><LF> as the newline character. On UNIX
systems, WriteBlankLines uses <LF>.

 VBScript TextStream Object WriteLine Method
Writes a specified string and newline character to a TextStream file.

Syntax: VBScript TextStream Object WriteLine Method
object.WriteLine([string])

Arguments: VBScript TextStream Object WriteLine Method
object

The name of a TextStream object. Required.

string

The text you want to write to the file. If omitted, a newline character is written to the file.
Optional.

Remarks: VBScript TextStream Object WriteLine Method
For Windows systems, WriteLine uses <CR><LF> as the newline character. On UNIX systems,
WriteLine uses <LF>.

VBScript FileSystemObject Collections

 VBScript FileSystemObject Collections
VBScript Drives Collection Read-only collection of available drives.

VBScript Files Collection Collection of all File objects within a Folder object.

VBScript Folders Collection Collection of all Folder objects within a Folder
object.

Collection Methods

Sun Chili!Soft ASP 3.6.2 Product Documentation 909

VBScript Add Method Adds a new Folder object to a Folders collection.

Collection Properties
VBScript Count Property The number of items in a collection.

VBScript Item Property An item in a collection.

Note
Collections returned by FileSystemObject method calls reflect the state of the file
system when the collection was created. Changes to the file system after creation are not
reflected in the collection. If the file system might be changed during the lifetime of the
collection object, the method returning the collection should be called again to ensure that
the contents are current.

 VBScript Drives Collection
Read-only collection of all available drives.

Methods: VBScript Drives Collection
None

Properties: VBScript Drives Collection
VBScript Count Property, VBScript Item Property

Remarks: VBScript Drives Collection
Removable-media drives need not have media inserted for them to appear in the Drives
collection.

On UNIX systems the drives collection will contain only one member, the "/" drive.

The following code illustrates how to get the Drives collection and iterate the collection using the
For Each…Next statement:

Sub ShowDriveList

Dim fs, d, dc, s, n

Set fs = CreateObject("Scripting.FileSystemObject")

Set dc = fs.Drives

For Each d in dc

s = s & d.DriveLetter & " - "

If d.DriveType = Remote Then

n = d.ShareName

Else

n = d.VolumeName

Sun Chili!Soft ASP 3.6.2 Product Documentation 910

End If

s = s & n & vbCrLf

Next

Response.Write s

End Sub

 VBScript Files Collection
Collection of all File objects within a folder.

Methods: VBScript Files Collection
None

Properties: VBScript Files Collection
VBScript Count Property, VBScript Item Property

Remarks: VBScript Files Collection
The following code illustrates how to get a Files collection and iterate the collection using the
For Each…Next statement:

Sub ShowFolderList(folderspec)

Dim fs, f, f1, fc, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFolder(folderspec)

Set fc = f.Files

For Each f1 in fc

s = s & f1.name

s = s & vbCrLf

Next

Response.Write s

End Sub

 VBScript Folders Collection
Collection of all Folder objects contained within a Folder object.

Methods: VBScript Folders Collection
VBScript Add Method

Properties: VBScript Folders Collection

Sun Chili!Soft ASP 3.6.2 Product Documentation 911

VBScript Count Property, VBScript Item Property

Remarks: VBScript Folders Collection
The following code illustrates how to get a Folders collection and how to iterate the collection
using the For Each…Next statement:

Sub ShowFolderList(folderspec)

Dim fs, f, f1, fc, s

Set fs = CreateObject("Scripting.FileSystemObject")

Set f = fs.GetFolder(folderspec)

Set fc = f.SubFolders

For Each f1 in fc

s = s & f1.name

s = s & vbCrLf

Next

Response.Write s

End Sub

 VBScript Add Method
Adds a new Folder to a Folders collection.

VBScript Add Method Applies To:
VBScript Folders Collection

Syntax: VBScript Folders Add Method
object.Add folderName

Arguments: VBScript Folders Add Method
object

Always the name of a Folders collection. Required.

folderName

The name of the new Folder being added. Required.

Remarks: VBScript Folders Add Method
An error occurs if the folderName already exists.

 VBScript Count Property
Returns the number of items in a collection. Read-only.

Sun Chili!Soft ASP 3.6.2 Product Documentation 912

VBScript Count Property Applies To:
VBScript Folders Collection

Syntax: VBScript Count Property
object.Count

Arguments: VBScript Count Property
object

The name of a collection.

Remarks: VBScript Count Property
The following code illustrates use of the Count property:

Dim a, d, i 'Create some variables

Set d = CreateObject("Scripting.Dictionary")

d.Add "a", "Athens" 'Add some keys and items.

d.Add "b", "Belgrade"

d.Add "c", "Cairo"

a = d.Keys 'Get the keys

For i = 0 To d.Count -1 'Iterate the array

Print a(i) 'Print key

Next

...

 VBScript Item Property
Returns an item based on the specified key. Read/write.

Syntax: VBScript Item Property
object.Item(key) [= newitem]

Arguments: VBScript Item Property
object

The name of a collection. Required.

key

A key associated with the item being retrieved or added. Required.

Remarks: VBScript Item Property
If key is not found when attempting to return an existing item, a new key is created and its
corresponding item is left empty.

Sun Chili!Soft ASP 3.6.2 Product Documentation 913

Appendix A: Errors Reference

This appendix explains the error messages you might encounter when using Sun Chili!Soft ASP.

In this appendix:

� Sun Chili!Soft ASP Errors

� VBScript Errors

� JScript Errors

� ADO Errors

 Sun Chili!Soft ASP Errors
The following table describes Sun Chili!Soft ASP error messages:

Error
Code

Error Name Explanation

100 Out of memory Unable to allocate required memory.

101 Unexpected error The function returned "|."

102 Expecting string input The function expects a string as input.

103 Expecting numeric input The function expects a number as input.

104 Operation not allowed The operation is not allowed.

105 Index out of range An array index is out of range.

106 Type mismatch An unhandled data type was encountered.

107 Stack overflow The data being processed is over the allowed limit.

108 Create object failed An error occurred while creating object "|."

109 Member not found The member was not found.

110 Unknown name The name is unknown.

111 Unknown interface The interface is unknown.

112 Missing parameter A parameter is missing.

113 Script timed out The maximum amount of time for a script to execute
was exceeded. You can change this limit by specifying
a new value for the property Server.ScriptTimeOut or
by changing the value in the ASP administration tools.

114 Object not free threaded The application object accepts only free-threaded

Sun Chili!Soft ASP 3.6.2 Product Documentation 914

objects; object "|" is not free threaded.

115 Unexpected error A trappable error occurred in an external object. The
script cannot continue running.

116 Missing close of script
delimiter

The script block lacks the close of script tag (%>).

117 Missing close of script tag The script block lacks the close of script tag
(</SCRIPT>) or close of tag symbol (>).

118 Missing close of object tag The object block lacks the close of object tag
(</OBJECT>) or close of tag symbol (>).

119 Missing Classid or Progid
attribute

The object instance "|" requires a valid Classid or
Progid in the object tag.

120 Invalid Runat attribute The Runat attribute of the script tag or object tag can
only have the value "Server."

121 Invalid scope in object tag The object instance "|" cannot have application or
session scope. To create the object instance with
session or application scope, place the object tag in the
Global.asa file.

122 Invalid scope in object tag The object instance "|" must have application or session
scope. This applies to all objects created in a
Global.asa file.

123 Missing Id attribute The required Id attribute of the object tag is missing.

124 Missing Language
attribute

The required Language attribute of the script tag is
missing.

125 Missing close of attribute The value of the "|" attribute has no closing delimiter.

126 Include file not found The Include file "|" was not found.

127 Missing close of HTML
comment

The HTML comment or server-side include lacks the
close tag (-->).

128 Missing File or Virtual
attribute

The Include file name must be specified using either
the Missing File or Virtual attribute.

129 Unknown scripting
language

The scripting language "|" is not found on the server.

130 Invalid File attribute File attribute "|" cannot start with forward slash or
backslash.

131 Disallowed parent path The Include file "|" cannot contain ".." to indicate the
parent directory.

132 Compilation error The Active Server Page "|" could not be processed.

133 Invalid ClassID attribute The object tag has an invalid ClassID of "|."

Sun Chili!Soft ASP 3.6.2 Product Documentation 915

134 Invalid ProgID attribute The object has an invalid ProgID of "|."

135 Cyclic include The file "|" is included by itself (perhaps indirectly).
Please check Include files for other Include statements.

136 Invalid object instance
name

The object instance "|" is attempting to use a reserved
name. This name is used by Active Server Pages
intrinsic objects.

137 Invalid global script Script blocks must be one of the allowed Global.asa
procedures. Script directives within <% ... %> are not
allowed within the Global.asa file. The allowed
procedure names are Application_OnStart,
Application_OnEnd, Session_OnStart, or
Session_OnEnd.

138 Nested script block A script block cannot be placed inside another script
block.

139 Nested object An object tag cannot be placed inside another object
tag.

140 Page command out Of
order

The @ command must be the first command within the
Active Server Page.

141 Page command repeated The @ command can only be used once within the
Active Server Page.

142 Thread token error A thread token failed to open.

143 Invalid application name A valid application name was not found.

144 Initialization error The page level objects list failed during initialization.

145 New application failed The new application could not be added.

146 New session failed The new session could not be added.

147 500 server error Server error 500.

148 Server too busy Server too busy to service the request.

149 Application restarting The request cannot be processed while the application
is being restarted.

150 Application directory error The application directory could not be opened.

151 Change notification error The change notification event could not be created.

152 Security error An error occurred while processing a user's security
credentials.

153 Thread error A new thread request failed.

154 Write HTTP header error The HTTP headers could not be written to the client
browser.

Sun Chili!Soft ASP 3.6.2 Product Documentation 916

155 Write page content error The page content could not be written to the client
browser.

156 Header error The HTTP headers are already written to the client
browser. Any HTTP header modifications must be
made before writing page content.

157 Buffering on Buffering cannot be turned off once it is already turned
on.

158 Missing URL A URL is required.

159 Buffering off Buffering must be on.

160 Logging failure Failure to write entry to log.

161 Data type error The conversion of a variant to a string variable failed.

162 Cannot modify cookie The cookie "ASPSessionID" cannot be modified. It is a
reserved cookie name.

163 Invalid comma use Commas cannot be used within a log entry. Please
select another delimiter.

164 Invalid TimeOut value An invalid TimeOut value was specified.

165 SessionID error A SessionID string cannot be created.

166 Uninitialized object An attempt was made to access an uninitialized object.

167 Session initialization error An error occurred while initializing the Session object.

168 Disallowed object use An intrinsic object cannot be stored within the Session
object.

169 Missing object
information

An object with missing information cannot be stored in
the Session object. The threading model information
for an object is required.

170 Delete session error The session did not delete properly.

171 Missing path The Path parameter must be specified for the
MapPath method.

172 Invalid path The Path parameter for the MapPath method must be
a virtual path. A physical path was used.

173 Invalid path character An invalid character was specified in the Path
parameter for the MapPath method.

174 Invalid path character(s) An invalid "/" or "\\" was found in the Path parameter
for the MapPath method.

175 Disallowed path characters The ".." characters are not allowed in the Path
parameter for the MapPath method.

176 Path not found The Path parameter for the MapPath method did not

Sun Chili!Soft ASP 3.6.2 Product Documentation 917

correspond to a known path.

177 Server.CreateObject failed The call to Server.CreateObject failed.

178 Server.CreateObject
access error

The call to Server.CreateObject failed while checking
permissions. Access is denied to this object.

179 Application initialization
error

An error occurred while initializing the Application
object.

180 Disallowed object use An intrinsic object cannot be stored within the
Application object.

181 Invalid threading model An object using the apartment-threading model cannot
be stored within the Application object.

182 Missing object
information

An object with missing information cannot be stored in
the Application object. The threading model
information for the object is required.

183 Empty cookie key A cookie with an empty key cannot be stored.

184 Missing cookie name A name must be specified for a cookie.

185 Missing default property A default property was not found for the object.

186 Error parsing certificate There was an error parsing the certificate.

187 Object addition conflict Could not add object to application. Application was
locked down by another request for adding an object.

188 Disallowed object use Cannot add objects created using object tags to the
session intrinsic.

189 Disallowed object use Cannot add objects created using object tags to the
application intrinsic.

190 Unexpected error A trappable error occurred while releasing an external
object.

191 Unexpected error A trappable error occurred in the OnStartPage method
of an external object.

192 Unexpected error A trappable error occurred in the OnEndPage method
of an external object.

193 OnStartPage failed An error occurred in the OnStartPage method of an
external object.

194 OnEndPage failed An error occurred in the OnEndPage method of an
external object.

195 Invalid Server method call This method of the Server object cannot be called
during Session_OnEnd and Application_OnEnd.

196 Cannot launch out of
process component

Only InProc server components should be used. If you
want to use LocalServer components, you must set the

Sun Chili!Soft ASP 3.6.2 Product Documentation 918

AllowOutOfProcCmpnts registry setting. See the
README file for important considerations.

197 Disallowed object use Cannot add object with apartment model behavior to
the application intrinsic object.

199 Disallowed object use Cannot add JScript objects to the session.

200 Out of range "Expires"
attribute

The date given for "Expires" precedes January 1, 1980,
or exceeds Jan 19, 2038, 3:14:07 GMT.

201 Unknown scripting
language in registry

The scripting language "|" specified in the registry is
not found on the server.

202 Missing code page The code page attribute is missing.

203 Invalid code page The specified code page attribute is invalid.

204 Invalid CodePage value An invalid CodePage value was specified.

205 Change notification Failed to create event for change notification.

206 Cannot call BinaryRead Cannot call BinaryRead after using Request.Form
collection.

207 Cannot use Request.Form Cannot use Request.Form collection after calling
BinaryRead.

208 Cannot use generic
Request collection

Cannot use the generic Request collection after calling
BinaryRead.

210 Method not implemented This method has not yet been implemented.

212 Cannot clear buffer Response.Clear is not allowed after a Response.Flush
while client debugging is enabled.

214 Invalid Path parameter The Path parameter exceeds the maximum length
allowed.

215 Illegal value for SESSION
property

The SESSION property can only be TRUE or FALSE.

217 Invalid scope in object tag Object scope must be Page, Session, or Application.

218 Missing LCID The LCID attribute is missing.

219 Invalid LCID The specified LCID is not available.

221 Invalid @ command
directive

The specified "|" option is unknown or invalid.

222 Invalid TypeLib
specification

METADATA tag contains an invalid Type Library
specification.

223 TypeLib not found METADATA tag contains a Type Library specification
that does not match any registry entry.

224 Cannot load TypeLib Cannot load Type Library specified in the

Sun Chili!Soft ASP 3.6.2 Product Documentation 919

METADATA tag.

225 Cannot wrap TypeLibs Cannot create a Type Library Wrapper object from
the Type Libraries specified in METADATA tags.

226 Cannot modify
StaticObjects

Illegal assignment. StaticObjects collection cannot be
modified at run time.

299 Unexpected error The ASP engine has not been correctly registered.

 VBScript Errors
The following table describes VBScript error messages:

Error Code Message
5 Invalid procedure call or argument

6 Overflow

7 Out of memory

9 Subscript out of range

10 Array fixed or temporarily locked

11 Division by zero

13 Type mismatch

14 Out of string space

28 Out of stack space

35 Sub or Function not defined

48 Error in loading DLL

51 Internal error

53 File not found

57 Device I/O error

58 File already exists

61 Disk full

67 Too many files

70 Permission denied

75 Path/File access error

76 Path not found

91 Object variable or With block variable not set

Sun Chili!Soft ASP 3.6.2 Product Documentation 920

92 For loop not initialized

94 Invalid use of Null

322 Cannot create necessary temporary file

424 Object required

429 ActiveX component cannot create object

430 Class does not support automation

432 File name or class name not found during automation operation

438 Object does not support this property or method

440 Automation error

445 Object does not support this action

446 Object does not support named arguments

447 Object does not support current locale setting

448 Named argument not found

449 Argument not optional

450 Wrong number of arguments or invalid property assignment

451 Object not a collection

453 Specified DLL function not found

455 Code resource lock error

457 This key already associated with an element of this collection

458 Variable uses an automation type not supported in VBScript

500 Variable is undefined

501 Illegal assignment

502 Object not safe for scripting

503 Object not safe for initializing

1001 Out of memory

1002 Syntax error

1003 Expected ":"

1004 Expected ";"

1005 Expected "("

1006 Expected ")"

1007 Expected "]"

1008 Expected "{"

Sun Chili!Soft ASP 3.6.2 Product Documentation 921

1009 Expected "}"

1010 Expected identifier

1011 Expected "="

1012 Expected "If"

1013 Expected "To"

1014 Expected "End"

1015 Expected "Function"

1016 Expected "Sub"

1017 Expected "Then"

1018 Expected "Wend"

1019 Expected "Loop"

1020 Expected "Next"

1021 Expected "Case"

1022 Expected "Select"

1023 Expected expression

1024 Expected statement

1025 Expected end of statement

1026 Expected integer constant

1027 Expected "While" or "Until"

1028 Expected "While," "Until," or end of statement

1029 Too many locals or arguments

1030 Identifier too long

1031 Invalid number

1032 Invalid character

1033 Unterminated string constant

1034 Unterminated comment

1035 Nested comment

1037 Invalid use of "Me" keyword

1038 "Loop" without "Do"

1039 Invalid "Exit" statement

1040 Invalid "For" loop control variable

1041 Name redefined

Sun Chili!Soft ASP 3.6.2 Product Documentation 922

1042 Must be first statement on the line

1043 Cannot assign to non-ByVal argument

1044 Cannot use parentheses when calling a Sub

1045 Expected literal constant

1046 Expected "In"

32766 True

32767 False

32811 Element not found

 JScript Errors
The following table describes JScript error messages:

Error Code Message
5 Invalid procedure call or argument

6 Overflow

7 Out of memory

9 Subscript out of range

10 This array is fixed or temporarily locked

11 Division by zero

13 Type mismatch

14 Out of string space

17 Cannot perform requested operation

28 Out of stack space

35 Sub or Function not defined

48 Error in loading DLL

51 Internal error

52 Bad file name or number

53 File not found

54 Bad file mode

55 File already open

57 Device I/O error

58 File already exists

Sun Chili!Soft ASP 3.6.2 Product Documentation 923

61 Disk full

62 Input past end of file

67 Too many files

68 Device unavailable

70 Permission denied

71 Disk not ready

74 Cannot rename with different drive

75 Path/File access error

76 Path not found

91 Object variable or With block variable not set

92 For loop not initialized

93 Invalid pattern string

94 Invalid use of Null

322 Cannot create necessary temporary file

424 Object required

429 Automation server cannot create object

430 Class does not support automation

432 File name or class name not found during automation operation

438 Object doesn't support property or method <item>

440 Automation error

445 Object doesn't support this action

446 Object doesn't support named arguments

447 Object doesn't support current locale setting

448 Named argument not found

449 Argument not optional

450 Wrong number of arguments or invalid property assignment

451 Object not a collection

453 Specified DLL function not found

458 Variable uses an automation type not supported in JScript

501 Cannot assign to variable

502 Object not safe for scripting

503 Object not safe for initializing

Sun Chili!Soft ASP 3.6.2 Product Documentation 924

504 Object not safe for creating

5000 Cannot assign to "this"

5001 <Item> is not a number; number expected

5002 <Item> is not a function; function expected

5003 Cannot assign to a function result

5004 <Item> is not an object that can be indexed; cannot index object

5005 <Item> is not a string; string expected

5006 <Item> is not a Date object; Date object expected

5007 <Item> is not an object; object expected

5008 Cannot assign to <item>; illegal assignment

5009 <Item> is undefined; undefined identifier

5010 <Item> is not a Boolean; Boolean expected

5011 Cannot execute code from a freed script

5012 Cannot delete <item>; object member expected

5013 <Item> is not a VBArray; VBArray expected

5014 <Item> is not a JScript object; JScript object expected

5015 <Item> is not an Enumerator object; Enumerator object expected

5016 <Item> is not a RegularExpression object; RegularExpression
object expected

5017 Syntax error in regular expression

5018 Unexpected quantifier

5019 Expected "]" in regular expression

5020 Expected ")" in regular expression

5021 Invalid range in character set

 ADO Errors
The following table describes ADO error messages:

Constant Name Number Description
adErrInvalidArgument 3001 The application is using arguments that are

of the wrong type, are out of acceptable
range, or are in conflict with one another.

Sun Chili!Soft ASP 3.6.2 Product Documentation 925

adErrNoCurrentRecord 3021 Either BOF or EOF is TRUE, or the
current record has been deleted; the
operation request by the application
requires a current record.

adErrIllegalOperation 3219 The operation requested by the application
is not allowed in this context.

adErrFeatureNotAvailable 3251 The operation requested by the application
is not supported by the provider.

adErrItemNotFound 3265 ADO could not find the object in the
collection corresponding to the name or
ordinal reference requested by the
application.

adErrObjectInCollection 3367 Cannot append. Object already in
collection.

adErrObjectNotSet 3420 The object referenced by the application no
longer points to a valid object.

adErrDataConversion 3421 The application is using a value of the
wrong type for the current operation.

adErrObjectClosed 3704 The operation requested by the application
is not allowed if the object is closed.

adErrObjectOpen 3705 The operation requested by the application
is not allowed if the object is open.

adErrProviderNotFound 3706 ADO could not find the specific provider.

adErrBoundToCommand 3707 The application cannot change the
ActiveConnection property of a
Recordset object with a Command object
as its source.

adErrInvalidParamInfo 3708 The application has improperly defined a
Parameter object.

adErrInvalidConnection 3709 The application requested an operation on
an object with a reference to a closed or
invalid Connection object.

Sun Chili!Soft ASP 3.6.2 Product Documentation 926

Appendix B: Troubleshooting

This appendix provides troubleshooting tips for problems you might encounter when running Sun
Chili!Soft ASP.

In this appendix:

� ASP Pages not Served

� Can't Connect to a Database

� Can't Compile Apache

� FileSystemObject Permission Denied Error

 ASP Pages not Served
Issue: My browser asks if I want to download or open ASP pages instead of serving them.

Resolution: Either your Sun Chili!Soft ASP installation did not complete properly, or you made
changes to your Web server configuration files that removed the Sun Chili!Soft ASP
configuration settings. If you have made no changes to your Web server configuration files,
reinstalling Sun Chili!Soft ASP should correct this problem.

If you modified your Web server configuration settings, and you are running iPlanet Web Server,
then you might not have selected the option to Save and Apply manual changes in the iPlanet
Administrator. If so, the Sun Chili!Soft ASP modifications to the configuration files have been
removed. In this case, you can either reinstall Sun Chili!Soft ASP or reinstate the Sun Chili!Soft
ASP configuration settings, which are described in "Configuring the Web Server After
Installation" in "Chapter 2: Installing and Configuring Sun Chili!Soft ASP."

 Can't Connect to a Database
Issue: I cannot connect to my Oracle or Sybase database.

Resolution: Make sure that the ServerName parameter for your Data Source Name (DSN) is set
to point to the server that is running the client software for your database and not to the database
server itself. For more information about configuring DSNs, see "Configuring Data Source
Names (DSNs)," in "Chapter 3: Managing Sun Chili!Soft ASP."

Issue: I cannot connect to a DB2 database.

Resolution: If your DB2 database server is configured to run in a different locale than your ASP
Server and Web server, you might get the following error message when trying to connect to it
from an ASP page:

Sun Chili!Soft ASP 3.6.2 Product Documentation 927

"There is no available conversion for the source code page "932" to the target code page "1252".
Reason Code "1". SQLSTATE=57017"

To address this problem, create the DB2 database on a server configured for the same locale in
which the Web server and the Sun Chili!Soft ASP Server are configured to run. For more
information, see "Configuring International Support" in "Chapter 3: Managing Sun Chili!Soft
ASP."

 Can't Compile Apache
Issue: I cannot compile Apache Web Server with Sun Chili!Soft ASP.

Resolution: Not all versions of Apache Web Server are supported by Sun Chili!Soft ASP. Make
sure that you are using a version of Apache that is supported by your version of Sun Chili!Soft
ASP, as listed in "Supported Platforms and Web Servers" in "Chapter 1: About Sun Chili!Soft
ASP."

 FileSystemObject Permission Denied Error
Issue: I get a "Permission Denied" error when I use the FileSystemObject.

Resolution: First, make sure that the user account that Sun Chili!Soft ASP is running under has
permission to open the file. Next, check the setting of the EnableParentPaths registry setting. If
EnableParentPaths is set to False, your scripts are only allowed to access files in or beneath the
directory that defines the ASP application for which you are calling the FileSystemObject.

Sun Chili!Soft ASP 3.6.2 Product Documentation 928

Appendix C: Glossary

 A:
Absolute path name

Active Server component

Active Server Pages (ASP)

Active Template Library (ATL)

ActiveX

ActiveX controls

ActiveX Data Objects (ADO)

ActiveX scripting

Administration Console

ADO

Adobe GoLive

Apache Web Server

Application object

Application server

Application Service Provider (ASP)

Argument

ASP application

ASP component

ASP engine

ASP page

ASP script

ASP Server

ASP session

ASP technology

 Built-in objects

Sun Chili!Soft ASP 3.6.2 Product Documentation 929

 C++

CAB

Cabinet (CAB)

Cache

CASP

CGI

Chili!Beans

CIFS

Client-side script

Cobalt

Code page

COM

COM+

Common Gateway Interface (CGI)

Common Internet File System (CIFS)

Common Object Request Broker Architecture (CORBA)

Component

Component Object Model (COM)

Connection pooling

Connection string

Cookie

CORBA

 Database server

Data connection

Data Source Name (DSN)

dBASE

Dedicated hosting

Design-time control

Document Object Model (DOM)

DSN

DSN-less connection string

Sun Chili!Soft ASP 3.6.2 Product Documentation 930

DSO

Dynamic Link Library (DLL)

Dynamic Shared Object (DSO)

 ECMAScript (European Computer Manufacturers' Association Script)

Enterprise JavaBeans (EJB)

Event

Expression

Extensible Markup Language (XML)

Extensible Stylesheet Language (XSL)

 File DSN

File upload

FileSystem object

FrontPage

FrontPage Server Extensions

Function

 Global.asa

 Hostname

HP-UX

HTML

HTTP server

 IBM AIX

IBM DB2

Interbase

Internationalization

Internet Services Application Programming Interface (ISAPI)

iPlanet Web Server, Enterprise Edition

ISAPI

Sun Chili!Soft ASP 3.6.2 Product Documentation 931

 Java

Java applet

JavaBeans

Java Database Connectivity (JDBC)

JavaScript

Java Virtual Machine (JVM)

JDBC

JScript

 Key

 Linux

Localization

Local Language Identifier (LCID)

 Macromedia UltraDev

Method

Microsoft Access

Microsoft Data Access Components

Microsoft FrontPage

Microsoft Internet Information Server (IIS)

Microsoft JScript

Microsoft SQL Server

MTS

Microsoft Transaction Server (MTS)

Microsoft Visual Basic

Microsoft Visual Basic Scripting Edition (VBScript)

Microsoft Visual InterDev

Moniker

Multi-threading

MyODBC

Sun Chili!Soft ASP 3.6.2 Product Documentation 932

MySQL

 Netscape Enterprise Web Server

NSAPI

 Object

Object model

Object-oriented programming

ODBC driver

ODBC Manager

Open Database Connectivity (ODBC)

 Parameter

Path name

POP3

Port (TCP/IP)

Portability

PostgreSQL

Procedural-based programming

Process

Property

 Request object

Response object

Root directory

 Scripting

Secure Sockets Layer (SSL)

SequeLink

Server-side script

Servlet

Server Name

Sun Chili!Soft ASP 3.6.2 Product Documentation 933

Server object

Session object

Session state

Shared hosting

SMTP

SpicePack

SQL

Structured Query Language (SQL)

Sun Chili!Soft ASP Administration Console

Sun Solaris

 Thread

Threading

Transition

 Virtual directory

Virtual host

Virtual server

Visual Basic

Visual Basic Scripting Edition (VBScript)

Visual InterDev

 W3C

Web server

Web session

World Wide Web Consortium (W3C)

 XML (Extensible Markup Language)

XML data type

XML object model

XSL (Extensible Stylesheet Language)

XSL control

Sun Chili!Soft ASP 3.6.2 Product Documentation 934

 Zeus Web Server

Absolute path name
In a computer operating system, a path is the route through a file system to a particular file. A
path name (or pathname in Windows) is the specification of that path, including the name of the
file. An absolute path name (or fully qualified path name) specifies the complete path name. A
relative path name specifies a path relative to the directory to which the operating system is
currently set.

Each operating system has its own format for specifying a path name. The DOS, Windows, and
OS/2 operating systems use this format:

Drive_letter:\directoryname\subdirectoryname\filename.suffix

In UNIX-based systems, the format is:

/directory/subdirectory/filename

In UNIX, the storage drive location is not an explicit part of the path name.

Active Server component
An Active Server component runs on the server side as part of an ASP application. Active Server
components are activated through Active Server Pages (ASP) technology, but do not require a
Windows interface.

Active Server Pages (ASP)
Active Server Pages (ASP) is a specification for a dynamically created Web page having an .asp
extension. ASP technology provides an open, compile-free application environment in which
Web developers can combine HTML, scripts, and reusable Active Server components. A Sun
Chili!Soft ASP page uses VBScript or JScript code to access the ASP object model, which
exposes functionality that is often used in Web application environments. When a browser
requests an ASP page, the Web server passes execution to the Sun Chili!Soft ASP Server, which
processes the scripts, generates an HTML page, and sends it back to the browser.

See also:

What is ASP? in "Chapter 1: About Sun Chili!Soft ASP"

What is Sun Chili!Soft ASP? in "Chapter 1: About Sun Chili!Soft ASP"

Active Template Library (ATL)
The Active Template Library (ATL) is a set of template-based C++ classes. With ATL, you can
create objects and specify the threading model: single-threaded, apartment, free-threaded, or both
free-threaded and apartment. ATL simplifies the programming of Component Object Model
(COM) objects by providing special support for key COM features, such as IUnknown,
IClassFactory, IClassFactory2, and Idispatch, dual interfaces, standard COM enumerator
interfaces, connection points, tear-off interfaces, and ActiveX controls.

Sun Chili!Soft ASP 3.6.2 Product Documentation 935

ActiveX
ActiveX is a set of technologies built on the Component Object Model (COM) that enable
software components, regardless of the language in which they were developed, to work together
in a networked environment. Although ActiveX technologies are mainly used to develop
interactive Web content, they can also be used in desktop applications and other programs.

 ActiveX controls
ActiveX controls are reusable, stand-alone software components that often expose a subset of the
total functionality of a product or application. They were formerly referred to as OLE controls or
OCX. ActiveX controls cannot run stand-alone. They must be loaded into a control container,
such as Visual Basic or Internet Explorer. An ActiveX control can also be embedded in a Visual
C++ resource.

ActiveX Data Objects (ADO)
ActiveX Data Objects (ADO) was designed by Microsoft to be a high-level interface for data
objects. ADO can be used to access many different types of data, including Web pages,
spreadsheets, and other types of documents. Within ASP, ADO is most commonly used in
conjunction with ODBC drivers to connect to databases and other data sources available through
ODBC drivers. Sun Chili!Soft ASP includes its own implementation of ADO, which supports all
of the commonly used functionality found in Microsoft ADO 2.0 and some of the popular
functionality found in Microsoft ADO 2.5.

See also:

ADO Component Reference in "Chapter 5: Developer’s Reference"

ActiveX scripting
ActiveX scripting controls the integrated behavior of ActiveX controls and/or Java applets from
the server or the browser. To enable server-side scripting, such as with ASP, ActiveX scripting
requires that the appropriate interpreter for the scripting language be installed on the server. Sun
Chili!Soft ASP includes script interpreters for both Visual Basic Scripting Edition (VBScript) and
JScript.

ADO
ADO, short for ActiveX Data Objects, is a high-level interface that Microsoft developed for data
objects. ADO can be used to access many different types of data, including Web pages,
spreadsheets, and other types of documents. Within ASP, ADO is most commonly used in
conjunction with ODBC drivers to connect to databases and other data sources available through
ODBC drivers. Sun Chili!Soft ASP includes its own implementation of ADO, which supports all
of the commonly used functionality found in Microsoft ADO 2.0 and some of the popular
functionality found in Microsoft ADO 2.5.

See also:

Connecting to a Database in "Chapter 4: Building a Sun Chili!Soft ASP Application"

ADO Component Reference in "Chapter 5: Developer’s Reference"

Sun Chili!Soft ASP 3.6.2 Product Documentation 936

Adobe GoLive
Adobe GoLive is a Web development tool for ASP applications that uses a WYSIWYG ("What
You See Is What You Get") interface. This is one of several Web development tools appropriate
for the beginning to mid-level ASP developer.

See also:

Macromedia UltraDev

Microsoft FrontPage

Apache Web Server
Apache Web Server (Apache HTTP Server) is a widely used Web server that is developed and
maintained through an open-source project. It is freely available for all major UNIX platforms
and for Windows. Sun Chili!Soft ASP supports Apache Web Server.

Application object
The Application object is one of the five built-in objects included in Sun Chili!Soft ASP. The
Application object stores variables and objects that are available to scripts running within the
scope of an ASP application. A simple example of how you can use this object would be to store
a counter that tracks the number of users (and thus sessions) currently active for a given ASP
application.

See also:

Using Sun Chili!Soft ASP Built-in Objects in "Chapter 4: Building a Sun Chili!Soft ASP
Application"

Application server
An application server is a program that handles all Web application operations between Web
browsers and back-end business or database servers. Because many databases cannot interpret
commands written in HTML, the application server works as a translator by retrieving data from
databases and using business logic encapsulated in code to output dynamically generated HTML
code. The Sun Chili!Soft ASP Server is an application server that enables you to use the Active
Server Pages (ASP) specification to execute database queries, execute business logic, and
generate the presentation layer for Web applications.

Application Service Provider (ASP)
Application Service Providers (ASPs) manage and distribute software-based services and
solutions to customers across a wide area network from a central data center. This is not to be
confused with Active Server Pages, which shares the same acronym (ASP).

Argument
In object-oriented programming an argument is a value passed from one function to another.
Methods can take one or more arguments, or none at all. Arguments can be optional, in which

Sun Chili!Soft ASP 3.6.2 Product Documentation 937

case you do not need to enter anything for an argument. If an argument is optional, all arguments
following it are also optional.

Administration Console
The Sun Chili!Soft ASP Administration Console is a browser-based tool that enables Sun
Chili!Soft ASP administrators to configure and control the Sun Chili!Soft ASP Server and its
bindings to Web servers and database servers. The Administration Console consists of an ASP
application that uses its own Web server and Sun Chili!Soft ASP Server to administer the primary
ASP Server.

See also:

Using the Administration Console in "Chapter 3: Managing Sun Chili!Soft ASP"

ASP application
An ASP application is a set of Active Server Pages (ASP) files contained within a single root
directory. For the Sun Chili!Soft ASP Server to recognize an ASP application, the root directory
must be defined as an application on the ASP Server or as a virtual directory on the Web server.
The files within the root directory of an ASP application share the same global.asa file, which
must be contained in the root directory itself, rather than in a subdirectory under the root. All
variables and objects for an ASP application are scoped from the root directory.

See also:

Creating the Basic ASP Application in "Chapter 4: Building a Sun Chili!Soft ASP Application"

ASP component
An ASP component is designed to run on a Web server as part of an ASP application. ASP
components provide key functionality needed for Web applications, such as database access, so
that developers do not need to create and re-create the code to perform these tasks. ASP
components do not require browser-scripting ability, so they are useful for implementing tasks
that are difficult to accomplish with browser scripting.

See also:

Using Sun Chili!Soft ASP Built-in Objects in "Chapter 4: Building a Sun Chili!Soft ASP
Application"

Using Sun Chili!Soft ASP Installed Components in "Chapter 4: Building a Sun Chili!Soft ASP
Application"

ASP engine
The Sun Chili!Soft ASP Server uses an ASP engine to execute ASP scripts. A single ASP engine
executes as many threads as are specified in the Sun Chili!Soft ASP Administration Console.

See also:

Configuring Multi-threading in "Chapter 3: Managing Sun Chili!Soft ASP"

Sun Chili!Soft ASP 3.6.2 Product Documentation 938

ASP page
The first step in building an ASP application is creating an ASP page. An ASP page is simply a
plain text file with the .asp filename extension.

An ASP page contains optional text (usually HTML and/or client-side scripts) interspersed with
one or more script blocks. To create an ASP page, you insert script commands into an HTML
page. With Sun Chili!Soft ASP, you can write scripts in Visual Basic Scripting Edition
(VBScript) or JScript. Any valid HTML page can be a valid ASP page, enabling the Web
developer to easily transform a static Web site into a dynamic Web site by adding ASP scripts to
existing documents. Saving the page with an .asp filename extension tells the Web server how to
process the script commands.

See also:

What is ASP? in "Chapter 1: About Sun Chili!Soft ASP"

What is Sun Chili!Soft ASP? in "Chapter 1: About Sun Chili!Soft ASP"

ASP script
An ASP script is a server-side script that is included on an Active Server Pages (ASP) page. With
Sun Chili!Soft ASP, scripts can be written in either Visual Basic Scripting Edition (VBScript) or
JScript.

See also:

What is ASP? in "Chapter 1: About Sun Chili!Soft ASP"

What is Sun Chili!Soft ASP? in "Chapter 1: About Sun Chili!Soft ASP"

ASP Server
When a browser requests an ASP page, the Web server passes execution to the Sun Chili!Soft
ASP Server, which processes the HTML code and ASP scripts on the page, generates an HTML
page, and sends the page back to the browser.

See also:

Managing the ASP Server in "Chapter 3: Managing Sun Chili!Soft ASP."

ASP session
An ASP session is created by using the Sun Chili!Soft ASP built-in Session object, which uses
ASP technology to share information about a user between Web pages. As the user navigates
between the pages of a site, information about the user is maintained through a cookie.

See also:

Managing User Sessions in "Chapter 4: Building a Sun Chili!Soft ASP Application"

ASP technology
ASP, short for Active Server Pages, is a specification for a dynamically created Web page having
an .asp extension. ASP technology provides an open, compile-free application environment in

Sun Chili!Soft ASP 3.6.2 Product Documentation 939

which Web developers can combine HTML, scripts, and reusable Active Server components. A
Sun Chili!Soft ASP page uses scripts written in Visual Basic Scripting Edition (VBScript) or
JScript to access the ASP object model, which exposes functionality that is often used in Web
application environments. When a browser requests an ASP page, the Web server passes
execution to the ASP Server, which uses an ASP script to generate an HTML page. The ASP
Server then sends the page back to the browser.

See also:

What is ASP? in "Chapter 1: About Sun Chili!Soft ASP"

What is Sun Chili!Soft ASP? in "Chapter 1: About Sun Chili!Soft ASP"

Built-in Objects
Sun Chili!Soft ASP includes five built-in objects--Application, Request, Response, Server, and
Session--that handle many common programming tasks. These objects enable you to avoid much
of the overhead associated with complex Web programming, so you can focus on creating
interesting, interactive Web content rather than on doing low-level programming.

See also:

Using Sun Chili!Soft ASP Built-in Objects in "Chapter 4: Building a Sun Chili!Soft ASP
Application"

ASP Built-in Objects Reference in "Chapter 5: Developer’s Reference"

C++
C++ is a high-level, object-oriented version of the C programming language. C++ is one of the
most popular programming languages for graphical applications that run on systems that have
graphical user interfaces.

CAB
CAB, short for cabinet, is a technology for compression and distribution of files. When used for
Java applets, the CAB file serves as a single, compressed repository for all .class files and all
audio and image data required by the applet. Only the CAB file is downloaded, so the time of
download is the time it takes to negotiate the transfer and download the compressed bytes. Once
downloaded, the contents of the CAB file are extracted and installed.

Cabinet (CAB)
Cabinet (CAB) is a technology for compression and distribution of files. When used for Java
applets, the CAB file serves as a single, compressed repository for all .class files and all audio
and image data required by the applet. Only the CAB file is downloaded, so the time of download
is the time it takes to negotiate the transfer and download the compressed bytes. Once
downloaded, the contents of the CAB file are extracted and installed.

Sun Chili!Soft ASP 3.6.2 Product Documentation 940

Cache
A cache is a high-speed storage mechanism. It can either be a reserved section of main memory
or an independent high-speed storage device. Sun Chili!Soft ASP supports memory caching of
ASP scripts in a tokenized format that dramatically increases performance.

See also:

Enabling Script Caching in "Chapter 3: Managing Sun Chili!Soft ASP"

CASP
CASP is a commonly used abbreviation for Sun Chili!Soft ASP. It is used for the default
installation directory name and for several virtual directories installed by the Sun Chili!Soft ASP
setup program.

CGI
CGI, short for Common Gateway Interface, is a server-side interface for initiating software
services. Software that handles input and output in accordance with the CGI standard is
considered a CGI application. For example, when a user submits a form through a Web browser,
the server executes an application, known as a CGI script, and passes the user's input information
to that application by using CGI. The application then returns information to the server by using
CGI. Active Server Pages (ASP) technology is a high-performance alternative to CGI.

Chili!Beans
Sun Chili!Beans enables access to Java classes (including JavaBeans and Enterprise JavaBeans)
from the ASP environment by wrapping Java classes in a Component Object Model (COM) layer.
This enables Java objects to be used by COM controllers, such as ActiveX scripting engines like
VBScript. Chili!Beans is included in Sun Chili!Soft ASP. Chili!Beans is designed to work with
any Java Virtual Machine (JVM) that implements the Java Native Interface (JNI) specification,
such as JDK 1.2.x or 1.3.x.

See also:

Chili!Beans Component Reference in "Chapter 5: Developer's Reference"

Sun Chili!Soft ASP Administration Console
The Sun Chili!Soft ASP Administration Console is a browser-based tool that enables Sun
Chili!Soft ASP administrators to configure and control the Sun Chili!Soft ASP Server and its
bindings to Web servers and database servers. The Administration Console consists of an ASP
application that uses its own Web server and Sun Chili!Soft ASP Server to administer the primary
ASP Server.

See also:

Using the Administration Console in "Chapter 3: Managing Sun Chili!Soft ASP"

Sun Chili!Soft ASP 3.6.2 Product Documentation 941

CIFS
CIFS, short for Common Internet File System, is an open, cross-platform technology that defines
a standard remote file system access protocol for use over the Internet. CIFS enables groups of
users to work together and share documents across the Internet or within their corporate intranets
regardless of their computer or operating system platform. CIFS runs over TCP/IP and uses the
Internet's global Domain Naming Service (DNS) for scalability, and is specifically optimized to
support slower speed dial-up connections common on the Internet.

Client-side script
A client-side script is part of an HTML document that is downloaded to the user's browser. The
browser interprets and executes the script on the client computer. Benefits of client-side scripting
include increased speed, and the ability to make a page act more like a real application by
connecting embedded components and responding to events. Client-side scripting can also be
used in applications that are not Web-based, but which use Dynamic HTML. Examples of client-
side scripting languages include VBScript, JavaScript, JScript, and ECMAScript. Unlike server-
side scripting, client-side scripting requires no special implementation on the Web server.
However, it does require the appropriate support on the client browser. Sun Chili!Soft ASP
applications involve server-side scripts and can also include client-side scripts.

See also:

Adding Scripts in "Chapter 4: Building a Sun Chili!Soft ASP Application"

Cobalt
Sun Cobalt is a leading developer of server appliances. The Sun Cobalt product line includes Sun
Cobalt RaQ XTR, Sun Cobalt Qube, Sun Cobalt Cache, Sun Cobalt RaQ, and Chili!Soft ASP.
These products are used by businesses, service providers, and educational institutions for Internet
and Web hosting services. Founded in 1996, Cobalt Networks was aquired by Sun Microsystems
in December of 2000.

Code page
A code page is a character set that a computer uses to interpret and display data properly. Code
pages usually correspond to different platforms and languages and are important in international
applications. Your system administrator can set the correct code page and LCID for a given
language by using the Sun Chili!Soft ASP Administration Console.

See also:

Developing International Applications in "Chapter 4: Building a Sun Chili!Soft ASP Application"

COM
COM, short for Component Object Model, is a model for binary code developed by Microsoft
that enables programmers to develop objects that can be accessed by any COM-compliant
application. Both OLE and ActiveX are based on COM. In COM, client software accesses an
object through a pointer to an interface, or a related set of functions called methods, on the object.
COM components can be written in a variety of programming languages. One advantage of COM

Sun Chili!Soft ASP 3.6.2 Product Documentation 942

is that it gives ASP scripts the ability to dynamically bind to COM objects, thereby linking simple
scripting (VBScript or JScript) to compiled objects (typically written in C or C++). On Linux and
UNIX, Sun Chili!Soft ASP uses its own proprietary COM emulation layer.

COM+
COM+ is an extension of COM that makes it easier for developers to create and use software
components in any language, using any tool, by building on COM's integrated services and
features. Delivered on the Microsoft Windows platform, COM+ extends developers' current
investments in COM, offering new optional services, such as database access.

Common Gateway Interface (CGI)
Common Gateway Interface (CGI) is a server-side interface for initiating software services.
Software that handles input and output in accordance with the CGI standard is considered a CGI
application. For example, when a user submits a form through a Web browser, the server executes
an application, known as a CGI script, and passes the user's input information to that application
by using CGI. The application then returns information to the server by using CGI. Active Server
Pages (ASP) technology is a high-performance alternative to CGI.

Common Internet File System (CIFS)
Common Internet File System (CIFS) is an open, cross-platform technology that defines a
standard remote file system access protocol for use over the Internet. CIFS enables groups of
users to work together and share documents across the Internet or within their corporate intranets
regardless of their computer or operating system platform. CIFS runs over TCP/IP and utilizes the
Internet's global Domain Naming Service (DNS) for scalability, and is specifically optimized to
support slower speed dial-up connections common on the Internet.

Common Object Request Broker Architecture (CORBA)
Common Object Request Broker Architecture (CORBA) enables pieces of applications, called
objects, to communicate with one another regardless of which programming language they were
written in or on which operating system they're running. An industry consortium known as the
Object Management Group (OMG) developed CORBA. There are several implementations of
CORBA, the most widely used being IBM's SOM and DSOM architectures. Two competing
models are Microsoft COM and the Sun Microsystems RMI. CORBA objects can be accessed by
using Chili!Beans. For more information about using CORBA objects within Sun Chili!Soft ASP,
contact Sun Chili!Soft Customer Support.

 Component
A component is an object that encapsulates both data and code, and provides a well-specified set
of publicly available services. Components encapsulate the business logic in your ASP
applications. You can create your own components or buy them "off the shelf." Once you have a
component, you can reuse it wherever it’s needed. You can develop components using C++ or
Java.

Sun Chili!Soft ASP 3.6.2 Product Documentation 943

Component Object Model (COM)
The Component Object Model (COM) is a model for binary code developed by Microsoft. COM
enables programmers to develop objects that can be accessed by any COM-compliant application.
Both OLE and ActiveX are based on COM. In COM, client software accesses an object through a
pointer to an interface, or a related set of functions, called methods, on the object. COM
components can be written in a variety of programming languages. One advantage of COM is that
it gives ASP scripts the ability to dynamically bind to COM objects, thereby linking simple
scripting (VBScript or JScript) to compiled objects (typically written in C or C++). On UNIX and
Linux, Sun Chili!Soft ASP uses its own proprietary COM emulation layer.

Connection pooling
To improve server performance, you can configure the Sun Chili!Soft ASP Server to share open
database connections among multiple users who are accessing the Web application. This is called
database connection pooling. With connection pooling, rather than opening and closing a
database connection for each individual request, the ASP Server uses a connection that is already
open.

See also:

Setting the ADO Connection Pool Size in "Chapter 3: Managing Sun Chili!Soft ASP"

Connection string
A connection string defines the source of data for an external database. On a Sun Chili!Soft ASP
page, a connection string must either include values for all required parameters for the database,
or one of the following:

� A reference to a system DSN that the system administrator has defined for the database

� A reference to a file DSN that defines the required parameters for the database

See also:

Creating Connection Strings in "Chapter 4: Building a Sun Chili!Soft ASP Application"

Cookie
A cookie is a file of encoded information, stored on a user's computer, which identifies the user's
computer during the current and subsequent visits to a Web site.

CORBA
CORBA, short for Common Object Request Broker Architecture, enables pieces of applications,
called objects, to communicate with one another regardless of what programming language they
were written in or on which operating system they're running. An industry consortium known as
the Object Management Group (OMG) developed CORBA. There are several implementations of
CORBA, the most widely used being IBM's SOM and DSOM architectures. Two competing
models are Microsoft COM and the Sun Microsystems RMI. CORBA objects can be accessed by

Sun Chili!Soft ASP 3.6.2 Product Documentation 944

using Chili!Beans. For more information about using CORBA objects within Sun Chili!Soft ASP,
contact Sun Chili!Soft Customer Support.

Database server
A database server exclusively serves database connections.

Data connection
A data connection is a collection of information required to access a specific database. This
information includes a data source name (DSN) and logon information. For example, a data
connection for a Microsoft SQL Server database consists of the name of the database, the location
of the server on which it resides, network information used to access that server, a user ID, and a
password.

See also:

Creating Database Connections on the Server in "Chapter 2: Installing and Configuring Sun
Chili!Soft ASP"

Configuring a Database in "Chapter 3: Managing Sun Chili!Soft ASP"

Connecting to a Database in "Chapter 4: Building a Sun Chili!Soft ASP Application"

Data Source Name (DSN)
A Data Source Name (DSN) refers to a collection of information required to connect an ASP
application to a particular ODBC-compliant database. The ODBC Driver Manager uses this
information to create the database connection. Sun Chili!Soft ASP supports two types of DSNs:
system DSNs and file DSNs.

See also:

Creating Database Connections on the Server in "Chapter 2: Installing and Configuring Sun
Chili!Soft ASP"

Configuring a Database in "Chapter 3: Managing Sun Chili!Soft ASP"

Connecting to a Database in "Chapter 4: Building a Sun Chili!Soft ASP Application"

dBASE
dBASE is a database management system. Sun Chili!Soft ASP includes an ODBC driver for
connecting to dBASE 5.

Dedicated hosting
Dedicated hosting refers to the practice of dedicating the resources of an entire server or group of
servers to a specific Web site. This helps maintain the performance of high-traffic, high-volume
Web sites because server resources are not shared with other Web sites.

Sun Chili!Soft ASP 3.6.2 Product Documentation 945

Design-time control
Design-time controls are visual design components written in ActiveX that help developers
construct dynamic Web applications by automatically generating standard HTML and/or scripting
code at design time, instead of at run time. Design-time controls found in the many development
tools that Sun Chili!Soft ASP supports generate code that is compatible with Sun Chili!Soft ASP.
These tools include Adobe GoLive, Microsoft FrontPage and Visual Interdev, Macromedia
UltraDev, and others.

Document Object Model (DOM)
The Document Object Model (DOM) is a programming interface specification of the World Wide
Web Consortium (W3C) that enables a programmer to create and modify HTML pages and XML
documents as full-fledged program objects. Currently, HTML (Hypertext Markup Language) and
XML (Extensible Markup Language) can be used to express a document in terms of a data
structure. By defining documents as program objects, their contents and data can be "hidden"
within the object, helping to ensure control over who can manipulate the document. As objects,
documents can carry with them the object-oriented procedures called methods. DOM is a
strategic and open effort to specify how to provide programming control over documents. It was
inspired in part by the advent of the new HTML capabilities generally called dynamic HTML, and
as a way to encourage consistent browser behavior with Web pages and their elements.

DSN
A Data Source Name (DSN) refers to a collection of information required to connect an ASP
application to a particular ODBC-compliant database. The ODBC Driver Manager uses this
information to create the database connection. Sun Chili!Soft ASP supports two types of DSNs:
system DSNs and file DSNs.

See also:

Creating Database Connections on the Server in "Chapter 2: Installing and Configuring Sun
Chili!Soft ASP"

Configuring a Database in "Chapter 3: Managing Sun Chili!Soft ASP"

Connecting to a Database in "Chapter 4: Building a Sun Chili!Soft ASP Application"

DSN-less connection string
A DSN-less connection string is a connection string that includes all of the information needed
for connecting to a data source, rather than incorporating the information by reference to a system
DSN or a file DSN. DSN-less connection strings enable you to move the ASP application from
one server to another without recreating a system DSN on the new server. File DSNs provide this
advantage as well. Note that when migrating ASP applications from one environment to another,
such as from Windows to UNIX or Linux, you must make changes to your connection strings so
that they work in the new environment.

See also:

Enabling Database Connections on the Server in "Chapter 2: Installing and Configuring Sun
Chili!Soft ASP"

Configuring a Database in "Chapter 3: Managing Sun Chili!Soft ASP"

Sun Chili!Soft ASP 3.6.2 Product Documentation 946

Connecting to a Database in "Chapter 4: Building a Sun Chili!Soft ASP Application"

DSO
Sun Chili!Soft ASP communicates with Apache Web Server through an object module. In the
DSO (Dynamic Shared Object) version, Apache Web Server object module entries are loaded on
an as-needed basis.

Dynamic link library (DLL)
A dynamic link library (DLL) is a code file containing functions that can be called from other
executable code (either an application or another DLL). Programmers use DLLs so they can reuse
code and parcel out distinct jobs. Unlike an executable (EXE) file, a DLL cannot be directly run.
DLLs must be called from other code that is already executing. DLLs and EXEs apply only to
Windows environments. In UNIX environments, the Sun Chili!Soft ASP engine and all
components run on a Windows emulation layer (either Mainsoft MainWin or the Chili!Soft
proprietary emulation layer). The equivalent of a DLL on these emulation layers are files having
an *.so (Shared Object) filename extension.

Dynamic Shared Object (DSO)
Sun Chili!Soft ASP communicates with Apache Web Server through an object module. In the
Dynamic Shared Object (DSO) version, Apache Web Server object module entries are loaded on
an as-needed basis.

ECMAScript
ECMAScript, short for European Computer Manufacturers Association Script, is a scripting
language based on JavaScript that meets the ECMA-262 standard. ECMA, like other scripting
languages, enriches and enlivens Web pages, but is the only scripting language on the Web based
on a standard. The ECMA-262 specification outlines an object-oriented programming language
that performs computations and manipulates objects within a host environment, such as the
browser.

Enterprise JavaBeans (EJB)
Enterprise JavaBeans (EJB) is an architecture for setting up program components written in the
Java programming language that run in the server parts of a computer network running under the
client/server model. Sun Chili!Soft ASP enables ASP applications to access EJB through
Chili!Beans.

EJB is built on the JavaBeans technology for distributing program components (called beans,
using the coffee metaphor) to clients in a network. EJB offers enterprises the advantage of being
able to control changes at the server, instead of needing to update each individual client whenever
a new program component is changed or added. EJB components are reusable in multiple
applications. To deploy an EJB or component, it must be part of a specific application, called a
container.

Originated by Sun Microsystems, EJB is roughly equivalent to the Microsoft Component Object
Model/Distributed Component Object Model architecture. However, like all Java-based

Sun Chili!Soft ASP 3.6.2 Product Documentation 947

architectures, EJB-based applications can be deployed across all major operating systems, and not
just Windows. EJB program components are generally known as servlets (little server programs).
The application or container that runs the servlets is sometimes called an application server. A
typical use of servlets is to replace Web programs that use the Common Gateway Interface (CGI)
and a Perl script. Another general use is providing an interface between Web users and a legacy
mainframe application and its database.

With EJB, there are two types of beans: session beans and entity beans. An entity bean is
described as one that, unlike a session bean, has persistence and can retain its original behavior or
state.

See also:

Chili!Beans Component Reference in "Chapter 5: Developer’s Reference"

Event
In application programming, an event is a notification that occurs in response to some action. It
can be a change in state; the result of the user clicking or moving the mouse or pressing a
keyboard key; or other actions that are focus-related, element-specific, or object-specific.
Programmers write code that responds to these actions. In Web development, HTML events are
triggered and handled by code that is executed in the browser, and thus don’t generally apply to
ASP. Strictly speaking, only events that require a round-trip back to the Web server involve ASP
code.

Expression
In application programming, expression is any combination of operators, constants, literal values,
functions, names of columns, controls, and properties that result in a single value.

Extensible Markup Language (XML)
Extensible Markup Language (XML) is a simplified subset of Standard Generalized Markup
Language (SGML) that provides a file format for representing data, a method for describing data
structure, and a mechanism for extending and annotating HTML with semantic information.
Allowing an unlimited set of tags, XML tags indicate what kind of data each tag contains, rather
than indicating how something should look. For instance, a tag might hold a price, an order
number, or a name. The flexibility of XML allows the document's author to determine what kind of
data to use, and to choose the tag types that most fit the author's needs.

As a universal data format, XML provides a standard for the server-to-server transfer of different
types of structured data so that the information can be decoded, manipulated, and displayed
consistently and correctly. In addition, it enables the development of three-tier Web applications,
acting as the data transfer format between the middle-tier Web server and the client.

Extensible Stylesheet Language (XSL)
Extensible Stylesheet Language (XSL) is a style-sheet language that defines the rules for
mapping structured XML data and documents. Derived from Document Style Semantics and
Specification Language (DSSSL), XSL also has roots in the Standard Generalized Markup
Language (SGML) community.

Sun Chili!Soft ASP 3.6.2 Product Documentation 948

Using XSL, an element can be formatted and displayed in multiple places on a Web page, or
rearranged or removed from the page. Developers can then generate a presentation structure that
may be quite different from the original data structure. XSL does not replace Cascading Style
Sheets (CSS); rather, it is designed to handle the new capabilities of XML that CSS cannot.
Although CSS can be used to display simple XML data, CSS is not general enough to handle all
of the possibilities generated by XML; the syntax of XSL can.

File DSN
A file DSN (Data Source Name) refers to a collection of information, in the form of parameters
and their values, required for connecting an ASP application to a particular database. The
information is contained within a file having a *.dsn filename extension. Developers can
incorporate the database information into a connection string by referring to the file DSN rather
than needing to specify the values for each required parameter. A file DSN can be shared among
several users. Sun Chili!Soft ASP also supports system DSNs.

See also:

Enabling Database Connections on the Server in "Chapter 2: Installing and Configuring Sun
Chili!Soft ASP"

Connecting to a Database in "Chapter 4: Building a Sun Chili!Soft ASP Application"

FileSystem object
In ASP applications, the FileSystem object provides access to a computer's file system. The
FileSystem object can perform simple functions such as opening and closing files. Various
methods can be applied to the FileSystem object to affect the organization and properties of a file
system.

See also:

JScript FileSystemObject Object in "JScript Language Reference" in "Chapter 5: Developer’s
Reference"

VBScript FileSystemObject Object in "VBScript Language Reference" in "Chapter 5:
Developer’s Reference"

File upload
File upload refers to the transmission of a file from one computer system to another. To upload is
to send a file to another computer, and to download is to receive a file.

FrontPage
FrontPage is a Web site creation and management tool provided by Microsoft. FrontPage utilizes
WYSIWYG (What You See Is What You Get) editing and graphical interfaces, and includes
wizards, templates, and drag-and-drop functionality.

Sun Chili!Soft ASP 3.6.2 Product Documentation 949

Note
Sun Chili!Soft ASP enables you to run ASP pages generated by Microsoft FrontPage.
Specific questions about the installation, configuration, and use of FrontPage and
FrontPage Server Extensions should be directed to Microsoft or its representatives.

See also:

Enabling FrontPage Publishing in "Chapter 3: Managing Sun Chili!Soft ASP"

Using FrontPage Database Features in "Chapter 4: Building a Sun Chili!Soft ASP Application"

FrontPage Server Extensions
Sun Chili!Soft ASP supports but no longer installs Microsoft FrontPage Server Extensions. With
FrontPage Server Extensions, Web authors and developers working on Windows-based
computers can use the FrontPage client to publish Web pages and applications to UNIX- or
Linux-based Web servers, or to Windows NT- and Windows 2000-based computers running a
Web server other than Internet Information Server (IIS).

Note
Sun Chili!Soft ASP enables you to run ASP pages generated by Microsoft FrontPage.
Specific questions about the installation, configuration, and use of FrontPage and
FrontPage Server Extensions should be directed to Microsoft or its representatives.

See also:

Enabling FrontPage Publishing in "Chapter 3: Managing Sun Chili!Soft ASP"

Function
In application programming, a function is the general term used for a bit of code that performs a
specific, limited task. Functions (also known as subroutines) enable the programmer to divide
complex tasks into smaller, more manageable pieces. Problems can be isolated more readily since
each subroutine or function can be tested separately.

Global.asa
Global.asa is a file that contains information that is global to a specific ASP application. This file
is read and its application and session variables are initialized before the first ASP page in a given
ASP application is read. Global.asa enables the developer to specify event procedures and declare
objects that have session or application scope.

See also:

Using the global.asa File in "Chapter 4: Building a Sun Chili!Soft ASP Application"

Hostname
A hostname is the valid DNS name for a Web server.

Sun Chili!Soft ASP 3.6.2 Product Documentation 950

On Apache Web Server 1.3 and newer, the hostname is defined by the ServerName directive,
which you can find in the Apache http.conf file. The syntax is as follows:

ServerName [WEB_SERVER_HOSTNAME]

On iPlanet/Netscape Enterprise 3.6, you can find the hostname on the Netscape Administration
Web site under Server Preferences --> View Server Settings. Alternatively, you can find the
hostname in the iPlanet/Netscape magnus.conf file under ServerName. The syntax is as
follows:

ServerName [WEB_SERVER_HOSTNAME]

HP-UX
HP-UX is an acronym for Hewlett-Packard UNIX, a version of UNIX developed by Hewlett-
Packard for use on the company’s internal workstations and now available as a commercial
product.

HTML
HTML (Hypertext Markup Language) is the set of markup symbols or codes inserted in a file
intended for display on a Web page. The markup tells the Web browser how to display text and
images. Each individual markup code is referred to as an element or tag. Some elements come in
pairs, which indicate when some display effect is to begin and when it is to end.

HTML is a formal Recommendation by the World Wide Web Consortium (W3C) and is
generally adhered to by the major browsers, Netscape Navigator and Microsoft Internet Explorer.
The current version of HTML is HTML 4.0. However, both Internet Explorer and Netscape
implement some features differently and provide nonstandard extensions. Web developers using
the more advanced features of HTML 4.0 might need to design pages for both browsers and send
out the appropriate version to each user. Dynamic HTML (DHTML) is a significant feature in
HTML 4.0. What is sometimes referred to as HTML 5.0 is an extensible form of HTML called
Extensible Hypertext Markup Language (XHTML).

HTTP server
An HTTP server, also called a Web server, uses the Hypertext Transfer Protocol (HTTP) to
provide information in hypertext format. Client software relays this input from the user to the
server and displays information from the server in HTTP format. Other types of Internet-based
servers include File Transfer Protocol (FTP) and Gopher. The Web is a network consisting of
these types of servers. The most popular HTTP servers are Apache Web Server, iPlanet Web
Server Enterprise Edition (formerly Netscape), Zeus Web Server, and Microsoft Internet
Information Server (IIS).

IBM AIX
IBM AIX is an open operating system from IBM that is based on a version of UNIX. AIX/ESA
was designed for IBM System/390 or large server hardware platform. AIX/6000 is an operating
system that runs on the IBM workstation platform, the RISC System/6000.

Sun Chili!Soft ASP 3.6.2 Product Documentation 951

IBM DB2
IBM DB2 is a relational database management system for large business computers. DB2
products are offered for UNIX-based systems and personal-computer operating systems. DB2
databases can be accessed from any application program by using ActiveX Data Objects (ADO)
and the Microsoft Open Database Connectivity (ODBC) interface, the Java Database
Connectivity (JDBC) interface, or a Common Object Request Broker Architecture (CORBA)
interface broker.

Interbase
Interbase is an open-source relational database. Originally developed in 1985 by Borland
Corporation, Interbase is offered with free development and distribution rights.

Internationalization
Internationalization, also called localization, is the process of making your Web site or
application available in multiple language formats across the world.

See also:

Configuring International Support in "Chapter 3: Managing Sun Chili!Soft ASP"

Developing International Applications in "Chapter 4: Building a Sun Chili!Soft ASP Application"

Internet Services Application Programming Interface (ISAPI)
Internet Services Application Programming Interface (ISAPI) is a specification for extending
Web server functionality in the Windows environment. An ISAPI extension is a DLL that exports
specific functions according to the ISAPI specification. There are two types of ISAPI extensions:
ISAPI filters and ISAPI applications. ISAPI provides comparable functionality to the Common
Gateway Interface (CGI), but offers performance improvements on Windows-based Web servers.

iPlanet Web Server, Enterprise Edition
iPlanet Web Server, Enterprise Edition is Web server software originally developed by Netscape
and now offered by iPlanet.

ISAPI
ISAPI, short for Internet Services Application Programming Interface, is a specification for
extending Web server functionality in the Windows environment. An ISAPI extension is a DLL
that exports specific functions according to the ISAPI specification. There are two types of ISAPI
extensions: ISAPI filters and ISAPI applications. ISAPI provides comparable functionality to the
Common Gateway Interface (CGI), but offers performance improvements on Windows-based
Web servers.

Sun Chili!Soft ASP 3.6.2 Product Documentation 952

Java
Developed by Sun Microsystems, Java is an object-oriented programming language, similar to
C++. Java-based applications, or applets, can be quickly downloaded from a Web site and run
using a Java-compatible Web browser such as Netscape Navigator or Microsoft Internet Explorer.

Java programs, or source code files (.java), are compiled into a format known as bytecode files
(.class). Once compiled, these files can be executed by a Java interpreter. Most operating systems,
including Windows, Macintosh OS, and UNIX have Java interpreters and run-time environments
known as Java Virtual Machines.

See also:

Using Java Objects and Classes in "Chapter 4: Building a Sun Chili!Soft ASP Application"

Java applet
A Java applet is an HTML-based program built with Java, which a browser temporarily
downloads to and runs from a user's hard disk. Java applets can be downloaded and run by any
Java-interpreting Web browser, such as Netscape Navigator and Microsoft Internet Explorer. Java
applets can be used to add multimedia effects (such as background music, real-time video
displays, and animation), and interactivity (such as calculators and games) to Web pages.

See also:

Using Java Objects and Classes in "Chapter 4: Building a Sun Chili!Soft ASP Application"

JavaBeans
JavaBeans is an object-oriented programming interface developed by Sun Microsystems that
enables developers to build reuseable applications or program building blocks called components,
which can be deployed on any major operating system platform. Like Java applets, JavaBeans
components (called beans) give Web pages (or other applications) interactive capabilities such as
computing interest rates or varying page content based on user or browser characteristics. Sun
Chili!Soft ASP enables ASP applications to access Java objects and classes through Chili!Beans.

From a user's point-of-view, a component can be a button that you interact with or a small
calculating program that is initiated when you press the button. From a developer's point-of-view,
the button component and the calculator component are created separately and can then be used
together or in different combinations with other components in different applications or
situations.

When the components or beans are in use, the properties of a bean (for example, the background
color of a window) are visible to other beans. Beans that haven't "met" before can learn each
other's properties dynamically, and interact accordingly.

Beans are developed by using a Beans Development Kit (BDK) from Sun Microsystems. They
can be run on any major operating system platform inside a number of application environments
(known as containers), including browsers, word processors, and other applications.

To build a component with JavaBeans, you write language statements using the Java
programming language and include JavaBeans statements that describe component properties,

Sun Chili!Soft ASP 3.6.2 Product Documentation 953

such as user interface characteristics and events that trigger a bean to communicate with other
beans in the same container or elsewhere in the network.

Beans also have persistence, which is a mechanism for storing the state of a component in a safe
place. This would allow, for example, a component (bean) to "remember" data that a particular
user had already entered in an earlier user session.

JavaBeans gives Java applications the compound document capability that the OpenDoc and
ActiveX interfaces already provide.

See also:

Using Java Objects and Classes in "Chapter 4: Building a Sun Chili!Soft ASP Application"

Java Database Connectivity (JDBC)
Java Database Connectivity (JDBC) is a data access interface based on OBDC and used with the
Java programming language.

JavaScript
JavaScript is a scripting language that interacts with HTML source code and is compatible with
the Java programming language. JavaScript is the Netscape implementation of the ECMA-262
standard.

Java Virtual Machine (JVM)
The Java Virtual Machine is the cornerstone of the Sun Microsystem Java programming
language. It is the component of the Java technology responsible for Java's cross-platform
delivery, the small size of its compiled code, and its ability to protect users from malicious
programs.

The Java Virtual Machine is an abstract computing machine. Like a real computing machine, it
has an instruction set and uses various memory areas. It is reasonably common to implement a
programming language using a virtual machine; the best-known virtual machine may be the P-
Code machine of UCSD Pascal. The Java Virtual Machine does not assume any particular
implementation technology or host platform. It is not inherently interpreted, and it may just as
well be implemented by compiling its instruction set to that of a real CPU, as for a conventional
programming language. It may also be implemented in microcode, or directly in silicon.

The Java Virtual Machine knows nothing of the Java programming language, only of a particular
file format, the .class file format. A .class file contains Java Virtual Machine instructions (or
bytecodes) and a symbol table, as well as other ancillary information.

JDBC
JDBC, short for Java Database Connectivity, is a data-access interface based on OBDC and used
with the Java programming language.

Sun Chili!Soft ASP 3.6.2 Product Documentation 954

JScript
The Microsoft version of JavaScript, JScript is a standard scripting language based on the
ECMA-262 standard. JScript is specifically targeted for the Internet and is built into Internet
Explorer browsers. JScript is implemented as a fast, portable, lightweight interpreter that
processes source code embedded directly in the HTML. JScript code does not produce stand-
alone applets, but it is used to add interactivity to HTML documents. JScript uses syntax and
language features similar to the Java, C, and C++ programming languages.

See also:

JScript Language Reference in "Chapter 5: Developer’s Reference"

Key
In application programming, a key is the code for deciphering encrypted data.

Linux
Linux is an open source, UNIX-like operating system that runs on a variety of hardware platforms
and is distributed free or at low cost. Unlike proprietary operating systems, Linux is publicly open
and extendible by contributors. Linux's kernel (the central part of the operating system) was
developed by Linus Torvalds. Linux is also distributed commercially by a number of companies.

Localization
Localization is the process of adapting a Web site or application so it is appropriate for the
geographic area, or locale, in which it is used. If you are providing a Web site that will be viewed
in countries other than the United States, you can set the default locale for the Web server by
using the Sun Chili!Soft ASP Administration Console. Within an ASP page, you can use the
CODEPAGE tag within the script delimiters to specify the proper code page.

See also:

Configuring International Support in "Chapter 3: Managing Sun Chili!Soft ASP"

Developing International Applications in "Chapter 4: Building a Sun Chili!Soft ASP Application"

Local Language Identifier (LCID)
A Local Language Identifier (LCID) is a 32-bit value that identifies a geographic locale. An
LCID consists of a LangID and a sort key ID. The system administrator can set the LCID in Sun
Chili!Soft ASP by using the Administration Console.

See also:

Configuring International Support in "Chapter 3: Managing Sun Chili!Soft ASP"

Developing International Applications in "Chapter 4: Building a Sun Chili!Soft ASP Application"

Macromedia UltraDev
Macromedia UltraDev is a version of Macromedia Dreamweaver that enables you to develop
Web sites and Web applications that, among other things, connect to a database; incorporate ASP,

Sun Chili!Soft ASP 3.6.2 Product Documentation 955

JSP and ColdFusion applications; and customize the Web site to display personalized content.
The UltraDev comes with many more advanced development tools not offered in the regular
version of Macromedia Dreamweaver.

Method
In application programming, a method is a logical operation provided by an object. In object-
oriented programming, an object invokes a method by sending a message that contains the
receiving object and the name of the specific method to invoke. Often, the name of the method is
called a selector. Objects use messages as the mechanism through which they interact.

Microsoft Access
Microsoft Access is an ODBC-compliant database application included in the Microsoft Office
Suite.

Microsoft Data Access Components
Microsoft Data Access Components are comprised of ADO and Remote Data Service (RDS),
Open Database Connectivity (ODBC), and the Microsoft OLE DB Provider for ODBC, which are
released, documented, and supported together. Of these, Sun Chili!Soft ASP supports ADO and
ODBC only.

Microsoft FrontPage
Microsoft FrontPage is a Web site creation and management tool. FrontPage uses WYSIWYG
(What You See Is What You Get) editing and graphical interfaces, and includes wizards,
templates, and drag-and-drop functionality.

Microsoft Internet Information Server or Internet Information Services (IIS)
Microsoft Internet Information Server or Internet Information Services (IIS) is an HTTP server
that runs on Windows NT Server 4.0 and Windows 2000 Server. An important feature of IIS is its
Active Server Pages (ASP) capability, which enables Web authors to combine HTML, server-side
scripts, and ActiveX controls. Sun Chili!Soft ASP brings ASP functionality to many other
platforms in addition to Windows NT and Windows 2000 with IIS.

Microsoft JScript
The Microsoft version of JavaScript, JScript is a scripting language based on the ECMA-262
standard. JScript is specifically targeted for the Internet and built into Internet Explorer browsers.
The JScript interpreter processes source code embedded directly in the HTML. JScript code does
not produce stand-alone applets, but it is used to add interactivity to HTML documents. JScript
uses syntax and language features similar to the Java, C, and C++ programming languages.

See also:

JScript Language Reference in "Chapter 5: Developer’s Reference"

Sun Chili!Soft ASP 3.6.2 Product Documentation 956

Microsoft SQL Server
Microsoft SQL Server is Structured Query Language (SQL) server software offered by Microsoft.
Sun Chili!Soft ASP is fully compatible with Microsoft SQL Server systems.

Microsoft Transaction Server (MTS)
Microsoft Transaction Server (MTS) is a component-based transaction processing system
available on the Windows platform only. MTS defines an application-programming model for
developing distributed, components-based applications, and provides a run-time infrastructure for
deploying and managing these applications. Sun Chili!Soft ASP does not support MTS.

Microsoft Visual Basic
Microsoft Visual Basic is a high-level, visual programming language based on the BASIC
(Beginner's All-purpose Symbolic Instruction Code) language and designed for building
Windows-based applications. Visual Basic was one of the first products to provide a graphical
programming environment and a paint metaphor for developing user interfaces. By dragging and
dropping controls, such as buttons and dialog boxes, and then defining their appearance and
behavior, the Visual Basic programmer is able to add a substantial amount of code without
getting bogged down in syntactical details.

Although Visual Basic is not considered a true object-oriented programming language, it does
embrace an object-oriented philosophy. It is sometimes called an event-driven language, because
each object can react to different events.

Microsoft Visual Basic Scripting Edition (VBScript)
Microsoft Visual Basic Scripting Edition (VBScript) is a scripting language based on the Visual
Basic programming language. Similar to both JScript and JavaScript, VBScript enables Web
authors to include interactive controls, such as buttons and scroll bars, on their Web pages. For a
Visual Basic programmer, VBScript is the easiest scripting language to learn. (JScript is easier for
C/C++ programmers.) Sun Chili!Soft ASP supports both VBScript and JScript.

See also:

VBScript Language Reference in "Chapter 5: Developer’s Reference"

Microsoft Visual InterDev
Microsoft Visual InterDev is a team-based tool designed for developing HTML-based, data-
driven, cross-platform Web applications for the Internet and corporate intranets. Visual InterDev
contains a WYSIWYG (What You See Is What You Get) HTML editor, support for Dynamic
HTML, client- and server-side debugging, database tools, and support for team-based
development. Visual InterDev is also fully interoperable with Microsoft FrontPage for effective
workgroup development of Web applications.

Moniker
A moniker is a name that uniquely identifies a Component Object Model (COM) object.
Monikers support an operation known as binding, which is the process of locating the object

Sun Chili!Soft ASP 3.6.2 Product Documentation 957

named by the moniker, activating it or loading it in memory if it isn't already there, and returning
an interface pointer to it.

MTS
MTS, short for Microsoft Transaction Server, is a component-based transaction processing
system available on the Windows platform only. MTS defines an application-programming model
for developing distributed, components-based applications, and provides a run-time infrastructure
for deploying and managing these applications. Sun Chili!Soft ASP does not support MTS.

Multi-threading
Multi-threading refers to running several processes in rapid sequence within a single program,
regardless of which logical method of multi-tasking is being used by the operating system.
Because the user's sense of time is much slower than the processing speed of a computer, the
impression of multi-tasking appears simultaneous, even though only one task at a time can use a
computer processing cycle.

See also:

Threading

MyODBC
MyODBC is the ODBC driver for the MySQL database server produced by TCX Data-Consult in
Sweden. MySQL provides support for ODBC by means of the MyODBC program.

MyODBC allows you to:

� Connect to a remote database server from wherever you have access to a desktop
application.

� Export a database to the remote server, and import a database from the remote server.

� Link a local database to a remote database.

See also:

Configuring a Database in "Chapter 3: Managing Sun Chili!Soft ASP"

MySQL Parameters in "Chapter 3: Managing Sun Chili!Soft ASP"

MySQL
MySQL is an open source database and relational database management system. MySQL uses an
implementation of Structured Query Language (SQL).

See also:

Configuring a Database in "Chapter 3: Managing Sun Chili!Soft ASP"

MySQL Parameters in "Chapter 3: Managing Sun Chili!Soft ASP"

Sun Chili!Soft ASP 3.6.2 Product Documentation 958

Netscape Enterprise Web Server
See iPlanet Web Server, Enterprise Edition.

NSAPI
NSAPI, short for Netscape Server API, is the API for Netscape Web servers. NSAPI enables
programmers to create Web-based applications that are more sophisticated and run much faster
than applications based on CGI.

Object
In object-oriented programming, an object is a variable comprising both routines and data that is
treated as a discrete entity. An object is based on a specific model, where a client using an
object's services gains access to the object's data through an interface consisting of a set of
methods or related functions. The client can then call these methods to perform desired
operations.

See also:

Object-oriented programming

Object-oriented programming
In object-oriented programming, an application is viewed as a collection of discrete objects (self-
contained collections of data structures and routines that interact with other objects).

Object model
In application programming, the object model is the set of rules that makes an object perform a
specific task. The object model is the structural foundation for object-oriented programming
languages, such as C++.

Open Database Connectivity (ODBC)
Open Database Connectivity (ODBC) is a standard protocol for database servers. ODBC provides
a common language for ASP applications to gain access to databases on a network. UNIX and
Linux versions of Sun Chili!Soft ASP include ODBC drivers for a number of different databases.
ODBC drivers enable you to connect to the databases and access their data.

See also:

Configuring a Database in "Chapter 3: Managing Sun Chili!Soft ASP"

ODBC driver
An ODBC driver is a module that enables a database to be accessed through ODBC. Each type of
database (MySQL, Informix, DB2, and so forth) requires its own ODBC driver. Sun Chili!Soft
ASP enables you to specify ODBC drivers by using the Sun Chili!Soft ASP Administration
Console.

See also:

Configuring a Database in "Chapter 3: Managing Sun Chili!Soft ASP"

Sun Chili!Soft ASP 3.6.2 Product Documentation 959

ODBC Manager
The ODBC Manager manages connections between ODBC drivers and databases by using
information stored in the Data Source Name (DSN).

See also:

Configuring a Database in "Chapter 3: Managing Sun Chili!Soft ASP"

Parameter
In programming, a parameter is a value given to a variable. A parameter acts as placeholder in a
query or stored procedure that can be filled in when the query or stored procedure is executed.
Parameters enable you to use the same query or stored procedure many times, each time with
different values.

Path name
In a computer operating system, a path is the route through a file system to a particular file. A
path name (or pathname in Windows) is the specification of that path, including the name of the
file. An absolute path name (or fully qualified path name) specifies the complete path name. A
relative path name specifies a path relative to the directory to which the operating system is
currently set.

Each operating system has its own format for specifying a path name. The DOS, Windows, and
OS/2 operating systems use this format:

Drive_letter:directoryname\subdirectoryname\filename.suffix

In UNIX-based systems, the format is:

/directory/subdirectory/filename

In UNIX, the storage drive location is not an explicit part of the path name.

POP3
POP3, short for Post Office Protocol, is a protocol used to retrieve e-mail from a mail server.
Most e-mail applications (also called e-mail clients) use the POP protocol, although some can use
the newer IMAP (Internet Message Access Protocol). POP3 is supported in the Sun Chili!Soft
SpicePack with the Chili!Mail component.

Port (TCP/IP)
A TCP/IP port is a "logical connection place." Using the Internet protocol, TCP/IP, a port enables
a client program to specify a particular server program on a computer in a network. Higher-level
applications that use TCP/IP, such as Hypertext Transfer Protocol (HTTP), have port numbers
that are preassigned by the Internet Assigned Numbers Authority (IANA). These port numbers
are called "well-known ports." Other application processes are assigned port numbers
dynamically for each connection. When a service (or server program) is started initially, it is said
to "bind" to its designated port number. Any client program that wants to use that server must
send a request to bind to the designated port number.

Sun Chili!Soft ASP 3.6.2 Product Documentation 960

Port numbers are between 0 and 65536. Ports 0 to 1024 are reserved for use by certain privileged
services. For the HTTP service, port 80 is the default and does not need to be specified in the
Uniform Resource Locator (URL).

Portability
Portability is a characteristic attributed to a computer application if that application can run on an
operating system other than the one for which it was developed, without requiring a major
rework. Porting software to a different operating system involves doing any work required to
make the computer run in the new environment, such as resolving programming language
differences, converting data, and adapting to new system procedures for running an application.

In general, applications that use standard application programming interfaces (APIs) such as the
X/Open UNIX 95 standard C language interface, are portable. Ideally, such applications can
simply be compiled for the operating system to which they are being ported. However, if an
application uses operating system extensions or special capabilities that are not present in the new
operating system, these features must be replaced with comparable ones in the new operating
system.

Porting software typically involves some work. However, the Java programming language and
runtime environment makes it possible to develop applications that run on any operating system
supporting the Java standard (from Sun Microsystems) without any porting work. Java applets in
the form of precompiled bytecode can be sent from a server program in one operating system to a
client program (such as a Web browser) running on another operating system without change.
Sun Chili!Soft ASP supports Java classes through Chili!Beans.

See also:

Using Java Objects and Classes in "Chapter 4: Building a Sun Chili!Soft ASP Application"

PostgreSQL
PostgreSQL is a sophisticated Object-Relational Database Management System (DBMS),
supporting almost all SQL constructs, including subselects, transactions, and user-defined types
and functions.

Procedural-based programming
Procedural-based programming is a method of programming that predates object-oriented
programming. In this method, a programmer writes instructions that are followed by a computer
from start to finish. Procedural-based programming requires that all instructions within the
program follow a set of procedures, which are organized in a strict order and follow logical rules
of procedure.

Process
A process is an instance of an application running on a computer. On UNIX and some other
operating systems, a process is started when a program is initiated (either by a user entering a
shell command or by another program). An application that is being shared by multiple users
generally has one process for each user at some stage of execution.

Sun Chili!Soft ASP 3.6.2 Product Documentation 961

Property
In application programming, a property is a named attribute of an object. Properties define object
characteristics, such as size and name, or the state of an object, such as enabled or disabled.
Properties do not take any arguments. All properties return a value; however, some properties are
read-only, and some are read/write.

Request object
The Request object is a Sun Chili!Soft ASP built-in object that retrieves the values the client
browser passed to the server during an HTTP request.

See also:

ASP Request Object in "Chapter 5: Developer’s Reference"

Response object
The Response object is a Sun Chili!Soft ASP built-in object that you can use to control output
sent to the client.

See also:

ASP Response Object in "Chapter 5: Developer’s Reference"

Root directory
A root directory is the point of entry into the directory tree in a disk-based hierarchical directory
structure. Branching from the root are various directories and subdirectories, each of which can
contain one or more files and subdirectories.

Scripting
Scripting is a set of instructions for performing a special task in an application or utility, or on a
Web site. Scripting languages are an intermediate stage between HTML and programming
languages such as Java, C++, and Visual Basic. The primary difference between scripting
languages and programming languages is that the syntax and rules of scripting languages are less
rigid and intricate than those of programming languages. On the Web, scripts are processed either
by the client ("client-side scripting") or the server ("server-side scripting"). Examples of scripting
languages are Perl, JavaScript, VBScript, and JScript. Sun Chili!Soft ASP supports VBScript and
JScript.

See also:

Adding Scripts in "Chapter 4: Building a Sun Chili!Soft ASP Application"

Server-side script
A server-side script is interpreted and executed by the server, and the results are sent to the
browser. ASP scripts are server-side scripts. With Sun Chili!Soft ASP, when a browser requests
an ASP page, the Web server sends the request to the Sun Chili!Soft ASP Server. The Sun
Chili!Soft ASP Server reads the HTML and interprets and executes the script code, and then
sends the resulting page to the browser.

Sun Chili!Soft ASP 3.6.2 Product Documentation 962

Unlike client-side scripting, server-side scripting enables you to deliver highly customized Web
pages without requiring any scripting intelligence on the client side. In fact, server-side scripting
enables users to receive customized pages based on browser capabilities, user preferences, and
content from a server-side database.

See also:

Adding Scripts in "Chapter 4: Building a Sun Chili!Soft ASP Application"

Secure Sockets Layer (SSL)
Secure Sockets Layer (SSL) is a security standard developed by Netscape Communications to
secure application protocols such as HTTP over the Internet. SSL uses a key exchange method
(RSA is most common) to establish an environment in which all data exchanged is encrypted
with a cipher and hashed to protect it from eavesdropping and alteration. Primarily used for
handling commerce payments, SSL is the most widely deployed security protocol on the Internet
today. The Internet Engineering Task Force (IETF) has generated a successor of SSL, a network
standard called Transport Layer Security (TLS).

SequeLink
SequeLink is server-based middleware provided by DataDirect Technologies (formerly a business
unit of MERANT). SequeLink delivers optimized performance and reduced administration
through a single, universal ODBC client and the SequeLink Common Server DBMS interface,
removing the need for gateways and DBMS vendor middleware. Sun Chili!Soft ASP includes the
SequeLink client for connecting to remote Microsoft Access and Microsoft SQL Server 6.5
databases running on Windows systems.

See also:

Configuring SequeLink in "Chapter 3: Managing Sun Chili!Soft ASP"

Servlet
A servlet is a small application that runs on a server. The term was coined in the context of the
Java applet, a small application that is sent as a separate file along with a Web (HTML) page.
Java applets usually run on a client and provide services such as performing a calculation for a
user or positioning an image based on user interaction.

Server Name
Server Name (or ServerName) is a parameter specifying the name given to a specific database
server either on the Internet or within an intranet. Sometimes referred to as a "friendly name," this
name is a string of letters that gives the server an identity and resolves to the IP address of the
computer running the database server.

Server object
The Server object is a Sun Chili!Soft ASP built-in object that provides access to methods and
properties on the server. Most of its methods and properties serve as utility functions.

Sun Chili!Soft ASP 3.6.2 Product Documentation 963

See also:

ASP Server Object in "Chapter 5: Developer’s Reference"

Session object
The Session object is a Sun Chili!Soft ASP built-in object that stores information needed for a
particular user session. Variables stored in the Session object are not discarded when the user
jumps between pages in the application; instead, they persist for the entire user session. The Sun
Chili!Soft ASP Server automatically creates a Session object when a user who does not already
have a session requests an ASP page. The server destroys the Session object when the session
expires or is abandoned. The Session object enables the ASP developer to:

� Automatically identify and classify requests coming from a single browser client into a
logical application "session" on the server.

� Store session-scoped data on the server for use across multiple browser requests.

� Use session lifetime management events (OnSessionStart, OnSessionEnd).

� Automatically release session information if the browser does not revisit an application
after a specified timeout period.

See also:

ASP Session Object in "Chapter 5: Developer’s Reference"

Session state
Session state refers to information that the Sun Chili!Soft ASP Server stores in the ASP Session
object about a sequence of requests that all come from the same browser. HTTP is a stateless
protocol, meaning that it provides no way for the ASP Server to keep track of session state. As a
result, ASP applications that maintain session-state information (such as shopping carts and data
scrolling) require this type of infrastructure help.

See also:

ASP Session Object in "Chapter 5: Developer’s Reference"

Shared hosting
Shared hosting refers to a Web-hosting environment where multiple Web sites share the resources
of a single server (or group of servers) by means of virtual hosts. These Web sites may have
different domain names, but they all ultimately resolve to the same IP address on the computer
hosting the Web sites.

See also:

Running Sun Chili!Soft ASP in a Shared Web Hosting Environment in "Chapter 3: Managing
Sun Chili!Soft ASP"

Sun Chili!Soft ASP 3.6.2 Product Documentation 964

SMTP
SMTP, short for Simple Mail Transfer Protocol, is a TCP/IP (Transmission Control
Protocol/Internet Protocol) protocol used for sending and receiving e-mail. However, because
SMTP is limited in its ability to queue messages at the receiving end, it is usually used with one
of two other protocols: POP3 (Post Office Protocol 3) or IMAP (Internet Message Access
Protocol). Those protocols enable the user to save messages in a server mailbox and download
them periodically from the server. Messaging applications typically use SMTP for sending e-mail
and either POP3 or IMAP for downloading messages that have been received for them by the
mail server.

SMTP is usually implemented to operate over TCP (Transmission Control Protocol) port 25. You
can find the details of SMTP in Request for Comments 821 of the IETF (Internet Engineering
Task Force). An alternative to SMTP, widely used in Europe, is X.400.

See also:

Chili!Mail (SMTP) Component in "Chapter 5: Developer’s Reference"

SpicePack
SpicePack is a collection of COM components that handle common Active Server Pages (ASP)
application functionality. These components can be instantiated and called from ASP pages to
send and receive e-mail and upload files from client browsers.

See also:

SpicePack Component Reference in "Chapter 5: Developer’s Reference"

SQL
SQL, short for Structured Query Language, is the international standard database language used
in querying, updating, and managing relational databases. SQL can be used to retrieve, sort, and
filter data extracted from a database.

Structured Query Language (SQL)
Structured Query Language (SQL) is the international standard database language used in
querying, updating, and managing relational databases. SQL can be used to retrieve, sort, and
filter data extracted from a database.

Sun Solaris
Sun Solaris is the computer operating system provided by Sun Microsystems for its family of
Scalable Processor Architecture-based processors and for Intel-based processors. Sun emphasizes
the system's availability (meaning it seldom crashes), its large number of features, and its
Internet-savvy design. Sun developed the platform-independent Java programming language and
runtime environment, and Solaris systems include Java and the Java Development Kit (JDK).

Sun provides three extensions for its Solaris operating system:

� Easy Access Server, which is designed to run in a network that also has Windows NT
systems

Sun Chili!Soft ASP 3.6.2 Product Documentation 965

� Enterprise Server, which is aimed at the "business-critical" environment, and includes
support for clustering

� Internet Service Provider (Internet service provider) Server

Symbolic link
A symbolic link is a reference to an item that, when accessed, takes the user directly to that item.
For example, a symbolic link in one directory (or folder in Windows) could, when double-
clicked, open a file that is in a completely different directory. In ASP applications, you can use a
symbolic link (also called a virtual link) to redirect the browser to a different HTTP path name
than the URL address provided by the user. This function is useful when you want Web site
visitors to always use the same URL to get the most current information. A symbolic link can be
programmed to refer to any HTTP path name.

System data source name (DSN)
A system data source name (DSN) stores information, in the form of parameters and their values,
that the ASP Server needs for connecting to a particular database. The system administrator
creates system DSNs by using the Sun Chili!Soft ASP Administration Console. ASP developers
can then incorporate this information in a connection string simply by referencing the DSN,
rather than specifying all of the parameters in the connection string.

See also:

Enabling Database Connections on the Server in "Chapter 2: Installing and Configuring Sun
Chili!Soft ASP"

Configuring a Database in "Chapter 3: Managing Sun Chili!Soft ASP"

Connecting to a Database in "Chapter 4: Building a Sun Chili!Soft ASP Application"

Thread
In computer programming, a thread is a process that is part of a larger process or application. For
an application that can handle multiple concurrent users, a thread is the information needed to
serve one individual user or a particular service request. It is placeholder information associated
with a single use of an application that can handle multiple concurrent users.

Threading refers to the number of processes that are run within a single application. Multi-
threading refers to running several processes in rapid sequence within a single program,
regardless of which logical method of multi-tasking is being used by the operating system.
Because the user's sense of time is much slower than the processing speed of a computer, the
impression of multi-tasking appears simultaneous, even though only one task can use a computer
processing cycle at a time.

Threading
In computer programming, a thread is a process that is part of a larger process or application. For
an application that can handle multiple concurrent users, a thread contains the information needed
to serve one individual user or particular service request.

Sun Chili!Soft ASP 3.6.2 Product Documentation 966

Threading refers to the number of processes that are run within a single application. In multi-
threading, a thread is created and maintained for each concurrent user or request from another
application. The thread enables the application to know which user is being served as the
application is alternately reentered on behalf of different users. Multi-threading refers to running
several processes in rapid sequence within a single application, regardless of which logical
method of multi-tasking is being used by the operating system.

Multi-threading and multi-tasking are similar and are often confused. Today's computers can only
execute one instruction at a time, but because they operate so fast, they appear to run many
applications and serve many users simultaneously. The computer operating system gives each
application a turn at running, and then requires it to wait while another gets a turn. Each of these
applications is viewed by the operating system as a task for which certain resources are identified
and tracked. The operating system manages each application on the system (spreadsheet, word
processor, Web browser) as a separate task and lets you look at and control items on a task list. If
the program initiates an I/O request, such as reading a file or writing to a printer, it creates a
thread so that the application will be reentered at the right place when the I/O operation
completes. Meanwhile, other concurrent uses of the application are maintained on other threads.
Most of today's operating systems provide support for both multi-tasking and multi-threading.
They also allow multi-threading within application processes so that the system is saved the
overhead of creating a new process for each thread.

The Portable Operating System Interface.4a C specification provides a set of application
programming interfaces that enable a programmer to include thread support in the application.
Higher-level program development tools and application subsystems and middleware also offer
thread management facilities. Object-oriented programming languages also accommodate and
encourage multi-threading in several ways. Java supports multi-threading by including
synchronization modifiers in the language syntax, by providing class developed for multi-
threading that can be inherited by other classes, and by performing background "garbage
collection" (recovering data areas that are no longer being used) for multiple threads.

Transition
In object-oriented programming, a transition is a type of filter that marks the passage of a visual
object from one style or state to another. There are two kinds of transition filters: Reveal and
Blend. The Reveal transition reveals what is behind a visual object by using one of 23 transition
styles. The Blend transition fades the object in and out of view.

Virtual directory
A virtual directory is a URL defined on a Web server that refers to a physical directory on the
server file system. For example, on a Windows-based system, the URL http://myserver/caspdoc
might refer to a physical directory having the path name c:\my documents\caspdoc. When a
browser requests the URL for a virtual directory, the Web server returns the content contained in
the physical directory to which it refers.

Sun Chili!Soft ASP 3.6.2 Product Documentation 967

Virtual host
A virtual host is a Web server feature that enables one instance of the Web server to service
multiple hostnames. Depending on the type of Web server, a virtual host might or might not be
given a unique IP address. For more information, consult the documentation for the Web server
you are running. Sun Chili!Soft ASP supports virtual hosts.

See also:

Virtual Server

Enabling ASP for a Virtual Host in "Chapter 3: Managing Sun Chili!Soft ASP"

Virtual server
A virtual server is an instance of a Web (HTTP) server that runs on the same physical computer
as another instance of the same type of Web server, giving the appearance of being a separate
HTTP server. Each virtual server has a unique domain name and IP address.

Virtual servers are frequently used by Internet Service Providers (ISPs) to enable different Web
site owners to use and administer their own Web site as though they had complete control of the
server. Users of virtual servers can administer their own file directories, add e-mail accounts and
address assignments, assign multiple domain names that resolve to a basic domain name without
involvement from the ISP, manage their own logs and statistics analysis, and maintain passwords.

See also:

Virtual Host.

Visual Basic (VB)
Visual Basic (VB) is a high-level, visual programming language based on the BASIC (Beginner's
All-purpose Symbolic Instruction Code) language, designed by Microsoft for building Windows-
based applications. VB was one of the first products to provide a graphical programming
environment and a paint metaphor for developing user interfaces. By dragging and dropping
controls, such as buttons and dialog boxes, and then defining their appearance and behavior, the
VB programmer is able to add a substantial amount of code without getting bogged down in
syntactical details.

Although VB is not considered a true object-oriented programming language, it does embrace an
object-oriented philosophy. It is sometimes called an event-driven language, because each object
can react to different events.

Visual Basic Scripting Edition (VBScript)
Visual Basic Scripting Edition (VBScript) is a scripting language developed by Microsoft that is
based on the more complex Visual Basic (VB) programming language. Similar to both JScript
and JavaScript, VBScript enables Web authors to include interactive controls, such as buttons and
scroll bars, on their Web pages. For a VB programmer, VBScript is the easiest scripting language
to learn. (JScript is easier for C/C++ programmers.) Sun Chili!Soft ASP supports both VBScript
and JScript.

See also:

Sun Chili!Soft ASP 3.6.2 Product Documentation 968

VBScript Language Reference in "Chapter 5: Developer’s Reference"

Visual InterDev
Visual InterDev is a tool provided by Microsoft for developing HTML-based, data-driven, cross-
platform Web applications for the Internet and corporate intranets. Visual InterDev contains a
WYSIWYG (What You See Is What You Get) HTML editor, support for Dynamic HTML,
client- and server-side debugging, database tools, and support for team-based development.
Visual InterDev is also fully interoperable with Microsoft FrontPage for effective workgroup
development of Web applications.

W3C
The W3C, short for World Wide Web Consortium, was founded in 1994 to develop common
standards and protocols for the World Wide Web. Jointly hosted by the Massachusetts Institute of
Technology Laboratory for Computer Science (MIT/LCS) in the United States, the Keio
University Shonan Fujisawa Campus in Asia, and the Institut National de Recherche en
Informatique et en Automatique (INRIA) in Europe, the W3C is a vendor-neutral international
industry consortium. Working with its staff and the global Web community, the W3C produces
free, interoperable specifications and sample code, along with reference materials for the World
Wide Web.

Web server
A Web server, also called an HTTP server, uses the Hypertext Transfer Protocol (HTTP) to
provide information in hypertext format. Clients relay this input from the user to the server and
display information on the server in the HTTP format. Other types of Internet-based servers
include File Transfer Protocol (FTP) and Gopher. The Web is a network consisting of these types
of servers. HTTP servers are commonly referred to as Web servers. The most popular HTTP
servers are Apache Web Server, iPlanet Web Server, Enterprise Edition (formerly Netscape),
Zeus Web Server, and Microsoft Internet Information Server (IIS).

Web session
Web session defines a period of time during which a user's browser is requesting information
from a Web server. Because HTTP is a stateless protocol, it does not provide a mechanism to
maintain state information between requests from a browser. With Sun Chili!Soft ASP,
developers can use the built-in Session object to maintain session information for each user,
providing consistent user sessions on the Web.

See also:

ASP Session Object in "Chapter 5: Developer’s Reference"

World Wide Web Consortium (W3C)
The World Wide Web Consortium (W3C) was founded in 1994 to develop common standards
and protocols for the World Wide Web. Jointly hosted by the Massachusetts Institute of
Technology Laboratory for Computer Science (MIT/LCS) in the United States, the Keio
University Shonan Fujisawa Campus in Asia, and the Institut National de Recherche en

Sun Chili!Soft ASP 3.6.2 Product Documentation 969

Informatique et en Automatique (INRIA) in Europe, the W3C is a vendor-neutral international
industry consortium. Working with its staff and the global Web community, the W3C produces
free, interoperable specifications and sample code, along with reference materials for the World
Wide Web.

XML (Extensible Markup Language)
XML, short for Extensible Markup Language, is a simplified subset of Standard Generalized
Markup Language (SGML) that provides a file format for representing data, a method for
describing data structure, and a mechanism for extending and annotating HTML with semantic
information. Allowing an unlimited set of tags, XML tags indicate what kind of data each tag
contains, rather than indicating how something should look. For instance, a tag might hold a
price, an order number, or a name. The flexibility of XML allows the document's author to
determine what kind of data to use and to choose the tag types that most fit the author's needs.

As a universal data format, XML provides a standard for the server-to-server transfer of different
types of structured data so that the information can be decoded, manipulated, and displayed
consistently and correctly. In addition, it enables the development of three-tier Web applications,
acting as the data transfer format between the middle-tier Web server and the client.

XML data type
An XML data type indicates that the contents of an element can be interpreted both as a string
and as a typed value (number, date, and so forth). The data type of an XML element indicates that
the element contents can be parsed or interpreted to yield an object more specific than a string.
Universal Resource Identifiers (URIs) identify data types. The URI is simply a reference to a
section of a document that defines the appropriate parser and storage format to the element.

There are two main contexts for data types. The first occurs when dealing with database
application-programming interfaces (APIs) in which all elements with the same name typically
contain the same type of contents (for example, all sizes contain integers). The second context
occurs when the type of content varies widely from instance to instance. The frequency and
flexibility of this context varies according to the software being created. For instance, size could
contain the integer 6, or the word "small," or even a formula for computing the size.

XML object model
The XML object model tracks the World Wide Web Consortium Document Object Model. The
XML parser exposes the XML object model, making it possible to access as objects each of the
nodes within an XML tree. Through script, it is then possible to navigate and manipulate an XML
tree.

XSL (Extensible Stylesheet Language)
XSL (Extensible Stylesheet Language) is a language that defines the rules for mapping structured
XML data and documents. Derived from Document Style Semantics and Specification Language
(DSSSL), XSL also has roots in the Standard Generalized Markup Language (SGML)
community.

Sun Chili!Soft ASP 3.6.2 Product Documentation 970

Using XSL, an element can be formatted and displayed in multiple places on a Web page, or
rearranged or removed from the page. Developers can then generate a presentation structure that
may be quite different from the original data structure. XSL does not replace Cascading Style
Sheets (CSS); rather, it is designed to handle the new capabilities of XML that CSS cannot.
Although CSS can be used to display simple XML data, CSS is not general enough to handle all
of the possibilities generated by XML; the syntax of XSL can.

XSL control
The XSL control is an ActiveX control that enables a Web browser to display output. In other
words, the XSL control enables XML data to be displayed within an HTML page by using an
XSL style sheet.

Zeus Web Server
The Zeus Web Server is a highly scalable Web server produced by Zeus Technologies.

Sun Chili!Soft ASP 3.6.2 Product Documentation 971

Index

@if statement 544, 545

$1. . . $9 property 670

JScript objects 670

RegExp object 670

Abandon 488

Abandon method 420

Abs function 771, 772

abs method 658

Absolute path name 934

AbsolutePage 343, 344

AbsolutePosition property 345, 346

Access databases 148, 212

acos method 658

ActiveConnection property 226, 346, 347

ActiveX Data Objects 151

ActualSize property 270

Ad Rotator component 423, 424, 425, 426,
427, 428

Ad Rotator Component 426, 427

Add method 587, 588, 706, 840

AddFolders method 911

AddHeader 471

AddHeader method 403, 404

Addition operator 512, 732

AddNew method 298

Administration Console 937

Accessing 72

Administration Console Web server 75

Security 76

ADO 151, 152, 153, 154, 155, 215, 216, 217,
218, 219, 924, 925

ADO collections 376, 377, 380, 381, 382,
384

ADO Command object 217

ActiveConnection property 226

CommandText property 228

CommandTimeout property 228, 229

CreateParameter method 219

Execute method 220, 221, 222

Name property 230

Prepared property 230

Property 229, 230

State property 232

ADO Connection object 232

Attributes property 248, 249

BeginTrans

CommitTrans

Rollback Trans 245

Close method 235

CommandTimeout property 249, 250

ConnectionString property 250, 251

ConnectionTimeout property 252, 253

CursorLocation property 253

DefaultDatabase property 254

Execute method 239

IsolationLevel property 254, 255

Mode property 256, 257

Open method 244, 245

Sun Chili!Soft ASP 3.6.2 Product Documentation 972

OpenSchema method 240, 243

Provider property 257, 258

State property 258

Version property 260

ADO Error object 261, 262

NativeError property 265

SQLState property 266

ADO Error Object

Description property 263

Number property 265

Source property 265, 266

ADO Errors 924

ADO Field object 266, 267, 268

ActualSize property 270

AppendChunk method 268

Attributes property 271

DefinedSize property 272

GetChunk method 269

Name property 272

NumericScale property 272

OriginalValue property 273

Precision property 275

Type property 275, 277

UnderlyingValue property 278

Value property 278

ADO objects 288

ADO Parameter object 280

ADO Parameter object AppendChunk
method 281

ADO Parameter object Direction property
283

Attributes property 282

Name property 284

NumericScale property 284

Precision property 284, 285

Size property 285

Type property 285

Value property 287

ADO Recordset object 293, 294, 295, 296,
297

AbsolutePosition property 345

ActiveConnection property 346

AddNew method 298

ADO Recordset object AbsolutePage
property 343

BOF

EOF properties 348, 349, 350

Bookmark property 352

CacheSize property 352

CancelBatch method 299

CancelUpdate method 301

Clone method 304

Close method 305

CursorLocation property 355

CursorType property 355

Delete method 309, 310

EditMode property 358

Filter property 359, 361

GetRows method 314

LockType property 363

MarshalOptions property 364

MaxRecords property 366

Move method 317, 318, 321

MoveFirst

MoveLast

MoveNext

Sun Chili!Soft ASP 3.6.2 Product Documentation 973

MovePrevious methods 322, 323

NextRecordset method 328, 329

Open method 330, 331, 332

PageCount property 367

PageSize property 367

RecordCount property 372

Recordset object Source property 370

Requery method 332

Resync method 333

State Property 368

Status property 368, 369

Supports method 334, 335

Update method 338

UpdateBatch method 342

AFS 178

AllowOutOfProcCmpnts 168

AllowSessionState 168

anchor method 679

AND EQUALS (&=) operator 514

AND operator (&) 514, 732

Apache Web Server 936

Configuration file changes 61

FrontPage support 116, 117

HP Apache-based 30

Non-DSO 57, 58

Starting in SSL mode 113

Supported versions 10

Troubleshooting 927

Append method 377, 378

AppendChunk method 268, 269

AppendToLog 472

AppendToLog method 404

Application events 189

Application object 194, 196, 386, 387, 388,
389

Arguments property 651

Array function 772

Array object 556, 557, 558, 559, 560

Asc function 773

asin method 659

ASP applications 937

Adding 100, 101

Configuring 99

Creating 183

Defining 68, 156, 157, 159, 176, 177, 178,
188

Editing 104

International 90, 91, 212, 214

Removing 103

ASP components 423

ASP Counters component 445

ASP errors logging 108

ASP objects 388

ASP overview 12, 13, 934

ASP page 184

ASP script 184, 185, 186

ASP Server 938

Changing settings 85

Configuring applications 156, 157

Diagnostics 110

Installing 15

Logging 110

Monitoring 106

Security 96, 99

Starting and stopping 89

Sun Chili!Soft ASP 3.6.2 Product Documentation 974

Uninstalling 66, 67

ASP Tools component 448

Assignment operator 513, 733, 734

atan method 659

atan2 method 659

AtEnd method 603

AtEndOfLine property 695, 903

AtEndOfStream property 695, 696, 904

AtIf statement 544

Atn function 773

Attributes property 606, 607, 637, 638, 860,
861, 890, 891

Authoring tools 184

AvailableSpace property 593, 594, 846, 847

big method 679

BinaryRead 464

BinaryRead method 398, 399

BinaryWrite 472

BinaryWrite method 405

blink method 680

bold method 680, 681

Bookmark property 352

Boolean object 561

Border property 426, 427

break statement 539

Browsecap.ini file 430, 431

Browser Capabilities component 428, 429,
430, 432

Buffer 473, 478

Buffer property 407, 408

BufferingOn 168

BuildPath method 619, 620, 873

Built-in objects 193, 385, 386

C++ Interfaces Reference 458

CacheControl 474

CacheControl property 408

CacheSize property 352, 353

Caching 164

Call statement 744

caller property 651, 652

CancelBatch method 299, 300

CancelUpdate method 301, 302

casp.cnfg file 170, 171, 172

caspctrl script 175

CBool function 774

CByte function 775

cc_on statement 540

CCur function 775

CDate function 776

CDbl function 776, 777

CDONTS 709, 713

ceil method 659, 660

Changing the Web server 63

charAt method 681

charCodeAt method 681, 682

Charset 474, 478

Charset property 408, 409

Checking for updates 82

Chili!Beans 65, 450, 451, 452

Chili!Mail 709, 710, 711, 712, 713

Chili!POP3 714, 716, 719

Chili!Upload 720, 721

ChooseContent method 441

Chr function 777

CInt function 778

Sun Chili!Soft ASP 3.6.2 Product Documentation 975

Class 455

Clear 472

Clear method 380, 405, 855, 856

Clickable property 427

CLng function 779

Clone method 304, 305

Close method 235, 305, 306, 696, 904, 905

Code pages 213

Collection - DB2 136

Collections 375, 703, 839

Color constants 723

Column property 696, 697, 905

COM 455, 459, 941, 942

Comma operator 521

Command object 217, 218, 219

CommandText property 228

CommandType property 229, 230

Comment statement 540, 541

CompareMode property 840, 841

Comparison constants 723

Comparison operators 522

compile method 674

Components 93, 94, 95, 197, 422, 423, 455,
457, 707, 708

Compound assignment operators 523

concat method 558, 682

Concatenation operator 734

Conditional Compilation variables 508

Conditional operator 524

Configuration file 170, 172, 174, 175

Configuring a non-DSO Apache Web server
57

Configuring applications 100

Configuring the ASP Server 85

Connecting to a database 198, 926

Connection object 232, 233, 234

Connection pool size 943

Connection strings 199, 200, 201, 202, 204,
205, 206, 943

ConnectionTimeout property 252

Const statement 745

Construct method 454

constructor property 553, 554, 555, 556

Content Linking component 433, 434, 435,
436, 437, 438

Content Linking Component 436, 437

Content Linking List file 435

Content Rotator component 438, 439

Contents collection 419

ContentType 474, 478

ContentType property 409

continue statement 541

Cookies 465, 475, 943

Cookies collection 194, 390, 391, 401, 402

Copy method 607, 608, 638, 639, 862, 891

CopyFile method 620, 873, 874

CopyFolder method 621, 622, 875

Cos function 780

cos method 660

Count property 384, 588, 706, 707, 841, 911,
912

Counters component 443

Create TextFile method 892

CreateFolder method 622, 623, 876

CreateObject 484

CreateObject function 780

Sun Chili!Soft ASP 3.6.2 Product Documentation 976

CreateObject method 413

CreateParameter method 219, 220

CreateTextFile method 623, 639, 876, 877

CSng function 782

CStr function 782

CursorLocation property 253

CursorType property 355, 356

Customer Support 79, 80

Data source names (DSNs) 121, 123, 124,
126, 944

Data type conversion 507

Database parameters 136, 137, 138, 139,
141, 142, 143, 144, 146, 147, 149, 151

Databases 69, 70

Access 147, 148, 210, 211

Configuring 121, 122, 123, 124, 126, 128,
131, 135

Connecting to 198

Connection pooling 166, 167

Connections 69, 70, 201, 204, 206, 209,
926

DB2 136

dBASE 137

FrontPage connections 210

FrontPage features 211

Informix 135, 138

Installed ODBC drivers 18, 32, 43, 56

Microsoft SQL Server 6.5 147, 148, 210

Microsoft SQL Server 7.0 and 2000 141

MySQL 142

Oracle 135, 143

PostgreSQL 146

SequeLink 147, 148

Supported 16, 17, 18, 30, 31, 41, 42, 43,
53

Sybase 149, 150

Date format constants 724

Date function 783

Date object 561, 562, 563, 564, 565, 566,
567, 568, 569, 570, 571, 572, 573, 574,
575, 576, 577, 578, 579, 580, 581, 582,
583, 584, 585, 586

Date/Time constants 724

DateAdd function 783, 784

DateCreated property 608, 639, 640, 862,
863, 892, 893

DateDiff function 784, 785, 786

DateLastAccessed property 608, 609, 640,
863, 893

DateLastModified property 609, 641, 864,
894

DatePart function 787, 788

DateSerial function 789

DateValue function 789, 790

Day function 790

DB2 136, 137

dBASE 135, 137, 212

Decrement and Increment operators 525

DefaultDatabase property 254

DefaultError 168, 169

DefaultLanguage 168

defaultlanguage parameter 186

defaultlanguage registry setting 186

Defined User Security Mode 96, 98

DefinedSize property 272

Defining ASP applications 157, 176, 188

Delete method 380, 381, 610, 641, 642, 864,
894, 895

Sun Chili!Soft ASP 3.6.2 Product Documentation 977

delete operator 524, 525

DeleteFile method 624, 877

DeleteFolder method 624, 878

Description property 856

Diagnostics 6, 110

Dictionary object 586, 587, 839

Dim statement 746

Dimensions method 701

Direction 283, 284

Divide Equals (/=) operator 526

Division operator 526, 734, 735

do. . . while statement 542

Do...Loop statement 747

Documentation 4, 5, 77, 78

Drive object 592, 593, 845

Drive property 610, 642, 865, 895

DriveExists method 625, 878

DriveLetter property 594, 847

Drivers 128, 129

Drives collection 703, 909

Drives property 625, 879

DriveType constants 725

DriveType property 595, 848

DSN-less connection string 199, 201

DSNs 945

Adding 121, 123

Configuring 120

Editing 124

Removing 123

Testing 126

E property 660

Editing the Windows registry 168

EditMode property 358

E-mail 709, 711, 714, 716, 717, 718, 719,
720

Enable parent paths 95, 168, 187

Enabling Chili!Beans 450

Enabling Java support 65

Enabling SpicePack components 708

End 473

End method 405

Enumerator object 602, 603, 604

Environment 131, 132

Informix 133

Oracle 132

Eqv operator 735

Erase statements 748

Err object 855

Error messages 913, 919, 922, 924

Error object 261

Errors collection 376

Errors logging 108, 109, 110

escape method 653

eval method 653, 654

Events 189, 190, 191

exec method 674

Execute method 239, 240

Exists method 588, 841, 842

Exit statement 749

Exp function 790, 791

exp method 660

Expires 476, 479

Expires property 409, 410

ExpiresAbsolute 476, 479

ExpiresAbsolute property 410

Sun Chili!Soft ASP 3.6.2 Product Documentation 978

Exponentiation operator 736

External components 93, 94, 450, 708

Field access 453, 456

Field object 266

Fields collection 376

File attribute constants 725

File DSNs 199, 204, 205, 206, 207

File object 605, 859

File parameter 187

File system access 95, 96

File Upload component 720

FileExists method 447, 448, 626, 880

FileInputOutput constants 726

Files collection 704, 910

Files property 643, 896

FileSystem property 596, 849

FileSystemObject 617, 618, 619, 871, 872,
873

Filter function 791, 792

Fix function 792

fixed method 682

floor method 660, 661

Flush 473

Flush method 406

Folder object 635, 636, 637, 889, 890

FolderExists method 627, 880

Folders collection 705, 910, 911

fontcolor method 682, 683

fontsize method 683

For Each. . . Next statement 751, 752

for statement 542, 543

for. . . in statement 543

For...Next statement 750

Form Collection 194, 391, 392

FormatCurrency function 793, 794

FormatDateTime function 794, 795

FormatNumber function 795, 796

FormatPercent function 796, 797

FreeSpace property 596, 849

fromCharCode method 684

FrontPage 115, 116, 117, 118, 119, 158, 210,
211, 948, 949

Function object 650, 651, 652

Function statement 543, 544, 753, 754

Functions 767, 768

GetAbsolutePathName method 627, 880, 881

GetAdvertisement method 427, 428

GetAllContent method 441, 442

GetBaseName method 628, 881

GetChunk method 269

getDate method 564

getDay method 565

GetDrive method 628, 881, 882

GetDriveName method 629, 882

GetExtensionName method 629, 630, 883

GetFile method 630, 883

GetFileName method 630, 883, 884

GetFolder method 631, 884

getFullYear method 565

getHours method 566

getItem method 701

GetListCount method 436

GetListIndex method 436

getMilliseconds method 566

getMinutes method 567

getMonth method 567

Sun Chili!Soft ASP 3.6.2 Product Documentation 979

GetNextDescription method 436

GetNextURL method 436, 437

GetNthDescription method 437

GetNthURL method 437

Getobject function 536, 797, 798

GetParentFolderName method 631, 884, 885

GetPreviousDescription method 438

GetPreviousURL method 438

GetRows method 314, 315, 317

getSeconds method 567, 568

GetSpecialFolder method 631, 632, 885

GetTempName method 632, 885, 886

getTime method 568

getTimezoneOffset method 568, 569

getUTCDate method 569

getUTCDay method 569, 570

getUTCFullYear method 570

getUTCHours method 570, 571

getUTCMilliseconds method 571

getUTCMinutes method 571

getUTCMonth method 572

getUTCSeconds method 572

getVarDate method 573

getYear method 573

Global object 652, 653, 654, 655, 656

global property 675

global.asa 189, 193

Glossary 928

HelpContext property 856

HelpFile property 857

Hex function 799

Hostname 949, 950

Hour function 800

HP Apache-based Web server 30

HP-UX 950

Installation requirements 28

Required patches 29

Supported platforms and Web servers 10

Uninstalling Sun Chili!Soft ASP 66

Upgrading Sun Chili!Soft ASP 39

HTMLEncode 485

HTMLEncode method 414

if. . . else statement 545

If...Then...Else statement 755

ignoreCase property 675

Imp operator 736, 737

Include files 95, 188

Increment method 444, 445

index property 670

indexOf method 684, 685

Infinity property 654

Informix 131, 132, 133, 138, 139, 140

Inherit User Security mode 97, 98

input property 670, 671

InputBox function 800, 801

Installation requirements 16, 28, 41, 53

Installing FrontPage Support on Apache
1.3.19 116

Installing Sun Chili!Soft ASP 15, 28, 40, 53

InStr function 801, 802

InStrRev function 803, 804

Integer Division operator (\) 737, 738

Interface 459, 462, 464, 467, 468, 470, 471,
481, 484, 487, 492, 493, 495, 496

International applications 90, 213

Sun Chili!Soft ASP 3.6.2 Product Documentation 980

iPlanet Web Server 951

Changes to configuration files 59

Supported versions 10

Is operator 738

IsArray function 804

IsClientConnected 477

IsClientConnected property 410, 411

IsDate function 805

IsEmpty function 805, 806

isFinite method 654

IsNaN method 654, 655

IsNull function 806

IsNumeric function 807

IsObject function 807, 808

IsolationLevel property 254

IsReady property 597, 850

IsRootFolder property 643, 644, 896

italics method 685

Item method 381, 604

Item property 589, 707, 842, 912

Items method 589, 842, 843

Java objects and classes 454, 455, 456

Java runtime environment 65

Java support 65

Java Virtual Machine settings 453

Java VM Security Manager 451, 452, 953

Join function 808

join method 558

JScript 703, 704, 705, 922, 923, 924

Using 184, 185, 186

JScript collections 703, 704, 705, 706, 707

JScript data type conversion 507

JScript features 499, 505

JScript functions 536, 537, 538

JScript Object 553, 554, 555, 556

JScript objects 552, 553, 556, 558, 559, 560,
561, 564, 565, 566, 567, 568, 569, 570,
571, 572, 573, 574, 575, 576, 577, 578,
579, 580, 581, 582, 583, 584, 585, 586,
587, 588, 589, 590, 591, 592, 593, 594,
595, 596, 597, 598, 599, 600, 601, 602,
603, 604, 605, 606, 607, 608, 609, 610,
611, 612, 613, 614, 615, 616, 617, 619,
620, 621, 622, 623, 624, 625, 626, 627,
628, 629, 630, 631, 632, 633, 634, 635,
637, 638, 639, 640, 641, 642, 643, 644,
645, 646, 647, 648, 649, 650, 651, 652,
653, 654, 655, 656, 658, 659, 660, 661,
662, 663, 664, 665, 666, 667, 668, 669,
670, 671, 672, 673, 674, 675, 676, 677,
679, 680, 681, 682, 683, 684, 685, 686,
687, 688, 689, 690, 691, 692, 693, 694,
695, 696, 697, 698, 699, 700, 701, 702

JScript operator precedence 511

JScript operators 510, 512, 513, 514, 515,
516, 517, 518, 519, 520, 521, 522, 523,
524, 525, 526, 527, 528, 529, 530, 531,
532, 533, 534, 535

JScript statements 539, 540, 541, 542, 543,
544, 545, 546, 547, 548, 549, 550, 551

JScript variables 508

Kernel - Linux 41

Kernel configurable parameter 29

Key method 843

Key property 590, 843

Keys method 590

Labeled statement 546

Language 90, 186, 212, 213, 214

lastIndex property 671, 675, 676

lastIndexOf method 685, 686

lastMatch property 671

Sun Chili!Soft ASP 3.6.2 Product Documentation 981

lastParen property 671, 672

LBound function 809

lbound method 701, 702

LCase function 809

LCID 90, 212, 213, 422

LCID property 422

Left function 810

Left Shift Equals operator (<<=) 516

Left Shift operator (<<) 515

leftContext property 672

Len function 810, 811

length property 559, 652, 686

License key (product serial number) 81

Line property 697, 905

link method 686

Linux 954

Installation requirements 41

Supported platforms and Web servers 10

Uninstalling Sun Chili!Soft ASP 66

Upgrading Sun Chili!Soft ASP 52

LN10 property 661

LN2 property 661

Load balancing 167

LoadPicture function 811

Local identifier 422

Locale 90, 91

Lock 461

Lock method 388

LockType property 363

Log function 811, 812

log method 661, 662

LOG10E property 662

LOG2E property 662

LogDirectory 169

LogErrors 169

Logging 108, 109, 110, 153, 154, 155

Logical AND operator (&&) 527

Logical NOT operator 527, 528

Logical OR operator (||) 528

LogRequestErrors 169

LogToFile 169

Ltrim function 812

MacroMedia 954, 955

Mail components 709, 714, 720

Managing Sun Chili!Soft ASP 71, 72, 88, 89

Managing the Web server

Enabling ASP for a virtual host 114

Starting and stopping 112

MapPath 486

MapPath method 414, 415

MarshalOptions property 364

match method 687

Math object 656, 657, 658, 659, 660, 661,
662, 663, 664, 665, 666

max method 662, 663

MAX_VALUE property 667

maxdsiz 29

MaxRecords property 366

MaxThreads 169

Message interface 714, 716, 717, 718

Method call 456

Methods 955

Accessing with Chili!Beans 453

Microsoft Access 147, 210, 211

Microsoft SQL Server 6.5 147, 210

Sun Chili!Soft ASP 3.6.2 Product Documentation 982

Microsoft SQL Server 7.0 and 2000 141

Mid function 813

Migrating settings 27, 39, 52, 56

min method 663

MIN_VALUE property 667

Minute function 813, 814

Miscellaneous constants 726

Mod operator 738, 739

Mode property 256

Modulus operator (%) 529

Monitoring the ASP Server 99, 106

Month function 814

MonthName function 814, 815

Move method 611, 644, 645, 865, 866, 897

MoveFile method 632, 633, 886

MoveFirst method 322, 604

MoveFolder method 633, 634, 887

moveNext method 604

MsgBox constants 727

MsgBox function 815, 816, 817

Muliplication operator 739

multiline property 672

Multiplication operator (*) 530

Multiplication operator (*=) 530

Multi-thread 165, 965

MyInfo component 446, 447

MySQL 142

Name property 284, 611, 612, 645, 866, 897,
898

NaN property 655, 667

Negation operator 740

NEGATIVE_INFINITY property 668

Netscape Web Server 10, 59

New in This Release 9

new operator 531

NewMail object 709

NextRecordset 328, 329, 330

NFS 178

Non-DSO Apache 57

Not operator 740

NOT operator (!) 527, 528

NOT operator (~) 516, 517

Now function 817

NSAPI 18, 32, 43, 958

Number object 666, 667, 668, 669

Number property 857

Objects 958

ADO 217

ASP 385, 386

JScript 552

VBScript 838, 839

Oct function 817

ODBC drivers 958

Installed with Sun Chili!Soft ASP 18, 31,
43, 54

On Error statement 757

Open method 244

OpenAsTextStream method 612, 613, 866,
867

OpenSchema method 240

OpenTextFile method 634, 635, 887, 888

Operator behavior 510

Operator precedence 511, 731

Operators 509

Option Explicit statement 757, 758

OR Equals operator (|=) 518

Sun Chili!Soft ASP 3.6.2 Product Documentation 983

Or operator 741

OR operator (|) 517

Oracle 131, 132, 143, 144, 145

Owner method 448

Package 137

PageCount property 367

PageSize property 367

Parameter object 280, 281

Parameters 135, 187, 206, 377

ParentFolder property 613, 614, 645, 646,
868, 898

parse method 573, 574

parseFloat method 655

parseInt method 655, 656

Patches - HP-UX 28

Path property 598, 614, 646, 851, 869, 899

Percent Equals operator (%=) 530

Performance monitoring 99, 106

PI property 663

PICS 477

PICS property 411

PluginExists method 448

Plus Equals (+=) operator 512

POP3 interface 714, 715

POSITIVE_INFINITY property 668

PostgreSQL 146

pow method 663, 664

Prepared property 230

Private statement 758

ProcessForm method 448, 449

Product documentation 77

Product license 81

Product support 79

Product updates 82

Properties collection 377

prototype property 554

Provider property 257

Public statement 759

Publishing 116, 214

QueryString collection 194, 393, 394

Raise method 857, 858

Random method 449, 664

Randomize statement 760

Read method 697, 905

ReadAll method 697, 698, 906

ReadLine method 698, 906

README file 78, 79

RecordCount property 372

ReDim statement 761

Redirect method 406

Redirection 480

Redirection file 426

Refresh method 381, 382

RegExp object 670, 671, 672, 673

Registering a Java class 454, 455

Registry 168, 169

Regular Expression object 673, 674, 675,
676

Rem statement 762

Remove method 445, 591, 844

RemoveAll method 591, 592, 845

Replace function 818, 819

replace method 687, 688

Requery method 332, 333

Request object 194, 389, 390, 391, 392, 393,
394, 395, 397, 398, 399

Sun Chili!Soft ASP 3.6.2 Product Documentation 984

Response object 194, 400, 401, 402, 403,
404, 405, 406, 407, 408, 409, 410, 411,
412

Restarting the ASP Server 89

Resync method 333

return statement 547

Reverse method 559

RGB function 819, 820

Right function 820

Right Shift Equals operator (>>=) 519

Right Shift operator (>>) 518, 519

rightContext property 672, 673

Rnd function 821

RootFolder property 598, 599, 851, 852

Rotator Schedule file 424, 425

Round function 822

round method 664

Script caching 85, 164

Script engines in memory 87, 165

Script timeout 162

ScriptEngine function 537, 822, 823

ScriptEngineBuildMajorVersion function
538

ScriptEngineBuildMinorVersion function
538

ScriptEngineBuildVersion function 538, 823

ScriptEngineMajorVersion function 823, 824

ScriptEngineMinorVersion function 824

Scripting language 186, 187

Scripts 184, 185

Scripts buffering 159, 160

ScriptTimeout 162, 169

ScriptTimeout property 416, 417

search method 688

Second function 825

Security 76, 95, 96, 97, 98, 99

Select Case statement 762, 763

SequeLink 69, 129, 130, 131, 147

Serial number 81, 82

SerialNumber property 599, 852

Server object 194, 195, 412, 413, 414, 415,
416, 417

Server settings 85

Server-side includes 187, 188

ServerVariables 194

ServerVariables collection 395, 397

Session object 191, 194, 196, 417, 418, 419,
420, 421, 422

Session state 92, 186, 191

Session timeout 161, 168

SessionID 488

SessionID property 421

Set method 445

Set statement 547, 764

setDate method 574, 575

setFullYear method 575

setHours method 576

setMilliseconds method 576, 577

setMinutes method 577

setMonth method 578

setSeconds method 578

setTime method 579, 580

setUTCDate method 579

setUTCFullYear method 580

setUTCHours method 580, 581

setUTCMilliseconds method 581

Sun Chili!Soft ASP 3.6.2 Product Documentation 985

setUTCMinutes method 582

setUTCMonth method 582, 583

setUTCSeconds method 583

setYear method 583, 584

Sgn function 825

Shared file system 179

Shared Web server 156, 157, 158

ShareName property 600, 853

ShortName property 615, 646, 647, 869, 899,
900

ShortPath property 615, 616, 647, 870, 900

ShowDefaultError 169

SID 145

Sin function 826

sin method 664, 665

Size property 285, 616, 648, 870, 871, 901

Skip method 698, 906, 907

SkipLine method 698, 699, 907

slice method 559, 560, 688, 689

small method 689

SMTP component 709

Solaris 964

Installation requirements 16

Supported platforms and Web servers 10

Uninstalling Sun Chili!Soft ASP 66

Upgrading Sun Chili!Soft ASP 27

sort method 560

Source property 676, 858, 859

Space function 826

SpecialFolder constants 728

SpicePack 707, 708, 709

Split function 827

split method 689, 690

SQL Server 141, 147, 148, 149

Sqr function 828

sqrt method 665

SQRT1_2 property 665

SQRT2 property 665

SSL mode 113

Start on system boot 66

StartConnectionPool 169

Starting and stopping the Administration
Web server 75

Starting and stopping the ASP Server 89

Starting the Apache Web Server in SSL
Mode 113

State property 258, 259

Statements 539, 743, 744

StaticObjects 460, 489

StaticObjects collection 420

Status property 412

StrComp function 828, 829

strike method 690

String constants 728

String function 830

String object 677, 678, 679, 680, 681, 682,
683, 684, 685, 686, 687, 688, 689, 690,
691, 692, 693

StrReverse function 829, 830

sub method 690

Sub statement 765, 766

SubFolders property 648, 901

substr method 691

substring method 691, 692

Subtract operator (-=) 533

Subtraction and Unary Negation operator (-)
532

Sun Chili!Soft ASP 3.6.2 Product Documentation 986

Subtraction operator 739, 740

sup method 692

Support 79

Supported platforms 10

switch statement 548, 549

Sybase 149

System DSNs 69, 199, 200

System requirements 16, 28, 41, 53

Tan function 830

tan method 665, 666

TargetFrame property 427

test method 676

Testing a DSN 126

Testing functionality 6

Text parameters 151

TextStream object 694, 902, 903

this statement 549, 550

Threading 458

Time function 831

Timeout 489, 490

Timeout property 421, 422

TimeSerial function 831

TimeValue function 832

toArray method 702

toGMTString method 584

toLocaleString method 584, 585

toLowerCase method 692, 693

Tools component 447, 448, 449

toString method 555, 668, 669

TotalBytes property 399

TotalSize property 600, 601, 853

toUpperCase method 693

toUTCString method 585

Tristate constants 729

Troubleshooting 926, 927

Type property 285, 287, 617, 649, 871

TypeName function 832, 833

typeof operator 533

UBound function 833, 834

ubound method 702, 703

UCase function 834

Unary Negation operator (-) 532

UnderlyingValue property 278

unescape method 656

Uninstalling Sun Chili!Soft ASP 66, 67

UNIX 176, 459

Unlock 462

Unlock method 388, 389

Unsigned Right Shift Equals operator
(>>>=) 534

Unsigned Right Shift operator (>>>) 533,
534

Update method 338, 339

UpdateBatch method 342, 343

Updates 82, 83

Upgrading Sun Chili!Soft ASP 27, 39, 52, 56

URLEncode 487

URLEncode method 416

User Configuration file 157, 158

Usernames and passwords 76, 77

UTC method 585, 586

Value property 278, 279, 292

valueOf method 556

var statement 550

Variables 508

Sun Chili!Soft ASP 3.6.2 Product Documentation 987

VarType constants 729

VarType function 835

VBArray object 700, 701, 702, 703

VBScript 184, 185, 186, 919, 920

VBScript collections 908

VBScript constants 723, 724, 725, 726, 727,
728, 729

VBScript Dictionary object 840, 841, 842,
843, 844, 845

VBScript Drive object 845, 846, 847, 848,
849, 850, 851, 852, 853, 854

VBScript Drives collection 909

VBScript Err object 855, 856, 857, 858, 859

VBScript File object 859, 860, 861, 862,
863, 864, 865, 866, 867, 868, 869, 870,
871

VBScript Files collection 910

VBScript FileSystemObject 871, 873, 874,
875, 876, 877, 878, 879, 880, 881, 882,
883, 884, 885, 886, 887, 888

VBScript Folder object 889, 890, 891, 892,
893, 894, 895, 896, 897, 898, 899, 900,
901

VBScript Folders collection 910, 911, 912

VBScript functions 767, 771, 772, 773, 774,
775, 776, 777, 778, 779, 780, 782, 783,
784, 787, 789, 790, 791, 792, 793, 794,
795, 796, 797, 799, 800, 801, 803, 804,
805, 806, 807, 808, 809, 810, 811, 812,
813, 814, 815, 817, 818, 819, 820, 821,
822, 823, 824, 825, 826, 827, 828, 829,
830, 831, 832, 833, 834, 835, 836, 837,
838

VBScript operators 731, 732, 733, 734, 735,
736, 737, 738, 739, 740, 741, 742

VBScript statements 744, 745, 746, 747, 748,
749, 750, 751, 753, 755, 757, 758, 759,
760, 761, 762, 764, 765, 766

VBScript TextStream object 902, 903, 904,
905, 906, 907, 908

Version property 260

Virtual hosts 114, 157

Visual InterDev 184

void operator 535

VolumeName property 601, 854

Web hosting 156, 157, 158

Web server 968

Apache 10, 11, 30, 57, 58, 61, 113, 116,
117, 927, 936

Changes to configuration files 59, 61, 62

Changing after installation 63

iPlanet 10, 11, 59, 61, 951

Starting and stopping 112

Supported 10, 11

Troubleshooting 926, 927

Zeus 10, 11, 19, 20, 23, 44, 45, 48, 50, 62,
63, 970

Weekday function 836, 837

WeekdayName function 837, 838

while statement 551

While...Wend statement 766

Windows 11, 53, 54, 56, 168

with statement 550, 551

Write 481

Write method 406, 407, 699, 907

WriteBlankLines method 699, 907, 908

WriteLine method 699, 700, 908

XOR Equals (^=) operator 520

Xor operator 742

XOR operator (^) 520

Year function 838

Sun Chili!Soft ASP 3.6.2 Product Documentation 988

Zeus Web Server 970

Changes to configuration files 62

Installing to 19, 44

NSAPI 19, 20, 44, 45, 958

Supported versions 10

	Legal Notice
	Contents
	Introduction: About This Documentation
	What's in This Documentation

	Chapter 1: About Sun Chili!Soft ASP
	What is ASP?
	What is Sun Chili!Soft ASP?

	Chapter 2: Installing and Configuring Sun Chili!Soft ASP
	Installing and Uninstalling Sun Chili!Soft ASP
	Enabling Publishing
	Defining ASP Applications on the Server
	Enabling Database Connections on the Server

	Chapter 3: Managing Sun Chili!Soft ASP
	Using the Administration Console
	Managing the ASP Server
	Managing the Web Server
	Enabling FrontPage Publishing
	Configuring a Database
	Configuring ActiveX Data Objects (ADO) Connections
	Running Sun Chili!Soft ASP in a Shared Web Hosting Environment
	Optimizing Server Performance
	Advanced Administration Options

	Chapter 4: Building a Sun Chili!Soft ASP Application
	Creating the Basic ASP Application
	Using Sun Chili!Soft ASP Built-in Objects
	Using Sun Chili!Soft ASP Installed Components
	Using Java Objects and Classes
	Connecting to a Database
	Developing International Applications
	Publishing a Sun Chili!Soft ASP Application

	Chapter 5: Developer's Reference
	ADO Component Reference
	ASP Built-in Objects Reference
	ASP Component Reference
	Chili!Beans Component Reference
	Component Programmer's Reference
	JScript Language Reference
	SpicePack Component Reference
	VBScript Language Reference

	Appendix A: Errors Reference
	Appendix B: Troubleshooting
	Appendix C: Glossary
	Index

